
How-To Guide

Log Analysis
Example

http://databricks.com

Analyzing Apache Access Logs
with Databricks
Databricks provides a powerful platform to process, analyze, and visualize small
and big data in one place. In this example, we will illustrate how to analyze Apache®
HTTP web server access logs using Notebooks. Notebooks allow users to write and
run arbitrary Apache® Spark™ code and interactively visualize the results. Currently,
notebooks support three languages: Scala, Python, and SQL. In this example, we
will be using Python for illustration.

The analysis presented in this example is available in Databricks as part of
the Databricks Guide. Find this notebook in your Databricks workspace at
“databricks_guide/Sample Applications/Log Analysis/Log Analysis in Python”
– it will also show you how to create a data frame of access logs with Python using
the new Spark SQL 1.3 API. Additionally, there are also Scala & SQL notebooks in
the same folder with similar analysis available.

Figure 1: Location of the synthetically generated logs in your instance of Databricks

Getting Started
First we need to locate the log file. In this example, we are using a
synthetically generated log which is stored in the “/dbguide/sample_log”
file. The command below (typed in the notebook) assigns the log file
pathname to the DBFS_SAMPLE_LOGS_FOLDER variable, which will be
used throughout the rest of this analysis.

2

Databricks: Log Analysis Example

http://databricks.com

Parsing the Log File
Each line in the log file corresponds to an Apache web server access
request. To parse the log file, we define parse_apache_log_line(), a
function that takes a log line as an argument and returns the main fields of
the log line. The return type of this function is a PySpark SQL Row object
which models the web log access request. For this we use the “re” module
which implements regular expression operations. The APACHE_ACCESS_
LOG_PATTERN variable contains the regular expression used to match an
access log line. In particular, APACHE_ACCESS_LOG_PATTERN matches
client IP address (ipAddress) and identity (clientIdentd), user name as
defined by HTTP authentication (userId), time when the server has finished
processing the request (dateTime), the HTTP command issued by the client,
e.g., GET (method), protocol, e.g., HTTP/1.0 (protocol), response code
(responseCode), and the size of the response in bytes (contentSize).

Figure 2: Example function to parse the log file in a Databricks notebook

3

Databricks: Log Analysis Example

http://databricks.com

Loading the Log File
Now we are ready to load the logs into a Resilient Distributed Dataset (RDD).
RDDs represent a collection of items distributed across many compute nodes
that can be manipulated in parallel and is the primary data abstraction in
Spark. Once the data is stored in an RDD, we can easily analyze and process it
in parallel. To do so, we launch a Spark job that reads and parses each line in
the log file using the parse_apache_log_line() function defined earlier, and
then creates the access_logs RDD. Each tuple in access_logs contains the
fields of a corresponding line (request) in the log file, DBFS_SAMPLE_LOGS_
FOLDER. Note that once we create the access_logs RDD, we cache it into
memory, by invoking the cache() method. This will dramatically speed up
subsequent operations we will perform on access_logs.

Figure 3: Example code to load the log file in Databricks notebook

At the end of the above code snippet, notice that we count the number of
tuples in access_logs (which returns 100,000 as a result).

4

Databricks: Log Analysis Example

https://spark.apache.org/docs/latest/quick-start.html#basics
http://databricks.com

Loading the Log File
Now we are ready to analyze the logs stored in the access_logs RDD. Below
we give two simple examples:

1. Computing the average content size

2. Computing and plotting the frequency of each response code

1. Average Content Size

We compute the average content size in two steps. First, we create another
RDD, content_sizes, that contains only the “contentSize” field from
access_logs, and cache this RDD:

Figure 4: Create the content size RDD in Databricks notebook

5

Databricks: Log Analysis Example

http://databricks.com

Second, we use the reduce() operator to compute the sum of all content sizes
and then divide it into the total number of tuples to obtain the average:

The result is 249 bytes. Similarly we can easily compute the min and max, as
well as other statistics of the content size distribution.

An important point to note is that both commands above run in parallel.
Each RDD is partitioned across a set of workers, and each operation invoked
on an RDD is shipped and executed in parallel at each worker on the
corresponding RDD partition. For example the lambda function passed as the
argument of reduce() will be executed in parallel at workers on each partition
of the content_sizes RDD. This will result in computing the partial sums
for each partition. Next, these partial sums are aggregated at the driver to
obtain the total sum. The ability to cache RDDs and process them in parallel
are two of the main features of Spark that allows us to perform large scale,
sophisticated analysis.

Figure 5: Computing the average content size with the reduce() operator

6

Databricks: Log Analysis Example

http://databricks.com

2. Computing and Plotting the Frequency
of Each Response Code

We compute these counts using a map-reduce pattern. In particular, the
code snippet returns an RDD (response_code_to_count_pair_rdd) of
tuples, where each tuple associates a response code with its count.

Figure 6: Counting the response codes using a map-reduce pattern

Figure 7: Filter out possible bad data with take()

Next, we take the first 100 tuples from response_code_to_count_pair_
rdd to filter out possible bad data, and store the result in another RDD,
response_code_to_count_array.

7

Databricks: Log Analysis Example

http://databricks.com

To plot data we convert the response_code_to_count_array RDD into
a DataFrame. A DataFrame is conceptually equivalent to a table, and it is
very similar to the DataFrame abstraction in the popular Python’s pandas
package. The resulting DataFrame (response_code_to_count_data_
frame) has two columns “response code” and “count”.

Figure 8: Converting RDD to DataFrame for easy data manipulation and visualization

Figure 9: Visualizing response codes with display()

Now we can plot the count of response codes by simply invoking display()
on our data frame.

8

Databricks: Log Analysis Example

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://databricks.com

If you want to change the chart type, you can do so interactively by just
clicking on the down arrow below the chart, and select another chart type.
To illustrate this capability, below we show the same data using a pie-chart.

Additional Resoures

If you’d like to analyze your Apache access logs with Databricks, you can
evaluate Databricks with a trial account now. You can also find the source
code on Github.

Other Databricks how-tos can be found at:
The Easiest Way to Run Apache Spark Jobs

Evaluate Databricks with a trial account now:
databricks.com/try-databricks

Figure 10: Changing the visualization of response codes to a pie chart

© Databricks 2016. All rights reserved. Apache Spark and the Apache Spark Logo are trademarks of the Apache Software Foundation. 9

Databricks: Log Analysis Example

https://github.com/databricks/reference-apps/tree/master/logs_analyzer/chapter1/python/databricks/apps/logs
https://github.com/databricks/reference-apps/tree/master/logs_analyzer/chapter1/python/databricks/apps/logs
https://databricks.com/blog/2015/04/16/the-easiest-way-to-run-spark-jobs.html
http://databricks.com/try-databricks
http://databricks.com/try-databricks
http://databricks.com

