Data Brew
Season 2, Episode 7

Interpretable Machine Learning

What does it mean for a model to be “interpretable”? Ameet Talwalkar shares his thoughts on IML (Interpretable Machine Learning), how it relates to data privacy and fairness, and his research in this field.

Listen to the audio

Back to all episodes


Ameet Talwalkar

Ameet Talwalkar is an assistant professor in the Machine Learning Department at CMU, and also co-founder and Chief Scientist at Determined AI. His interests are in the field of statistical machine learning. His current work is motivated by the goal of democratizing machine learning, with a focus on topics related to automation, fairness, interpretability, and federated learning. He led the initial development of the MLlib project in Apache Spark, is a co-author of the textbook’Foundations of Machine Learning’ (MIT Press), and created an award-winning edX MOOC on distributed machine learning. He also helped to create the MLSys conference, serving as the inaugural Program Chair in 2018, General Chair in 2019, and currently as President of the MLSys Board.

Denny LeePlayPlay hover00:06

Welcome to Data Brew by Databricks with Denny and Brooke. This series allows us to explore various topics in the data and AI community. Whether we’re talking about data engineering or data science, we will interview subject matter experts to dive deeper into these topics. And while we’re at it, we’ll be enjoying our morning brew. My name is Denny Lee, I’m a developer advocate here at Databricks and one of the co-hosts of Data Brew.

Expand full transcript