
The
Delta Lake
Series
Complete
Collection

iiThe Delta Lake Series — Complete Collection

Delta Lake is a unified data management system that brings data reliability and fast
analytics to cloud data lakes. Delta Lake runs on top of existing data lakes and is fully
compatible with Apache Spark™ APIs.

At Databricks, we’ve seen how Delta Lake can bring reliability, performance and
lifecycle management to data lakes. With Delta Lake, there will be no more
malformed data ingestion, difficulties deleting data for compliance, or issues
modifying data for data capture.

With Delta Lake, you can accelerate the velocity that high-quality data can get into
your data lake and the rate that teams can leverage that data with a secure and
scalable cloud service.

In this eBook, the Databricks team has compiled all of their insights into a comprehensive
format so that you can gain a full understanding of Delta Lake and its capabilities.

What is
Delta Lake?

https://databricks.com/product/delta-lake-on-databricks

Contents

Fundamentals & Performance 4

The Fundamentals of Delta Lake: Why Reliability and 5

Performance Matter 5

Challenges with data lakes 5

Delta Lake’s key functionalities 6

Unpacking the Transaction Log 8

Implementing atomicity to ensure

operations complete fully 9

Dealing with multiple concurrent reads and writes 9

Time travel, data lineage and debugging 10

How to Use Schema Enforcement and Evolution 11

Understanding table schemas 11

What is schema enforcement? 12

How does schema enforcement work? 12

How is schema enforcement useful? 13

What is schema evolution? 13

How does schema evolution work? 13

How is schema evolution useful? 14

Summary 14

Delta Lake

DML Internals 15

Delta Lake DML: UPDATE 15

UPDATE: Under the hood 16

UPDATE + Delta Lake time travel = Easy debugging 16

UPDATE: Performance tuning tips 16

Delta Lake DML: DELETE 16

DELETE: Under the hood 17

DELETE + VACUUM: Cleaning up old data files 17

DELETE: Performance tuning tips 18

Delta Lake DML: MERGE 18

Here’s how an upsert works: 18

MERGE: Under the hood 19

MERGE: Performance tuning tips 19

How Delta Lake Quickly

Processes Petabytes With Data Skipping and Z-Ordering 20

Using data skipping and Z-Order clustering 21

Exploring the details 21

Features 22

Why Use MERGE 23

With Delta Lake? 23

When are upserts necessary? 24

Why upserts into data lakes have

traditionally been challenging 25

Introducing MERGE in Delta Lake 25

Simplifying use cases with MERGE 26

Deleting data due to GDPR 26

Applying change data from databases 26

Updating session information from streaming pipelines 27

How to start using Delta Lake 28

Loading and saving our Delta Lake data 29

In-place conversion to Delta Lake 30

Delete our flight data 30

Update our flight data 31

Merge our flight data 31

View table history 32

Travel back in time with table history 33

Clean up old table versions with vacuum 33

Common challenges with changing data 35

Working with Time Travel 36

1. Using a timestamp 36

Scala syntax 36

Python syntax 37

SQL syntax 37

2. Using a version number 38

Scala syntax 38

Python syntax 38

SQL syntax 38

Audit data changes 39

Reproduce experiments and reports 39

Rollbacks 39

Pinned view of a continuously updating

Delta Lake table across multiple downstream jobs 40

Queries for time series analytics made simple 40

Easily Clone Your Delta Lake

for Testing, Sharing and ML

Reproducibility 41

What are clones? 41

Shallow clones 41

Deep clones 42

Where do clones help? 42

Testing and experimentation with a production table 42

Staging major changes to a production table 42

Machine learning result reproducibility 43

Data migration 44

Data sharing 44

Data archiving 45

Looks awesome! Any gotchas? 45

How can I use it? 45

Enabling Spark SQL DDL

and DML in Delta Lake on

Apache Spark 3.0 46

Support for SQL DDL commands

to define tables in the Hive metastore 46

Create or replace tables 46

 Explicitly alter the table schema 47

Support for SQL Insert, Delete, Update and Merge 47

Automatic and incremental Presto/Athena manifest generation 48

Configuring your table through table properties 48

Support for adding user-defined metadata

in Delta Lake table commits 48

Other highlights 49

Lakehouse 50

What Is a

Lakehouse? 51

A lakehouse combines the best elements

of data lakes and data warehouses 52

Some early examples 55

From BI to AI 55

Diving Deep Into the

Inner Workings of the Lakehouse and Delta Lake 56

1. Data lakes 57

2. Custom storage engines 57

3. Lakehouse 58

In the research paper, the authors explain: 59

Understanding 60

Delta Engine 60

Scaling execution performance 60

Announcing Delta Engine for

high-performance query execution 61

Getting started with Delta Engine 62

Streaming 63

How Delta Lake Solves Common Pain Points in Streaming 64

Data lake pain points 64

Data warehouse pain points 64

How Delta Lake on Databricks solves these issues 65

Simplifying Streaming Stock Data Analysis Using Delta Lake 66

Implement your streaming

stock analysis solution with Delta Lake 67

Analyze streaming stock data in real time 69

How Tilting Point Does Streaming Ingestion Into Delta Lake 71

How data flows and associated challenges 72

Leveraging Structured Streaming with blob store as 72

source and Delta Lake tables as sink 72

Building a Quality of Service Analytics Solution for Streaming Video Services 75

Databricks Quality of Service solution overview 76

Video QoS solution architecture 77

Making your data ready for analytics 79

Video applications events 80

CDN logs 81

Creating the Dashboard /

Virtual Network Operation Centers 82

Creating (near) real-time alerts 85

Next steps: machine learning 86

Point-of-failure prediction and remediation 87

Customer churn 87

Getting started with the Databricks streaming video QoS solution 87

Customer Use Cases 88

Healthdirect Australia 89

Data quality and governance issues, silos, and the inability to scale 89

Modernizing analytics with Databricks and Delta Lake 90

Faster data pipelines result in better patient-driven healthcare 91

Comcast 93

Infrastructure unable to support data and ML needs 94

Automated infrastructure, faster data

pipelines with Delta Lake 95

Delivering personalized experiences with ML 96

Banco Hipotecario 97

Legacy analytics tools are slow, rigid and

impossible to scale 98

A unified platform powers the data lake

and easy collaboration 99

An efficient team maximizes customer

acquisition and retention 100

Viacom18 101

Growth in subscribers and terabytes of viewing data push Hadoop to its limits 102

Rapid data processing for analytics

and ML with Databricks 103

Leveraging viewer data to power personalized viewing experiences 104

Fundamentals and Performance
• The Fundamentals of Delta Lake: Why Reliability

and Performance Matter
• Unpacking the Transaction Log
• How to Use Schema Enforcement and Evolution
• Delta Lake DML Internals
• How Delta Lake Quickly Processes Petabytes

With Data Skipping and Z-Ordering

Streaming
• How Delta Lake Solves Common Pain Points in Streaming
• USE CASE #1: Simplifying Streaming Stock

Data Analysis Using Delta Lake
• USE CASE #2: How Tilting Point Does Streaming

Ingestion Into Delta Lake
• USE CASE #3: Building a Quality of Service

Analytics Solution for Streaming Video Services

Features
• Why Use MERGE With Delta Lake?
• Simple, Reliable Upserts and Deletes on Delta Lake

Tables Using Python APIs
• Time Travel for Large-Scale Data Lakes
• Easily Clone Your Delta Lake for Testing, Sharing

and ML Reproducibility
• Enabling Spark SQL DDL and DML in Delta Lake

on Apache Spark 3.0

Customer Use Cases
• USE CASE #1: Healthdirect Australia Provides Personalized

and Secure Online Patient Care With Databricks
• USE CASE #2: Comcast Uses Delta Lake and MLflow to

Transform the Viewer Experience
• USE CASE #3: Banco Hipotecario Personalizes the Banking

Experience With Data and ML
• USE CASE #4: Viacom18 Migrates From Hadoop to

Databricks to Deliver More Engaging Experiences

Lakehouse
• What Is a Lakehouse?
• Diving Deep Into the Inner Workings of the

Lakehouse and Delta Lake
• Understanding Delta Engine

 Chapter

01
 Chapter

04

 Chapter

02
 Chapter

05

 Chapter

03

Here’s what
you’ll find inside

CHAPTER 01
Fundamentals and Performance
Boost data reliability for machine learning and
business intelligence with Delta Lake

5The Delta Lake Series — Complete Collection

When it comes to data reliability, performance — the speed at which your programs
run — is of utmost importance. Because of the ACID transactional protections that
Delta Lake provides, you’re able to get the reliability and performance you need.

With Delta Lake, you can stream and batch concurrently, perform CRUD operations,
and save money because you’re now using fewer VMs. It’s easier to maintain your data
engineering pipelines by taking advantage of streaming, even for batch jobs.

Delta Lake is a storage layer that brings reliability to your data lakes built on HDFS and
cloud object storage by providing ACID transactions through optimistic concurrency
control between writes and snapshot isolation for consistent reads during writes.
Delta Lake also provides built-in data versioning for easy rollbacks and reproducing
reports.

In this chapter, we’ll share some of the common challenges with data lakes as well as
the Delta Lake features that address them.

Challenges with data lakes
Data lakes are a common element within modern data architectures. They serve as a
central ingestion point for the plethora of data that organizations seek to gather and
mine. While a good step forward in getting to grips with the range of data, they run
into the following common problems:

The Fundamentals of Delta
Lake: Why Reliability and
Performance Matter

6The Delta Lake Series — Complete Collection

1. Reading and writing into data lakes is not reliable. Data engineers often run into
the problem of unsafe writes into data lakes that cause readers to see garbage
data during writes. They have to build workarounds to ensure readers always see
consistent data during writes.

2. The data quality in data lakes is low. Dumping unstructured data into a data
lake is easy, but this comes at the cost of data quality. Without any mechanisms
for validating schema and the data, data lakes suffer from poor data quality. As a
consequence, analytics projects that strive to mine this data also fail.

3. Poor performance with increasing amounts of data. As the amount of data
that gets dumped into a data lake increases, the number of files and directories
also increases. Big data jobs and query engines that process the data spend a
significant amount of time handling the metadata operations. This problem is more
pronounced in the case of streaming jobs or handling many concurrent batch jobs.

4. Modifying, updating or deleting records in data lakes is hard. Engineers need to
build complicated pipelines to read entire partitions or tables, modify the data and
write them back. Such pipelines are inefficient and hard to maintain.

Because of these challenges, many big data projects fail to deliver on their vision or
sometimes just fail altogether. We need a solution that enables data practitioners to
make use of their existing data lakes, while ensuring data quality.

Delta Lake’s key functionalities
Delta Lake addresses the above problems to simplify how you build your data lakes.
Delta Lake offers the following key functionalities:

• ACID transactions: Delta Lake provides ACID transactions between multiple
writes. Every write is a transaction, and there is a serial order for writes recorded in
a transaction log. The transaction log tracks writes at file level and uses optimistic

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

7The Delta Lake Series — Complete Collection

concurrency control, which is ideally suited for data lakes since multiple writes
trying to modify the same files don’t happen that often. In scenarios where
there is a conflict, Delta Lake throws a concurrent modification exception for
users to handle them and retry their jobs. Delta Lake also offers the highest level
of isolation possible (serializable isolation) that allows engineers to continuously
keep writing to a directory or table and consumers to keep reading from the same
directory or table. Readers will see the latest snapshot that existed at the time the
reading started.

• Schema management: Delta Lake automatically validates that the schema of the
DataFrame being written is compatible with the schema of the table. Columns that
are present in the table but not in the DataFrame are set to null. If there are extra
columns in the DataFrame that are not present in the table, this operation throws
an exception. Delta Lake has DDL to add new columns explicitly and the ability to
update the schema automatically.

• Scalable metadata handling: Delta Lake stores the metadata information of
a table or directory in the transaction log instead of the metastore. This allows
Delta Lake to list files in large directories in constant time and be efficient while
reading data.

• Data versioning and time travel: Delta Lake allows users to read a previous
snapshot of the table or directory. When files are modified during writes, Delta
Lake creates newer versions of the files and preserves the older versions. When

users want to read the older versions of the table or directory, they can provide
a timestamp or a version number to Apache Spark’s read APIs, and Delta Lake
constructs the full snapshot as of that timestamp or version based on the
information in the transaction log. This allows users to reproduce experiments and
reports and also revert a table to its older versions, if needed.

• Unified batch and streaming sink: Apart from batch writes, Delta Lake can also
be used as an efficient streaming sink with Apache Spark’s structured streaming.
Combined with ACID transactions and scalable metadata handling, the efficient
streaming sink enables lots of near real-time analytics use cases without having to
maintain a complicated streaming and batch pipeline.

• Record update and deletion: Delta Lake will support merge, update and delete
DML commands. This allows engineers to easily upsert and delete records in data
lakes and simplify their change data capture and GDPR use cases. Since Delta Lake
tracks and modifies data at file-level granularity, it is much more efficient than
reading and overwriting entire partitions or tables.

• Data expectations (coming soon): Delta Lake will also support a new API to set
data expectations on tables or directories. Engineers will be able to specify a
boolean condition and tune the severity to handle data expectations. When Apache
Spark jobs write to the table or directory, Delta Lake will automatically validate
the records and when there is a violation, it will handle the records based on the
severity provided.

https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Serializable
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

8The Delta Lake Series — Complete Collection

Unpacking the
Transaction Log

The transaction log is key to understanding Delta Lake because it is the common thread
that runs through many of its most important features, including ACID transactions,
scalable metadata handling, time travel and more. The Delta Lake transaction log is
an ordered record of every transaction that has ever been performed on a Delta Lake
table since its inception.

Delta Lake is built on top of Apache Spark to allow multiple readers and writers of a
given table to work on the table at the same time. To show users correct views of the
data at all times, the transaction log serves as a single source of truth: the central
repository that tracks all changes that users make to the table.

When a user reads a Delta Lake table for the first time or runs a new query on an
open table that has been modified since the last time it was read, Spark checks the
transaction log to see what new transactions are posted to the table. Then, Spark
updates the end user’s table with those new changes. This ensures that a user’s
version of a table is always synchronized with the master record as of the most recent
query and that users cannot make divergent, conflicting changes to a table.

In this chapter, we’ll explore how the Delta Lake transaction log offers an elegant
solution to the problem of multiple concurrent reads and writes.

https://databricks.com/spark/about

9The Delta Lake Series — Complete Collection

Implementing atomicity to ensure
operations complete fully
Atomicity is one of the four properties of ACID transactions that guarantees that
operations (like an INSERT or UPDATE) performed on your data lake either complete
fully or don’t complete at all. Without this property, it’s far too easy for a hardware
failure or a software bug to cause data to be only partially written to a table, resulting
in messy or corrupted data.

The transaction log is the mechanism through which Delta Lake is able to offer
the guarantee of atomicity. For all intents and purposes, if it’s not recorded in the
transaction log, it never happened. By only recording transactions that execute fully
and completely, and using that record as the single source of truth, the Delta Lake
transaction log allows users to reason about their data and have peace of mind about
its fundamental trustworthiness, at petabyte scale.

Dealing with multiple concurrent reads and writes
But how does Delta Lake deal with multiple concurrent reads and writes? Since Delta
Lake is powered by Apache Spark, it’s not only possible for multiple users to modify a

table at once — it’s expected. To handle these situations, Delta Lake employs optimistic
concurrency control.

Optimistic concurrency control is a method of dealing with concurrent transactions
that assumes the changes made to a table by different users can complete without
conflicting with one another. It is incredibly fast because when dealing with petabytes
of data, there’s a high likelihood that users will be working on different parts of the data
altogether, allowing them to complete non-conflicting transactions simultaneously.

Of course, even with optimistic concurrency control, sometimes users do try to
modify the same parts of the data at the same time. Luckily, Delta Lake has a protocol
for that. Delta Lake handles these cases by implementing a rule of mutual exclusion,
then it attempts to solve any conflict optimistically.

This protocol allows Delta Lake to deliver on the ACID principle of isolation, which
ensures that the resulting state of the table after multiple, concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

https://databricks.com/glossary/data-lake

10The Delta Lake Series — Complete Collection

As all the transactions made on Delta Lake tables are stored directly to disk, this
process satisfies the ACID property of durability, meaning it will persist even in the
event of system failure.

Time travel, data lineage and debugging
Every table is the result of the sum total of all the commits recorded in the Delta Lake
transaction log — no more and no less. The transaction log provides a step-by-step
instruction guide, detailing exactly how to get from the table’s original state to its
current state.

Therefore, we can recreate the state of a table at any point in time by starting with
an original table, and processing only commits made after that point. This powerful
ability is known as “time travel,” or data versioning, and can be a lifesaver in any number

of situations. For more information, please refer to Introducing Delta Time Travel for
Large-Scale Data Lakes and Getting Data Ready for Data Science With Delta Lake and
MLflow.

As the definitive record of every change ever made to a table, the Delta Lake
transaction log offers users a verifiable data lineage that is useful for governance,
audit and compliance purposes. It can also be used to trace the origin of an
inadvertent change or a bug in a pipeline back to the exact action that caused it. Users
can run the DESCRIBE HISTORY command to see metadata around the changes
that were made.

Want to learn more about Delta Lake’s transaction log?
Read our blog post > Watch our tech talk >

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://www.youtube.com/watch?v=hQaENo78za0&list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP&index=21&t=112s
https://www.youtube.com/watch?v=hQaENo78za0&list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP&index=21&t=112s
https://docs.delta.io/latest/delta-utility.html#describe-history
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/discover/diving-into-delta-lake-talks/unpacking-transaction-log

11The Delta Lake Series — Complete Collection

As business problems and requirements evolve over time, so does the structure of
your data. With Delta Lake, incorporating new columns or objects is easy; users have
access to simple semantics to control the schema of their tables. At the same time,
it is important to call out the importance of schema enforcement to prevent users
from accidentally polluting their tables with mistakes or garbage data in addition to
schema evolution, which enables them to automatically add new columns of rich data
when those columns belong.

Schema enforcement rejects any new columns or other schema changes that
aren’t compatible with your table. By setting and upholding these high standards,
analysts and engineers can trust that their data has the highest levels of integrity and
can reason about it with clarity, allowing them to make better business decisions.

On the flip side of the coin, schema evolution complements enforcement by making it
easy for intended schema changes to take place automatically. After all, it shouldn’t
be hard to add a column.

Schema enforcement is the yin to schema evolution’s yang. When used together,
these features make it easier than ever to block out the noise and tune in to the signal.

Understanding table schemas
Every DataFrame in Apache Spark contains a schema, a blueprint that defines the
shape of the data, such as data types and columns, and metadata. With Delta Lake,
the table’s schema is saved in JSON format inside the transaction log.

How to Use Schema
Enforcement and
Evolution

12The Delta Lake Series — Complete Collection

What is schema enforcement?
Schema enforcement, or schema validation, is a safeguard in Delta Lake that ensures
data quality by rejecting writes to a table that don’t match the table’s schema.

Like the front-desk manager at a busy restaurant who only accepts reservations, it
checks to see whether each column of data inserted into the table is on its list of
expected columns (in other words, whether each one has a “reservation”), and rejects
any writes with columns that aren’t on the list.

How does schema enforcement work?
Delta Lake uses schema validation on write, which means that all new writes to a
table are checked for compatibility with the target table’s schema at write time. If the
schema is not compatible, Delta Lake cancels the transaction altogether (no data is
written), and raises an exception to let the user know about the mismatch.

To determine whether a write to a table is compatible, Delta Lake uses the following
rules. The DataFrame to be written cannot contain:

• Any additional columns that are not present in the target table’s schema.
Conversely, it’s OK if the incoming data doesn’t contain every column in the table —
those columns will simply be assigned null values.

• Column data types that differ from the column data types in the target table.
If a target table’s column contains StringType data, but the corresponding column
in the DataFrame contains IntegerType data, schema enforcement will raise an
exception and prevent the write operation from taking place.

• Column names that differ only by case. This means that you cannot have columns
such as “Foo” and “foo” defined in the same table. While Spark can be used in case
sensitive or insensitive (default) mode, Delta Lake is case-preserving but insensitive
when storing the schema. Parquet is case sensitive when storing and returning
column information. To avoid potential mistakes, data corruption or loss issues (which
we’ve personally experienced at Databricks), we decided to add this restriction.

https://databricks.com/glossary/what-is-parquet

13The Delta Lake Series — Complete Collection

Rather than automatically adding the new columns, Delta Lake enforces the schema,
and stops the write from occurring. To help identify which column(s) caused the
mismatch, Spark prints out both schemas in the stack trace for comparison.

How is schema enforcement useful?
Because it’s such a stringent check, schema enforcement is an excellent tool to use
as a gatekeeper for a clean, fully transformed data set that is ready for production or
consumption. It’s typically enforced on tables that directly feed:

• Machine learning algorithms
• BI dashboards
• Data analytics and visualization tools
• Any production system requiring highly structured,

strongly typed, semantic schemas

In order to prepare their data for this final hurdle, many users employ a simple multi-
hop architecture that progressively adds structure to their tables. To learn more, take
a look at Productionizing Machine Learning With Delta Lake.

What is schema evolution?
Schema evolution is a feature that allows users to easily change a table’s current
schema to accommodate data that is changing over time. Most commonly, it’s used
when performing an append or overwrite operation, to automatically adapt the
schema to include one or more new columns.

How does schema evolution work?
Following up on the example from the previous section, developers can
easily use schema evolution to add the new columns that were previously
rejected due to a schema mismatch. Schema evolution is activated by adding
.option(‘mergeSchema’, ‘true’) to your .write or .writeStream
Spark command, as shown in the following example.

#Add the mergeSchema option

loans.write.format(“delta”) \

.option(“mergeSchema”, “true”) \

.mode(“append”) \

.save(DELTALAKE_SILVER_PATH)

By including the mergeSchema option in your query, any columns that are present
in the DataFrame but not in the target table are automatically added to the end of the
schema as part of a write transaction. Nested fields can also be added, and these
fields will get added to the end of their respective struct columns as well.

Data engineers and scientists can use this option to add new columns (perhaps a
newly tracked metric, or a column of this month’s sales figures) to their existing ML
production tables without breaking existing models that rely on the old columns.

The following types of schema changes are eligible for schema evolution during table
appends or overwrites:

• Adding new columns (this is the most common scenario)
• Changing of data types from NullType → any other type, or upcasts from ByteType
→ ShortType → IntegerType

Other changes, not eligible for schema evolution, require that the schema and data
are overwritten by adding .option(“overwriteSchema”,“true”). Those
changes include:

• Dropping a column
• Changing an existing column’s data typeC (in place)
• Renaming column names that differ onlyC by case (e.g., “Foo” and “foo”)

https://databricks.com/blog/2019/08/14/productionizing-machine-learning-with-delta-lake.html

14The Delta Lake Series — Complete Collection

Finally, with the release of Spark 3.0, explicit DDL (using ALTER TABLE) is fully
supported, allowing users to perform the following actions on table schemas:

• Adding columns
• Changing column comments
• Setting table properties that define the behavior of the table, such as setting the

retention duration of the transaction log

How is schema evolution useful?
Schema evolution can be used anytime you intend to change the schema of your table
(as opposed to where you accidentally added columns to your DataFrame that shouldn’t
be there). It’s the easiest way to migrate your schema because it automatically adds the
correct column names and data types, without having to declare them explicitly.

Summary
Schema enforcement rejects any new columns or other schema changes that
aren’t compatible with your table. By setting and upholding these high standards,
analysts and engineers can trust that their data has the highest levels of integrity and
can reason about it with clarity, allowing them to make better business decisions.
On the flip side of the coin, schema evolution complements enforcement by making it
easy for intended schema changes to take place automatically. After all, it shouldn’t
be hard to add a column.

Schema enforcement is the yin to schema evolution’s yang. When used together, these
features make it easier than ever to block out the noise and tune in to the signal.

Want to learn more about schema enforcement and evolution?
Read our blog post > Watch our tech talk >

https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://databricks.com/discover/diving-into-delta-lake-talks/schema-enforcement-evolution

15The Delta Lake Series — Complete Collection

Delta Lake
DML Internals

Delta Lake supports data manipulation language (DML) commands including UPDATE,
DELETE and MERGE. These commands simplify change data capture (CDC), audit and
governance, and GDPR/CCPA workflows, among others.

In this chapter, we will demonstrate how to use each of these DML commands,
describe what Delta Lake is doing behind the scenes, and offer some performance
tuning tips for each one.

Delta Lake DML: UPDATE
You can use the UPDATE operation to selectively update any rows that match a
filtering condition, also known as a predicate. The code below demonstrates how
to use each type of predicate as part of an UPDATE statement. Note that Delta Lake
offers APIs for Python, Scala and SQL, but for the purposes of this eBook, we’ll include
only the SQL code.

-- Update events

UPDATE events SET eventType=‘click’ WHERE buttonPress = 1

16The Delta Lake Series — Complete Collection

UPDATE: Under the hood
Delta Lake performs an UPDATE on a table in two steps:

1. Find and select the files containing data that match the predicate and, therefore,
need to be updated. Delta Lake uses data skipping whenever possible to speed up
this process.

2. Read each matching file into memory, update the relevant rows, and write out the
result into a new data file.

Once Delta Lake has executed the UPDATE successfully, it adds a commit in the
transaction log indicating that the new data file will be used in place of the old one
from now on. The old data file is not deleted, though. Instead, it’s simply “tombstoned”
— recorded as a data file that applied to an older version of the table, but not the
current version. Delta Lake is able to use it to provide data versioning and time travel.

UPDATE + Delta Lake time travel = Easy debugging
Keeping the old data files turns out to be very useful for debugging because you can
use Delta Lake “time travel” to go back and query previous versions of a table at any

time. In the event that you update your table incorrectly and want to figure out what
happened, you can easily compare two versions of a table to one another to see what
has changed.

SELECT * FROM events VERSION AS OF 11 EXCEPT ALL SELECT
* FROM mytable VERSION AS OF 12

UPDATE: Performance tuning tips
The main way to improve the performance of the UPDATE command on Delta Lake
is to add more predicates to narrow down the search space. The more specific the
search, the fewer files Delta Lake needs to scan and/or modify.

Delta Lake DML: DELETE
You can use the DELETE command to selectively delete rows based upon a
predicate (filtering condition).

DELETE FROM events WHERE date < ‘2017-01-01’

https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping

17The Delta Lake Series — Complete Collection

In the event that you want to revert an accidental DELETE operation, you can use time
travel to roll back your table to the way it was.

DELETE: Under the hood
DELETE works just like UPDATE under the hood. Delta Lake makes two scans of
the data: The first scan is to identify any data files that contain rows matching the
predicate condition. The second scan reads the matching data files into memory,
at which point Delta Lake deletes the rows in question before writing out the newly
clean data to disk.

After Delta Lake completes a DELETE operation successfully, the old data files are
not deleted entirely — they’re still retained on disk, but recorded as “tombstoned” (no
longer part of the active table) in the Delta Lake transaction log. Remember, those old
files aren’t deleted immediately because you might still need them to time travel back
to an earlier version of the table. If you want to delete files older than a certain time
period, you can use the VACUUM command.

DELETE + VACUUM: Cleaning up old data files
Running the VACUUM command permanently deletes all data files that are:

1. No longer part of the active table and
2. Older than the retention threshold, which is seven days by default

Delta Lake does not automatically VACUUM old files — you must run the command
yourself, as shown below. If you want to specify a retention period that is different
from the default of seven days, you can provide it as a parameter.

from delta.tables import * deltaTable.
vacuum files older than 30 days(720 hours)

deltaTable.vacuum(720)

18The Delta Lake Series — Complete Collection

DELETE: Performance tuning tips
Just like with the UPDATE command, the main way to improve the performance of
a DELETE operation on Delta Lake is to add more predicates to narrow down the
search space. The Databricks managed version of Delta Lake also features other
performance enhancements like improved data skipping, the use of bloom filters, and
Z-Order Optimize (multi-dimensional clustering). Read more about Z-Order Optimize
on Databricks.

Delta Lake DML: MERGE
The Delta Lake MERGE command allows you to perform upserts, which are a mix of
an UPDATE and an INSERT. To understand upserts, imagine that you have an existing
table (aka a target table), and a source table that contains a mix of new records and
updates to existing records.

Here’s how an upsert works:
• When a record from the source table matches a preexisting record in the target

table, Delta Lake updates the record.
• When there is no such match, Delta Lake inserts the new record.

The Delta Lake MERGE command greatly simplifies workflows that can be complex
and cumbersome with other traditional data formats like Parquet. Common scenarios
where merges/upserts come in handy include change data capture, GDPR/CCPA
compliance, sessionization, and deduplication of records.

For more information about upserts, read:
Efficient Upserts Into Data Lakes With Databricks Delta

Simple, Reliable Upserts and Deletes on Delta Lake Tables Using Python APIs

Schema Evolution in Merge Operations and Operational Metrics in Delta Lake

https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://databricks.com/blog/2019/03/19/efficient-upserts-into-data-lakes-databricks-delta.html
https://databricks.com/blog/2019/10/03/simple-reliable-upserts-and-deletes-on-delta-lake-tables-using-python-apis.html
https://databricks.com/blog/2020/05/19/schema-evolution-in-merge-operations-and-operational-metrics-in-delta-lake.html

19The Delta Lake Series — Complete Collection

MERGE: Under the hood
Delta Lake completes a MERGE in two steps:

1. Perform an inner join between the target table and source table to select all files
that have matches.

2. Perform an outer join between the selected files in the target and source tables
and write out the updated/deleted/inserted data.

The main way that this differs from an UPDATE or a DELETE under the hood is that
Delta Lake uses joins to complete a MERGE. This fact allows us to utilize some unique
strategies when seeking to improve performance.

MERGE: Performance tuning tips
To improve performance of the MERGE command, you need to determine which of the
two joins that make up the merge is limiting your speed.

If the inner join is the bottleneck (i.e., finding the files that Delta Lake needs to rewrite
takes too long), try the following strategies:
• Add more predicates to narrow down the search space.
• Adjust shuffle partitions.
• Adjust broadcast join thresholds.
• Compact the small files in the table if there are lots of them, but don’t compact them

into files that are too large, since Delta Lake has to copy the entire file to rewrite it.

On Databricks’ managed Delta Lake, use Z-Order optimize to exploit the
locality of updates.

On the other hand, if the outer join is the bottleneck (i.e., rewriting the actual files
themselves takes too long), try the strategies below.

• Adjust shuffle partitions: Reduce files by enabling automatic repartitioning
before writes (with Optimized Writes in Databricks Delta Lake).

• Adjust broadcast thresholds: If you’re doing a full outer join, Spark cannot do a
broadcast join, but if you’re doing a right outer join, Spark can do one, and you can
adjust the broadcast thresholds as needed.

• Cache the source table / DataFrame: Caching the source table can speed up the
second scan, but be sure not to cache the target table, as this can lead to cache
coherency issues.

Delta Lake supports DML commands including UPDATE, DELETE and MERGE INTO, which
greatly simplify the workflow for many common big data operations. In this chapter, we
demonstrated how to use these commands in Delta Lake, shared information about
how each one works under the hood, and offered some performance tuning tips.

Want a deeper dive into DML internals, including snippets of code?
Read our blog post >

https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html

20The Delta Lake Series — Complete Collection

Delta Lake is capable of sifting through petabytes of data within seconds. Much of this
speed is owed to two features: (1) data skipping and (2) Z-Ordering.

Combining these features helps the Databricks Runtime to dramatically reduce the
amount of data that needs to be scanned to answer selective queries against large
Delta tables, which typically translates into substantial runtime improvements and
cost savings.

Using Delta Lake’s built-in data skipping and ZORDER clustering features, large cloud
data lakes can be queried in a matter of seconds by skipping files not relevant to
the query. For example, 93.2% of the records in a 504 TB data set were skipped for a
typical query in a real-world cybersecurity analysis use case, reducing query times by
up to two orders of magnitude. In other words, Delta Lake can speed up your queries
by as much as 100x.

Want to see data skipping and Z-Ordering in action?
Apple’s Dominique Brezinski and Databricks’ Michael Armbrust demonstrated how to

use Delta Lake as a unified solution for data engineering and data science in the context

of cybersecurity monitoring and threat response. Watch their keynote speech, Threat

Detection and Response at Scale.

How Delta Lake Quickly
Processes Petabytes With
Data Skipping and Z-Ordering

https://databricks.com/product/databricks-runtime
https://databricks.com/session/keynote-from-apple
https://databricks.com/session/keynote-from-apple

21The Delta Lake Series — Complete Collection

Using data skipping and Z-Order clustering
Data skipping and Z-Ordering are used to improve the performance of needle-in-the-
haystack queries against huge data sets. Data skipping is an automatic feature of
Delta Lake, kicking in whenever your SQL queries or data set operations include filters
of the form “column op literal,” where:

• column is an attribute of some Delta Lake table, be it top-level or nested, whose
 data type is string / numeric / date/ timestamp

• op is a binary comparison operator, StartsWith / LIKE pattern%’, or IN
<list_of_values>

• literal is an explicit (list of) value(s) of the same data type as a column

AND / OR / NOT are also supported as well as “literal op column” predicates.

Even though data skipping kicks in when the above conditions are met, it may not
always be effective. But, if there are a few columns that you frequently filter by and
want to make sure that’s fast, then you can explicitly optimize your data layout with
respect to skipping effectiveness by running the following command:

OPTIMIZE <table> [WHERE <partition_filter>]
ZORDER BY (<column> [, …])

Exploring the details
Apart from partition pruning, another common technique that’s used in the data
warehousing world, but which Spark currently lacks, is I/O pruning based on small
materialized aggregates. In short, the idea is to keep track of simple statistics such
as minimum and maximum values at a certain granularity that are correlated with I/O
granularity. And we want to leverage those statistics at query planning time in order
to avoid unnecessary I/O.

This is exactly what Delta Lake’s data skipping feature is about. As new data is
inserted into a Delta Lake table, file-level min/max statistics are collected for all
columns (including nested ones) of supported types. Then, when there’s a lookup
query against the table, Delta Lake first consults these statistics in order to determine
which files can safely be skipped.

Want to learn more about data skipping and Z-Ordering, including
how to apply it within a cybersecurity analysis?
Read our blog post >

https://dl.acm.org/doi/10.5555/645924.671173
https://dl.acm.org/doi/10.5555/645924.671173
https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html

CHAPTER 02
Features
Use Delta Lake’s robust features
to reliably manage your data

23The Delta Lake Series — Complete Collection

Why Use MERGE
With Delta Lake?

Delta Lake, the next-generation engine built on top of Apache Spark, supports the
MERGE command, which allows you to efficiently upsert and delete records in your
data lakes.

MERGE dramatically simplifies how a number of common data pipelines can be built
-- all the complicated multi-hop processes that inefficiently rewrote entire partitions
can now be replaced by simple MERGE queries.

This finer-grained update capability simplifies how you build your big data
pipelines for various use cases ranging from change data capture to GDPR. You
no longer need to write complicated logic to overwrite tables and overcome a lack
of snapshot isolation.

With changing data, another critical capability required is the ability to roll back, in
case of bad writes. Delta Lake also offers rollback capabilities with the Time Travel
feature, so that if you do a bad merge, you can easily roll back to an earlier version.

In this chapter, we’ll discuss common use cases where existing data might need to be
updated or deleted. We’ll also explore the challenges inherent to upserts and explain
how MERGE can address them.

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

24The Delta Lake Series — Complete Collection

When are upserts necessary?
There are a number of common use cases where existing data in a data lake needs to
be updated or deleted:

• General Data Protection Regulation (GDPR) compliance: With the introduction of
the right to be forgotten (also known as data erasure) in GDPR, organizations must
remove a user’s information upon request. This data erasure includes deleting user
information in the data lake as well.

• Change data capture from traditional databases: In a service-oriented
architecture, typically web and mobile applications are served by microservices
built on traditional SQL/NoSQL databases that are optimized for low latency. One
of the biggest challenges organizations face is joining data across these various
siloed data systems, and hence data engineers build pipelines to consolidate
all data sources into a central data lake to facilitate analytics. These pipelines
often have to periodically read changes made on a traditional SQL/NoSQL table
and apply them to corresponding tables in the data lake. Such changes can take
various forms: Tables with slowly changing dimensions, change data capture of all
inserted/updated/deleted rows, etc.

• Sessionization: Grouping multiple events into a single session is a common use
case in many areas ranging from product analytics to targeted advertising to
predictive maintenance. Building continuous applications to track sessions and
recording the results that write into data lakes is difficult because data lakes have
always been optimized for appending data.

• De-duplication: A common data pipeline use case is to collect system logs into a
Delta Lake table by appending data to the table. However, often the sources can
generate duplicate records and downstream de-duplication steps are needed to
take care of them.

25The Delta Lake Series — Complete Collection

Why upserts into data lakes have
traditionally been challenging
Since data lakes are fundamentally based on files, they have always been optimized
for appending data rather than for changing existing data. Hence, building the above
use case has always been challenging.

Users typically read the entire table (or a subset of partitions) and then overwrite
them. Therefore, every organization tries to reinvent the wheel for their requirement
by handwriting complicated queries in SQL, Spark, etc. This approach is:

• Inefficient: Reading and rewriting entire partitions (or entire tables) to update a few
records causes pipelines to be slow and costly. Hand-tuning the table layout and
query optimization is tedious and requires deep domain knowledge.

• Possibly incorrect: Handwritten code modifying data is very prone to logical and
human errors. For example, multiple pipelines concurrently modifying the same table
without any transactional support can lead to unpredictable data inconsistencies
and in the worst case, data losses. Often, even a single handwritten pipeline can
easily cause data corruptions due to errors in encoding the business logic.

• Hard to maintain: Fundamentally such handwritten code is hard to understand,
keep track of and maintain. In the long term, this alone can significantly increase
the organizational and infrastructural costs.

Introducing MERGE in Delta Lake
With Delta Lake, you can easily address the use cases above without any of the
aforementioned problems using the following MERGE command:

MERGE INTO

USING

ON

[WHEN MATCHED [AND] THEN]

[WHEN MATCHED [AND] THEN]

[WHEN NOT MATCHED [AND] THEN]

where

=

DELETE |

UPDATE SET * |

UPDATE SET column1 = value1 [, column2 = value2 ...]

=

INSERT * |

INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])

Let’s understand how to use MERGE with a simple example. Suppose you have a
slowly changing dimension table that maintains user information like addresses.
Furthermore, you have a table of new addresses for both existing and new users. To
merge all the new addresses to the main user table, you can run the following:

MERGE INTO users

USING updates

ON users.userId = updates.userId

WHEN MATCHED THEN

 UPDATE SET address = updates.addresses
WHEN NOT MATCHED THEN

 INSERT (userId, address) VALUES (updates.userId, updates.address)

This will perform exactly what the syntax says -- for existing users (i.e., MATCHED
clause), it will update the address column, and for new users (i.e., NOT MATCHED
clause) it will insert all the columns. For large tables with TBs of data, this Delta Lake
MERGE operation can be orders of magnitude faster than overwriting entire partitions
or tables since Delta Lake reads only relevant files and updates them. Specifically,
Delta Lake's MERGE has the following advantages:

https://en.wikipedia.org/wiki/Slowly_changing_dimension

26The Delta Lake Series — Complete Collection

• Fine-grained: The operation rewrites data at the granularity of files and not
partitions. This eliminates all the complications of rewriting partitions, updating
the Hive metastore with MSCK and so on.

• Efficient: Delta Lake’s data skipping makes the MERGE efficient at finding files to
rewrite, thus eliminating the need to hand-optimize your pipeline. Furthermore,
Delta Lake with all its I/O and processing optimizations makes all the reading and
writing data by MERGE significantly faster than similar operations in Apache Spark.

• Transactional: Delta Lake uses optimistic concurrency control to ensure that
concurrent writers update the data correctly with ACID transactions, and concurrent
readers always see a consistent snapshot of the data.

Here is a visual explanation of how MERGE compares with handwritten pipelines.

Simplifying use cases with MERGE
Deleting data due to GDPR
Complying with the “right to be forgotten” clause of GDPR for data in data lakes cannot
get any easier. You can set up a simple scheduled job with an example code, like
below, to delete all the users who have opted out of your service.

MERGE INTO users

USING opted_out_users

ON opted_out_users.userId = users.userId

WHEN MATCHED THEN DELETE

Applying change data from databases
You can easily apply all data changes — updates, deletes, inserts — generated from an
external database into a Delta Lake table with the MERGE syntax as follows:

MERGE INTO users

USING (

SELECT userId, latest.address AS address, latest.deleted AS deleted FROM

(

SELECT userId, MAX(struct(TIME, address, deleted)) AS latest

FROM changes GROUP BY userId

)

) latestChange

ON latestChange.userId = users.userId

WHEN MATCHED AND latestChange.deleted = TRUE THEN

DELETE

WHEN MATCHED THEN

UPDATE SET address = latestChange.address

WHEN NOT MATCHED AND latestChange.deleted = FALSE THEN

INSERT (userId, address) VALUES (userId, address)

27The Delta Lake Series — Complete Collection

Updating session information from streaming
pipelines
If you have streaming event data flowing in and if you want to sessionize the streaming
event data and incrementally update and store sessions in a Delta Lake table, you
can accomplish this using the foreachBatch in Structured Streaming and MERGE.
For example, suppose you have a Structured Streaming DataFrame that computes
updated session information for each user. You can start a streaming query that
applies all the sessions update to a Delta Lake table as follows (Scala).

streamingSessionUpdatesDF.writeStream

.foreachBatch { (microBatchOutputDF: DataFrame, batchId: Long) =>
microBatchOutputDF.createOrReplaceTempView(“updates”)

microBatchOutputDF.sparkSession.sql(s”””

MERGE INTO sessions

USING updates

ON sessions.sessionId = updates.sessionId

WHEN MATCHED THEN UPDATE SET *

WHEN NOT MATCHED THEN INSERT * “””)

}.start()

For a complete working example of each Batch and MERGE, see this notebook
(Azure | AWS).

Additional resources
Tech Talk | Addressing GDPR and CCPA Scenarios With Delta Lake and Apache Spark

Tech Talk | Using Delta as a Change Data Capture Source

Simplifying Change Data Capture With Databricks Delta

Building Sessionization Pipeline at Scale With Databricks Delta

Tech Chat | Slowly Changing Dimensions (SCD) Type 2

https://docs.azuredatabricks.net/_static/notebooks/merge-in-streaming.html
https://docs.databricks.com/_static/notebooks/merge-in-streaming.html
https://www.youtube.com/watch?v=tCPslvUjG1w
https://www.youtube.com/watch?v=7y0AAQ6qX5w
https://databricks.com/blog/2018/10/29/simplifying-change-data-capture-with-databricks-delta.html
https://databricks.com/session/building-sessionization-pipeline-at-scale-with-databricks-delta
https://www.youtube.com/watch?v=HZWwZG07hzQ

28The Delta Lake Series — Complete Collection

In this chapter, we will demonstrate how to use Python and the new Python APIs in Delta
Lake within the context of an on-time flight performance scenario. We will show how
to upsert and delete data, query old versions of data with time travel, and vacuum
older versions for cleanup.

How to start using Delta Lake
The Delta Lake package is installable through PySpark by using the --packages
option. In our example, we will also demonstrate the ability to VACUUM files and execute
Delta Lake SQL commands within Apache Spark. As this is a short demonstration, we
will also enable the following configurations:

 spark.databricks.delta.retentionDurationCheck.enabled=false

to allow us to vacuum files shorter than the default retention duration of seven days.
Note, this is only required for the SQL command VACUUM

 spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension

to enable Delta Lake SQL commands within Apache Spark; this is not required for
Python or Scala API calls.

Using Spark Packages

./bin/pyspark --packages io.delta:delta-core_2.11:0.4.0 --conf “spark.

databricks.delta.retentionDurationCheck.enabled=false” --conf “spark.

sql.extensions=io.delta.sql.DeltaSparkSessionExtension”

Simple, Reliable Upserts and
Deletes on Delta Lake Tables
Using Python APIs

29The Delta Lake Series — Complete Collection

Loading and saving our Delta Lake data
This scenario will be using the On-Time Flight Performance or Departure Delays data
set generated from the RITA BTS Flight Departure Statistics; some examples of this data
in action include the 2014 Flight Departure Performance via d3.js Crossfilter and On-
Time Flight Performance with GraphFrames for Apache Spark™. Within PySpark, start
by reading the data set.

 # Location variables

tripdelaysFilePath = “/root/data/departuredelays.csv”

pathToEventsTable = “/root/deltalake/departureDelays.delta”

Read flight delay data

departureDelays = spark.read \

.option(“header”, “true”) \

.option(“inferSchema”, “true”) \

.csv(tripdelaysFilePath)

Next, let’s save our departureDelays data set to a Delta Lake table. By saving this table
to Delta Lake storage, we will be able to take advantage of its features including ACID
transactions, unified batch and streaming and time travel.

Save flight delay data into Delta Lake format

departureDelays \

.write \

.format(“delta”) \

.mode(“overwrite”) \

.save(“departureDelays.delta”)

 Note, this approach is similar to how you would normally save Parquet data; instead
of specifying format(“parquet”), you will now specify format(“delta”). If
you were to take a look at the underlying file system, you will notice four files created
for the departureDelays Delta Lake table.

/departureDelays.delta$ ls -l

.

..

_delta_log

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

Part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

Now, let’s reload the data, but this time our DataFrame will be backed by Delta Lake.

Load flight delay data in Delta Lake format

delays_delta = spark \

.read \

.format(“delta”) \

.load(“departureDelays.delta”)

Create temporary view

delays_delta.createOrReplaceTempView(“delays_delta”)

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’”).show()

https://dennyglee.com/2014/06/06/2014-flight-departure-performance-via-d3-js-crossfilter/

30The Delta Lake Series — Complete Collection

Finally, let’s determine the number of flights originating from Seattle to San Francisco; in
this data set, there are 1698 flights.

In-place conversion to Delta Lake
If you have existing Parquet tables, you have the ability to convert them to Delta Lake
format in place, thus not needing to rewrite your table. To convert the table, you can
run the following commands.

from delta.tables import *

Convert non partitioned parquet table at path ‘/path/to/table’

deltaTable = DeltaTable.convertToDelta(spark, “parquet.`/path/to/

table`”)

Convert partitioned parquet table at path ‘/path/to/table’ and

partitioned by integer column named ‘part’

partitionedDeltaTable = DeltaTable.convertToDelta(spark,

“parquet.`/path/to/table`”, “part int”)

Delete our flight data
To delete data from a traditional data lake table, you will need to:

1. Select all of the data from your table not including the rows you want to delete
2. Create a new table based on the previous query
3. Delete the original table
4. Rename the new table to the original table name for downstream dependencies

Instead of performing all of these steps, with Delta Lake, we can simplify this process
by running a DELETE statement. To show this, let’s delete all of the flights that had
arrived early or on-time (i.e., delay < 0).

from delta.tables import *

from pyspark.sql.functions import *

Access the Delta Lake table

deltaTable = DeltaTable.forPath(spark, pathToEventsTable

)

Delete all on-time and early flights

deltaTable.delete(“delay < 0”)

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’”).show()

After we delete (more on this below) all of the on-time and early flights, as you can
see from the preceding query there are 837 late flights originating from Seattle to
San Francisco. If you review the file system, you will notice there are more files even
though you deleted data.

/departureDelays.delta$ ls -l

_delta_log

part-00000-a2a19ba4-17e9-4931-9bbf-3c9d4997780b-c000.snappy.parquet

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00001-a0423a18-62eb-46b3-a82f-ca9aac1f1e93-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

part-00002-bfaa0a2a-0a31-4abf-aa63-162402f802cc-c000.snappy.parquet

part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

part-00003-b0247e1d-f5ce-4b45-91cd-16413c784a66-c000.snappy.parquet

31The Delta Lake Series — Complete Collection

In traditional data lakes, deletes are performed by rewriting the entire table
excluding the values to be deleted. With Delta Lake, deletes are instead performed
by selectively writing new versions of the files containing the data to be deleted and
only marks the previous files as deleted. This is because Delta Lake uses multiversion
concurrency control (MVCC) to do atomic operations on the table: For example, while
one user is deleting data, another user may be querying the previous version of the
table. This multiversion model also enables us to travel back in time (i.e., time travel)
and query previous versions as we will see later.

Update our flight data
To update data from your traditional Data Lake table, you will need to:

1. Select all of the data from your table not including the rows you want to modify
2. Modify the rows that need to be updated/changed
3. Merge these two tables to create a new table
4. Delete the original table
5. Rename the new table to the original table name for downstream dependencies

Instead of performing all of these steps, with Delta Lake, we can simplify this
process by running an UPDATE statement. To show this, let’s update all of the flights
originating from Detroit to Seattle.

Update all flights originating from Detroit to now be

originating from Seattle

deltaTable.update(“origin = ‘DTW’”, { “origin”: “’SEA’” })

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’

and destination = ‘SFO’”).show()

With the Detroit flights now tagged as Seattle flights, we now have 986 flights
originating from Seattle to San Francisco. If you were to list the file system for
your departureDelays folder (i.e., $../departureDelays/ls -l), you will
notice there are now 11 files (instead of the 8 right after deleting the files and the four
files after creating the table).

Merge our flight data
A common scenario when working with a data lake is to continuously append data to
your table. This often results in duplicate data (rows you do not want to be inserted
into your table again), new rows that need to be inserted, and some rows that need to
be updated. With Delta Lake, all of this can be achieved by using the merge operation
(similar to the SQL MERGE statement).

Let’s start with a sample data set that you will want to be updated, inserted or
de-duplicated with the following query.

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

The output of this query looks like the following table. Note, the color-coding has been
added to clearly identify which rows are de-duplicated (blue), updated (yellow) and
inserted (green).

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

32The Delta Lake Series — Complete Collection

Next, let’s generate our own merge_table that contains data we will insert, update
or de-duplicate with the following code snippet.

items = [(1010710, 31, 590, ‘SEA’, ‘SFO’), (1010521, 10, 590,

‘SEA’, ‘SFO’),

(1010822, 31, 590, ‘SEA’, ‘SFO’)]

cols = [‘date’, ‘delay’, ‘distance’, ‘origin’, ‘destination’]

merge_table = spark.createDataFrame(items, cols)

merge_table.toPandas()

In the preceding table (merge_table), there are three rows with a unique date value:

1. 1010521: This row needs to update the flights table with a new delay value (yellow)
2. 1010710: This row is a duplicate (blue)
3. 1010832: This is a new row to be inserted (green)

With Delta Lake, this can be easily achieved via a merge statement as noted in the
following code snippet.

Merge merge_table with flights

deltaTable.alias(“flights”) \

 .merge(merge_table.alias(“updates”),”flights.date =

 updates.date”) \

 .whenMatchedUpdate(set = { “delay” : “updates.delay” }) \

 .whenNotMatchedInsertAll() \

 .execute()

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

All three actions of de-duplication, update and insert were efficiently completed with
one statement.

View table history
As previously noted, after each of our transactions (delete, update), there were more
files created within the file system. This is because for each transaction, there are
different versions of the Delta Lake table.

33The Delta Lake Series — Complete Collection

This can be seen by using the DeltaTable.history() method as noted below

Note: You can also perform the same task with SQL:

spark.sql(“DESCRIBE HISTORY ‘” + pathToEventsTable + “’”).show()

As you can see, there are three rows representing the different versions of the table
(below is an abridged version to help make it easier to read) for each of the operations
(create table, delete and update):

Travel back in time with table history
With Time Travel, you can review the Delta Lake table as of the version or timestamp.
To view historical data, specify the version or timestamp option; in the following code
snippet, we will specify the version option.

Load DataFrames for each version

dfv0 = spark.read.format(“delta”).option(“versionAsOf”,

0).load(“departureDelays.delta”)

dfv1 = spark.read.format(“delta”).option(“versionAsOf”,

1).load(“departureDelays.delta”)

dfv2 = spark.read.format(“delta”).option(“versionAsOf”,

2).load(“departureDelays.delta”)

Calculate the SEA to SFO flight counts for each version of history

cnt0 = dfv0.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt1 = dfv1.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt2 = dfv2.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

Print out the value

print(“SEA -> SFO Counts: Create Table: %s, Delete: %s, Update: %s” %

(cnt0, cnt1, cnt2))

Output

SEA -> SFO Counts: Create Table: 1698, Delete: 837, Update: 986

Whether for governance, risk management and compliance (GRC) or rolling back
errors, the Delta Lake table contains both the metadata (e.g., recording the fact that a
delete had occurred with these operators) and data (e.g., the actual rows deleted). But
how do we remove the data files either for compliance or size reasons?

Clean up old table versions with vacuum
The Delta Lake vacuum method will delete all of the rows (and files) by default that are
older than seven days’ reference. If you were to view the file system, you’ll notice the
11 files for your table.

/departureDelays.delta$ ls -l

_delta_log

part-00000-5e52736b-0e63-48f3-8d56-50f7cfa0494d-c000.snappy.parquet

part-00000-69eb53d5-34b4-408f-a7e4-86e000428c37-c000.snappy.parquet

https://docs.delta.io/0.7.0/delta-utility.html#vacuum

34The Delta Lake Series — Complete Collection

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-20893eed-9d4f-4c1f-b619-3e6ea1fdd05f-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00001-d4823d2e-8f9d-42e3-918d-4060969e5844-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00002-3027786c-20a9-4b19-868d-dc7586c275d4-c000.snappy.parquet

part-00002-f2609f27-3478-4bf9-aeb7-2c78a05e6ec1-c000.snappy.parquet

part-00003-850436a6-c4dd-4535-a1c0-5dc0f01d3d55-c000.snappy.parquet

Part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

To delete all of the files so that you only keep the current snapshot of data, you will specify a
small value for the vacuum method (instead of the default retention of 7 days).

Remove all files older than 0 hours old.

deltaTable.vacuum(0)

Note, you perform the same task via SQL syntax:¸

Remove all files older than 0 hours old

spark.sql(“VACUUM ‘” + pathToEventsTable + “‘ RETAIN 0 HOURS”)

Once the vacuum has completed, when you review the file system you will notice fewer
files as the historical data has been removed.

/departureDelays.delta$ ls -l

_delta_log

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

Note, the ability to time travel back to a version older than the retention period is lost
after running vacuum.

35The Delta Lake Series — Complete Collection

Time travel capabilities are available in Delta Lake. Delta Lake is an open-source storage
layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable
metadata handling, and unifies streaming and batch data processing. Delta Lake runs on
top of your existing data lake and is fully compatible with Apache Spark APIs.

With this feature, Delta Lake automatically versions the big data that you store in your
data lake, and you can access any historical version of that data. This temporal data
management simplifies your data pipeline by making it easy to audit, roll back data
in case of accidental bad writes or deletes, and reproduce experiments and reports.

Your organization can finally standardize on a clean, centralized, versioned big data
repository in your own cloud storage for your analytics.

Common challenges with changing data
• Audit data changes: Auditing data changes is critical both in terms of data

compliance as well as simple debugging to understand how data has changed over
time. Organizations moving from traditional data systems to big data technologies
and the cloud struggle in such scenarios.

• Reproduce experiments and reports: During model training, data scientists
run various experiments with different parameters on a given set of data. When
scientists revisit their experiments after a period of time to reproduce the models,
typically the source data has been modified by upstream pipelines. A lot of times,
they are caught unaware by such upstream data changes and hence struggle to
reproduce their experiments. Some scientists and organizations engineer best

Time Travel for
Large-Scale Data Lakes

https://databricks.com/product/delta-lake-on-databricks
https://delta.io/
https://github.com/delta-io/delta
https://github.com/delta-io/delta

36The Delta Lake Series — Complete Collection

practices by creating multiple copies of the data, leading to increased storage
costs. The same is true for analysts generating reports.

• Rollbacks: Data pipelines can sometimes write bad data for downstream consumers.
This can happen because of issues ranging from infrastructure instabilities to messy
data to bugs in the pipeline. For pipelines that do simple appends to directories or a
table, rollbacks can easily be addressed by date-based partitioning. With updates
and deletes, this can become very complicated, and data engineers typically have
to engineer a complex pipeline to deal with such scenarios.

Working with Time Travel
Delta Lake’s time travel capabilities simplify building data pipelines for the above use
cases. Time Travel in Delta Lake improves developer productivity tremendously. It helps:

• Data scientists manage their experiments better
• Data engineers simplify their pipelines and roll back bad writes
• Data analysts do easy reporting

Organizations can finally standardize on a clean, centralized, versioned big data
repository in their own cloud storage for analytics. We are thrilled to see what you will
be able to accomplish with this feature.

As you write into a Delta Lake table or directory, every operation is automatically
versioned. You can access the different versions of the data two different ways:

1. Using a timestamp
Scala syntax
You can provide the timestamp or date string as an option to DataFrame reader:

val df = spark.read

 .format(“delta”)

 .option(“timestampAsOf”, “2019-01-01”)

 .load(“/path/to/my/table”)

37The Delta Lake Series — Complete Collection

Python syntax
df = spark.read \

 .format(“delta”) \

 .option(“timestampAsOf”, “2019-01-01”) \

 .load(“/path/to/my/table”)

SQL syntax
SELECT count(*) FROM my_table TIMESTAMP AS OF “2019-01-01”

SELECT count(*) FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)

SELECT count(*) FROM my_table TIMESTAMP AS OF “2019-01-01 01:30:00.000”

If the reader code is in a library that you don’t have access to, and if you are passing
input parameters to the library to read data, you can still travel back in time for a table
by passing the timestamp in yyyyMMddHHmmssSSS format to the path:

val inputPath = “/path/to/my/table@20190101000000000”

val df = loadData(inputPath)

// Function in a library that you don’t have access to

def loadData(inputPath : String) : DataFrame = {

 spark.read

 .format(“delta”)

 .load(inputPath)

}

inputPath = “/path/to/my/table@20190101000000000”

df = loadData(inputPath)

Function in a library that you don’t have access to

def loadData(inputPath):

 return spark.read \

 .format(“delta”) \

 .load(inputPath)

}

38The Delta Lake Series — Complete Collection

2. Using a version number
In Delta Lake, every write has a version number, and you can use the version number
to travel back in time as well.

Scala syntax
val df = spark.read

 .format(“delta”)

 .option(“versionAsOf”, “5238”)

 .load(“/path/to/my/table”)

val df = spark.read

 .format(“delta”)

 .load(“/path/to/my/table@v5238”)

Python syntax
df = spark.read \

 .format(“delta”) \

 .option(“versionAsOf”, “5238”) \

 .load(“/path/to/my/table”)

df = spark.read \

 .format(“delta”) \

 .load(“/path/to/my/table@v5238”)

SQL syntax
SELECT count(*) FROM my_table VERSION AS OF 5238

39The Delta Lake Series — Complete Collection

Audit data changes
You can look at the history of table changes using the DESCRIBE HISTORY command
or through the UI.

Reproduce experiments and reports
Time travel also plays an important role in machine learning and data science.
Reproducibility of models and experiments is a key consideration for data scientists
because they often create hundreds of models before they put one into production,
and in that time-consuming process would like to go back to earlier models. However,
because data management is often separate from data science tools, this is really
hard to accomplish.

Databricks solves this reproducibility problem by integrating Delta Lake’s Time
Travel capabilities with MLflow, an open-source platform for the machine learning
lifecycle. For reproducible machine learning training, you can simply log a

timestamped URL to the path as an MLflow parameter to track which version of the
data was used for each training job.

This enables you to go back to earlier settings and data sets to reproduce earlier
models. You neither need to coordinate with upstream teams on the data nor worry
about cloning data for different experiments. This is the power of unified analytics,
whereby data science is closely married with data engineering.

Rollbacks
Time travel also makes it easy to do rollbacks in case of bad writes. For example, if
your GDPR pipeline job had a bug that accidentally deleted user information, you can
easily fix the pipeline:

INSERT INTO my_table

SELECT * FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)

WHERE userId = 111

https://mlflow.org/

40The Delta Lake Series — Complete Collection

You can also fix incorrect updates as follows:

MERGE INTO my_table target

USING my_table TIMESTAMP AS OF date_sub(current_date(), 1) source

ON source.userId = target.userId

WHEN MATCHED THEN UPDATE SET *

If you simply want to roll back to a previous version of your table, you can do so with
either of the following commands:

RESTORE TABLE my_table VERSION AS OF [version_number]

RESTORE TABLE my_table TIMESTAMP AS OF [timestamp]

Pinned view of a continuously updating
Delta Lake table across multiple downstream jobs
With AS OF queries, you can now pin the snapshot of a continuously updating Delta
Lake table for multiple downstream jobs. Consider a situation where a Delta Lake table
is being continuously updated, say every 15 seconds, and there is a downstream job
that periodically reads from this Delta Lake table and updates different destinations.
In such scenarios, typically you want a consistent view of the source Delta Lake table
so that all destination tables reflect the same state.

You can now easily handle such scenarios as follows:

version = spark.sql(“SELECT max(version) FROM (DESCRIBE HISTORY

my_table)”).collect()

Will use the latest version of the table for all operations below

data = spark.table(“my_table@v%s” % version[0][0]data.where

(“event_type = e1”).write.jdbc(“table1”)

data.where(“event_type = e2”).write.jdbc(“table2”)

...

data.where(“event_type = e10”).write.jdbc(“table10”)

Queries for time series analytics made simple
Time travel also simplifies time series analytics. For example, if you want to find out
how many new customers you added over the last week, your query could be a very
simple one like this:

SELECT count(distinct userId) - (

SELECT count(distinct userId)

FROM my_table TIMESTAMP AS OF date_sub(current_date(), 7))

FROM my_table

Additional resources
Tech Talk | Diving Into Delta Lake: Unpacking the Transaction Log

Tech Talk | Getting Data Ready for Data Science With Delta Lake and MLflow

Data + AI Summit Europe 2020 | Data Time Travel by Delta Time Machine

Spark + AI Summit NA 2020 | Machine Learning Data Lineage With

MLflow and Delta Lake

Productionizing Machine Learning With Delta Lake

https://databricks.com/discover/diving-into-delta-lake-talks/unpacking-transaction-log
https://databricks.com/discover/getting-started-with-delta-lake-tech-talks/getting-data-ready-data-science-delta-lake-mlflow
https://databricks.com/session_eu20/data-time-travel-by-delta-time-machine-2
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake
https://databricks.com/blog/2019/08/14/productionizing-machine-learning-with-delta-lake.html

41The Delta Lake Series — Complete Collection

Delta Lake has a feature called Table Cloning, which makes it easy to test, share and
recreate tables for ML reproducibility. Creating copies of tables in a data lake or data
warehouse has several practical uses. However, given the volume of data in tables
in a data lake and the rate of its growth, making physical copies of tables is an
expensive operation.

Delta Lake now makes the process simpler and cost-effective with the help of
table clones.

What are clones?
Clones are replicas of a source table at a given point in time. They have the same
metadata as the source table: same schema, constraints, column descriptions, statistics
and partitioning. However, they behave as a separate table with a separate lineage
or history. Any changes made to clones only affect the clone and not the source. Any
changes that happen to the source during or after the cloning process also do not get
reflected in the clone due to Snapshot Isolation. In Delta Lake we have two types of
clones: shallow or deep.

Shallow clones
A shallow (also known as a Zero-Copy) clone only duplicates the metadata of the
table being cloned; the data files of the table itself are not copied. This type of cloning
does not create another physical copy of the data resulting in minimal storage costs.
Shallow clones are inexpensive and can be extremely fast to create.

Easily Clone Your Delta Lake
for Testing, Sharing and ML
Reproducibility

42The Delta Lake Series — Complete Collection

These clones are not self-contained and depend on the source from which they were
cloned as the source of data. If the files in the source that the clone depends on are removed,
for example with VACUUM, a shallow clone may become unusable. Therefore, shallow
clones are typically used for short-lived use cases such as testing and experimentation.

Deep clones
Shallow clones are great for short-lived use cases, but some scenarios require a
separate and independent copy of the table’s data. A deep clone makes a full copy of
the metadata and the data files of the table being cloned. In that sense, it is similar in
functionality to copying with a CTAS command (CREATE TABLE.. AS… SELECT…).
But it is simpler to specify since it makes a faithful copy of the original table at the
specified version, and you don’t need to re-specify partitioning, constraints and other
information as you have to do with CTAS. In addition, it is much faster, robust and can
work in an incremental manner against failures.

With deep clones, we copy additional metadata, such as your streaming application
transactions and COPY INTO transactions, so you can continue your ETL applications
exactly where it left off on a deep clone.

Where do clones help?
Sometimes I wish I had a clone to help with my chores or magic tricks. However, we’re
not talking about human clones here. There are many scenarios where you need a
copy of your data sets — for exploring, sharing or testing ML models or analytical
queries. Below are some examples of customer use cases.

Testing and experimentation with a production table
When users need to test a new version of their data pipeline they often have to rely
on sample test data sets that are not representative of all the data in their production
environment. Data teams may also want to experiment with various indexing techniques
to improve the performance of queries against massive tables. These experiments and

tests cannot be carried out in a production environment without risking production
data processes and affecting users.

It can take many hours or even days, to spin up copies of your production tables for a test
or a development environment. Add to that, the extra storage costs for your development
environment to hold all the duplicated data — there is a large overhead in setting a test
environment reflective of the production data. With a shallow clone, this is trivial:

-- SQL

CREATE TABLE delta.`/some/test/location` SHALLOW CLONE prod.events

Python

DeltaTable.forName(“spark”, “prod.events”).clone(“/some/test/location”,

isShallow=True)

// Scala

DeltaTable.forName(“spark”, “prod.events”).clone(“/some/test/location”,

isShallow=true)

After creating a shallow clone of your table in a matter of seconds, you can start
running a copy of your pipeline to test out your new code, or try optimizing your table
in different dimensions to see how you can improve your query performance, and much
much more. These changes will only affect your shallow clone, not your original table.

Staging major changes to a production table
Sometimes, you may need to perform some major changes to your production table.
These changes may consist of many steps, and you don’t want other users to see the
changes that you’re making until you’re done with all of your work. A shallow clone can
help you out here:

43The Delta Lake Series — Complete Collection

-- SQL

CREATE TABLE temp.staged_changes SHALLOW CLONE prod.events;

DELETE FROM temp.staged_changes WHERE event_id is null;

UPDATE temp.staged_changes SET change_date = current_date()

WHERE change_date is null;

...

-- Perform your verifications

Once you’re happy with the results, you have two options. If no other change has
been made to your source table, you can replace your source table with the clone.
If changes have been made to your source table, you can merge the changes into
your source table.

-- If no changes have been made to the source

REPLACE TABLE prod.events CLONE temp.staged_changes;

-- If the source table has changed

MERGE INTO prod.events USING temp.staged_changes

ON events.event_id <=> staged_changes.event_id

WHEN MATCHED THEN UPDATE SET *;

-- Drop the staged table

DROP TABLE temp.staged_changes;

Machine learning result reproducibility
Coming up with an effective ML model is an iterative process. Throughout this process
of tweaking the different parts of the model, data scientists need to assess the
accuracy of the model against a fixed data set.

This is hard to do in a system where the data is constantly being loaded or updated. A
snapshot of the data used to train and test the model is required. This snapshot allows
the results of the ML model to be reproducible for testing or model governance purposes.

44The Delta Lake Series — Complete Collection

We recommend leveraging Time Travel to run multiple experiments across a snapshot; an
example of this in action can be seen in Machine Learning Data Lineage With MLflow
and Delta Lake.

Once you’re happy with the results and would like to archive the data for later retrieval,
for example, next Black Friday, you can use deep clones to simplify the archiving process.
MLflow integrates really well with Delta Lake, and the autologging feature (mlflow.spark.
autolog()) will tell you which version of the table was used to run a set of experiments.

Run your ML workloads using Python and then

DeltaTable.forName(spark, “feature_store”).cloneAtVersion(128, “feature_

store_bf2020”)

Data migration
A massive table may need to be moved to a new, dedicated bucket or storage system
for performance or governance reasons. The original table will not receive new
updates going forward and will be deactivated and removed at a future point in time.
Deep clones make the copying of massive tables more robust and scalable.

-- SQL

CREATE TABLE delta.`zz://my-new-bucket/events` CLONE prod.events;

ALTER TABLE prod.events SET LOCATION ‘zz://my-new-bucket/events’;

With deep clones, since we copy your streaming application transactions and
COPY INTO transactions, you can continue your ETL applications from exactly where
it left off after this migration!

Data sharing
In an organization, it is often the case that users from different departments are
looking for data sets that they can use to enrich their analysis or models. You may
want to share your data with other users across the organization. But rather than
setting up elaborate pipelines to move the data to yet another store, it is often easier
and economical to create a copy of the relevant data set for users to explore and

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake

45The Delta Lake Series — Complete Collection

test the data to see if it is a fit for their needs without affecting your own production
systems. Here deep clones again come to the rescue.

-- The following code can be scheduled to run at your convenience

CREATE OR REPLACE TABLE data_science.events CLONE prod.events;

Data archiving
For regulatory or archiving purposes, all data in a table needs to be preserved for a
certain number of years, while the active table retains data for a few months. If you
want your data to be updated as soon as possible, but you have a requirement to keep
data for several years, storing this data in a single table and performing time travel
may become prohibitively expensive.

In this case, archiving your data in a daily, weekly or monthly manner is a better
solution. The incremental cloning capability of deep clones will really help you here.

-- The following code can be scheduled to run at your convenience

CREATE OR REPLACE TABLE archive.events CLONE prod.events;

Note that this table will have an independent history compared to the source table,
therefore, time travel queries on the source table and the clone may return different
results based on your frequency of archiving.

Looks awesome! Any gotchas?
Just to reiterate some of the gotchas mentioned above as a single list, here’s what you
should be wary of:
• Clones are executed on a snapshot of your data. Any changes that are made to

the source table after the cloning process starts will not be reflected in the
clone.

• Shallow clones are not self-contained tables like deep clones. If the data is
deleted in the source table (for example through VACUUM), your shallow clone
may not be usable.

• Clones have a separate, independent history from the source table. Time travel
queries on your source table and clone may not return the same result.

• Shallow clones do not copy stream transactions or COPY INTO metadata. Use
deep clones to migrate your tables and continue your ETL processes from
where it left off.

How can I use it?
Shallow and deep clones support new advances in how data teams test and manage
their modern cloud data lakes and warehouses. Table clones can help your team
implement production-level testing of their pipelines, fine-tune their indexing for optimal
query performance, create table copies for sharing — all with minimal overhead and
expense. If this is a need in your organization, we hope you will take table cloning for
a spin and give us your feedback — we look forward to hearing about new use cases and
extensions you would like to see in the future.

Additional resource
Simplifying Disaster Recovery With Delta Lake

https://databricks.com/session_na20/simplifying-disaster-recovery-with-delta-lake

46The Delta Lake Series — Complete Collection

The release of Delta Lake 0.7.0 coincided with the release of Apache Spark 3.0, thus
enabling a new set of features that were simplified using Delta Lake from SQL. Here
are some of the key features.

Support for SQL DDL commands
to define tables in the Hive metastore
You can now define Delta tables in the Hive metastore and use the table name in all
SQL operations when creating (or replacing) tables.

Create or replace tables
-- Create table in the metastore

CREATE TABLE events (

 date DATE,

 eventId STRING,

 eventType STRING,

 data STRING)

USING DELTA

PARTITIONED BY (date)

LOCATION ‘/delta/events’

-- If a table with the same name already exists, the table is replaced

with

the new configuration, else it is created

CREATE OR REPLACE TABLE events (

Enabling Spark SQL DDL
and DML in Delta Lake on
Apache Spark 3.0

https://github.com/delta-io/delta/releases/tag/v0.7.0
https://github.com/delta-io/delta/releases/tag/v0.7.0
https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore
https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore

47The Delta Lake Series — Complete Collection

 date DATE,

 eventId STRING,

 eventType STRING,

 data STRING)

USING DELTA

PARTITIONED BY (date)

LOCATION ‘/delta/events’

 Explicitly alter the table schema
-- Alter table and schema

ALTER TABLE table_name ADD COLUMNS (

 col_name data_type

 [COMMENT col_comment]

 [FIRST|AFTER colA_name],

 ...)

You can also use the Scala/Java/Python APIs:
• DataFrame.saveAsTable(tableName)and DataFrameWriterV2

APIs (#307).
• DeltaTable.forName(tableName) API to create instances of
io.delta.tables .DeltaTable which is useful for executing
Update/Delete/Merge operations in Scala/Java/Python.

Support for SQL Insert, Delete, Update and Merge
One of the most frequent questions through our Delta Lake Tech Talks was when
would DML operations such as delete, update and merge be available in Spark SQL?
Wait no more, these operations are now available in SQL! Below are examples of how
you can write delete, update and merge (insert, update, delete and de-duplication
operations using Spark SQL).

-- Using append mode, you can atomically add new data to an existing

Delta table

INSERT INTO events SELECT * FROM newEvents

-- To atomically replace all of the data in a table, you can use

overwrite mode

INSERT OVERWRITE events SELECT * FROM newEvents

-- Delete events

DELETE FROM events WHERE date < ‘2017-01-01’

-- Update events

UPDATE events SET eventType = ‘click’ WHERE eventType = ‘click’

-- Upsert data to a target Delta

-- table using merge

MERGE INTO events

USING updates

 ON events.eventId = updates.eventId

 WHEN MATCHED THEN UPDATE

 SET events.data = updates.data

 WHEN NOT MATCHED THEN INSERT (date, eventId, data)

 VALUES (date, eventId, data)

It is worth noting that the merge operation in Delta Lake supports more advanced
syntax than standard ANSI SQL syntax. For example, merge supports

• Delete actions -- Delete a target when matched with a source row. For example,
“... WHEN MATCHED THEN DELETE ...”

• Multiple matched actions with clause conditions -- Greater flexibility when target
and source rows match. For example:

...

WHEN MATCHED AND events.shouldDelete THEN DELETE

WHEN MATCHED THEN UPDATE SET events.data = updates.data

https://github.com/delta-io/delta/issues/307
https://databricks.com/discover/diving-into-delta-lake-talks

48The Delta Lake Series — Complete Collection

• Star syntax -- Shorthand for setting target column value with the similarly-named
sources column. For example:

WHEN MATCHED THEN SET *

WHEN NOT MATCHED THEN INSERT *

-- equivalent to updating/inserting with event.date = updates.date,

 events.eventId = updates.eventId, event.data = updates.data

Automatic and incremental Presto/Athena manifest
generation
As noted in Query Delta Lake Tables From Presto and Athena, Improved Operations
Concurrency, and Merge Performance, Delta Lake supports other processing engines
to read Delta Lake by using manifest files; the manifest files contain the list of the
most current version of files as of manifest generation. As described in the preceding
chapter, you will need to:

• Generate a Delta Lake manifest file
• Configure Presto or Athena to read the generated manifests
• Manually re-generate (update) the manifest file

New for Delta Lake 0.7.0 is the capability to update the manifest file automatically
with the following command:

ALTER TABLE delta.`pathToDeltaTable`

SET TBLPROPERTIES(

 delta.compatibility.symlinkFormatManifest.enabled=true

)

Configuring your table through table properties
With the ability to set table properties on your table by using ALTER TABLE SET
TBLPROPERTIES, you can enable, disable or configure many features of Delta Lake

such as automated manifest generation. For example, with table properties, you can
block deletes and updates in a Delta table using delta.appendOnly=true.

You can also easily control the history of your Delta Lake table retention by the
following properties:
• delta.logRetentionDuration: Controls how long the history for a table

(i.e., transaction log history) is kept. By default, 30 days of history is kept, but you may
want to alter this value based on your requirements (e.g., GDPR historical context)

• delta.deletedFileRetentionDuration: Controls how long ago a file
must have been deleted before being a candidate for VACUUM. By default, data
files older than seven days are deleted.

As of Delta Lake 0.7.0, you can use ALTER TABLE SET TBLPROPERTIES to
configure these properties.

ALTER TABLE delta.`pathToDeltaTable`

SET TBLPROPERTIES(

 delta.logRetentionDuration = “interval “

 delta.deletedFileRetentionDuration = “interval “

)

Support for adding user-defined metadata
in Delta Lake table commits
You can specify user-defined strings as metadata in commits made by Delta
Lake table operations, either using the DataFrameWriter option userMetadata or
the SparkSession configuration spark.databricks.delta.commitInfo.
userMetadata .

In the following example, we are deleting a user (1xsdf1) from our data lake per user
request. To ensure we associate the user’s request with the deletion, we have also
added the DELETE request ID into the userMetadata.

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.youtube.com/watch?v=o54YMz8zvCY
https://databricks.com/blog/2020/11/11/analytics-on-the-data-lake-with-tableau-and-the-lakehouse-architecture.html

49The Delta Lake Series — Complete Collection

SET spark.databricks.delta.commitInfo.userMetadata={

 “GDPR”:”DELETE Request 1x891jb23”

};

DELETE FROM user_table WHERE user_id = ‘1xsdf1’

When reviewing the history operations of the user table (user_table), you can easily
identify the associated deletion request within the transaction log.

Other highlights
Other highlights for the Delta Lake 0.7.0 release include:
• Support for Azure Data Lake Storage Gen2 — Spark 3.0 has support for Hadoop

3.2 libraries which enables support for Azure Data Lake Storage Gen2.
• Improved support for streaming one-time triggers — With Spark 3.0, we now

ensure that a one-time trigger (Trigger.Once) processes all outstanding data
in a Delta Lake table in a single micro-batch even if rate limits are set with the
DataStreamReader option maxFilesPerTrigger.

There were a lot of great questions during the AMA concerning structured streaming
and using trigger.once.

For more information, some good resources explaining this concept include:
• Running Streaming Jobs Once a Day for 10x Cost Savings
• Beyond Lambda: Introducing Delta Architecture: Specifically the cost vs. latency

trade-off discussed here.

Additional resources
Tech Talk | Delta Lake 0.7.0 + Spark 3.0 AMA

Tech Talks | Apache Spark 3.0 + Delta Lake

Enabling Spark SQL DDL and DML in Delta Lake on Apache Spark 3.0

https://databricks.com/session_eu20/radical-speed-for-your-sql-queries-with-delta-engine
https://databricks.com/session_eu20/mlflow-delta-lake-and-lakehouse-use-cases-meetup
https://databricks.com/session_eu20/common-strategies-for-improving-performance-on-your-delta-lakehouse
https://databricks.com/session_eu20/achieving-lakehouse-models-with-spark-3-0
https://databricks.com/session_eu20/achieving-lakehouse-models-with-spark-3-0
https://www.youtube.com/watch?v=xzKqjCB8SWU
https://www.youtube.com/watch?v=x6RqJYqLoPI&list=PLTPXxbhUt-YWnAgh3RE8DOb46qZF57byx
https://databricks.com/blog/2020/08/27/enabling-spark-sql-ddl-and-dml-in-delta-lake-on-apache-spark-3-0.html

CHAPTER 03
Lakehouse
Combining the best elements of data
lakes and data warehouses

51The Delta Lake Series — Complete Collection

What Is a
Lakehouse?

Over the past few years at Databricks, we’ve seen a new data management architecture
that emerged independently across many customers and use cases: the lakehouse.
In this chapter, we’ll describe this new architecture and its advantages over previous
approaches.

Data warehouses have a long history of decision support and business intelligence
applications. Since its inception in the late 1980s, data warehouse technology
continued to evolve and MPP architectures led to systems that were able to handle
larger data sizes.

But while warehouses were great for structured data, a lot of modern enterprises
have to deal with unstructured data, semi-structured data, and data with high variety,
velocity and volume. Data warehouses are not suited for many of these use cases, and
they are certainly not the most cost-efficient.

As companies began to collect large amounts of data from many different sources,
architects began envisioning a single system to house data for many different
analytic products and workloads.

About a decade ago, companies began building data lakes -- repositories for raw data
in a variety of formats. While suitable for storing data, data lakes lack some critical
features: They do not support transactions, they do not enforce data quality, and their
lack of consistency / isolation makes it almost impossible to mix appends and reads,

https://databricks.com/glossary/data-lake

52The Delta Lake Series — Complete Collection

and batch and streaming jobs. For these reasons, many of the promises of data lakes
have not materialized and, in many cases, lead to a loss of many of the benefits of data
warehouses.

The need for a flexible, high-performance system hasn’t abated. Companies
require systems for diverse data applications including SQL analytics, real-time
monitoring, data science and machine learning. Most of the recent advances in
AI have been in better models to process unstructured data (text, images, video,
audio), but these are precisely the types of data that a data warehouse is not
optimized for.

A common approach is to use multiple systems — a data lake, several data
warehouses, and other specialized systems such as streaming, time-series, graph
and image databases. Having a multitude of systems introduces complexity and,
more importantly, introduces delay as data professionals invariably need to move
or copy data between different systems.

A lakehouse combines the best elements
of data lakes and data warehouses
A lakehouse is a new data architecture that combines the best elements of data lakes
and data warehouses.

Lakehouses are enabled by a new system design: implementing similar data struc-
tures and data management features to those in a data warehouse, directly on the
kind of low-cost storage used for data lakes. They are what you would get if you had
to redesign data warehouses in the modern world, now that cheap and highly reliable
storage (in the form of object stores) are available.

A lakehouse has the following key features:
• Transaction support: In an enterprise lakehouse, many data pipelines will often

be reading and writing data concurrently. Support for ACID transactions ensures
consistency as multiple parties concurrently read or write data, typically using SQL.

53The Delta Lake Series — Complete Collection

• Schema enforcement and governance: The lakehouse should have a way to
support schema enforcement and evolution, supporting DW schema paradigms
such as star/snowflake-schemas. The system should be able to reason about data
integrity, and it should have robust governance and auditing mechanisms.

• BI support: Lakehouses enable using BI tools directly on the source data. This
reduces staleness and improves recency, reduces latency and lowers the cost of
having to operationalize two copies of the data in both a data lake and a warehouse.

• Storage is decoupled from compute: In practice, this means storage and compute
use separate clusters, thus these systems are able to scale to many more
concurrent users and larger data sizes. Some modern data warehouses also have
this property.

• Openness: The storage formats they use are open and standardized, such as
Parquet, and they provide an API so a variety of tools and engines, including
machine learning and Python/R libraries, can efficiently access the data directly.

• Support for diverse data types ranging from unstructured to structured data:
The lakehouse can be used to store, refine, analyze and access data types needed
for many new data applications, including images, video, audio, semi-structured
data, and text.

• Support for diverse workloads: Including data science, machine learning and SQL
analytics. Multiple tools might be needed to support all these workloads, but they all
rely on the same data repository.

• End-to-end streaming: Real-time reports are the norm in many enterprises.
Support for streaming eliminates the need for separate systems dedicated to
serving real-time data applications.

These are the key attributes of lakehouses. Enterprise-grade systems require additional
features. Tools for security and access control are basic requirements. Data governance
capabilities including auditing, retention and lineage have become essential particularly
in light of recent privacy regulations. Tools that enable data discovery such as data
catalogs and data usage metrics are also needed. With a lakehouse, such enterprise
features only need to be implemented, tested and administered for a single system.

https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html

54The Delta Lake Series — Complete Collection

Read the research
Delta Lake: High-Performance ACID
Table Storage Over Cloud Object Stores

Abstract
Cloud object stores such as Amazon S3 are some of the largest and most cost-
effective storage systems on the planet, making the main attractive target to
store large data warehouses and data lakes. Unfortunately, their implementation
as key-value stores makes it difficult to achieve ACID transactions and high
performance: Metadata operations, such as listing objects, are expensive, and
consistency guarantees are limited. In this paper, we present Delta Lake, an
open source ACID table storage layer over cloud object stores initially developed
at Databricks. Delta Lake uses a transaction log that is compacted into Apache
Parquet format to provide ACID properties, time travel, and significantly faster
metadata operations for large tabular data sets (e.g., the ability to quickly search
billions of table partitions for those relevant to a query). It also leverages this
design to provide high-level features such as automatic data layout optimization,
upserts, caching, and audit logs. Delta Lake tables can be accessed from Apache
Spark, Hive, Presto, Redshift, and other systems. Delta Lake is deployed at
thousands of Databricks customers that process exabytes of data per day, with
the largest instances managing exabyte-scale data sets and billions of objects.

Authors: Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van HÖvell, Adrian Ionescu, Alicja Łuszczak,
Michał Szafra ́nski, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz, Ali Ghodsi,
Sameer Paranjpye, Pieter Senster, Reynold Xin, Matei Zaharia

Read the full research paper on the inner workings of the lakehouse.

https://databricks.com/research/delta-lake-high-performance-acid-table-storage-overcloud-object-stores

55The Delta Lake Series — Complete Collection

Some early examples
The Databricks Unified Data Platform has the architectural features of a lakehouse.
Microsoft’s Azure Synapse Analytics service, which integrates with Azure Databricks,
enables a similar lakehouse pattern. Other managed services such as BigQuery and
Redshift Spectrum have some of the lakehouse features listed above, but they are
examples that focus primarily on BI and other SQL applications.

Companies that want to build and implement their own systems have access to open
source file formats (Delta Lake, Apache Iceberg, Apache Hudi) that are suitable for
building a lakehouse.

Merging data lakes and data warehouses into a single system means that data teams
can move faster as they are able to use data without needing to access multiple systems.
The level of SQL support and integration with BI tools among these early lakehouses
is generally sufficient for most enterprise data warehouses. Materialized views and
stored procedures are available, but users may need to employ other mechanisms that
aren’t equivalent to those found in traditional data warehouses. The latter is particularly
important for “lift and shift scenarios,” which require systems that achieve semantics
that are almost identical to those of older, commercial data warehouses.

What about support for other types of data applications? Users of a lakehouse have
access to a variety of standard tools (Apache Spark, Python, R, machine learning
libraries) for non-BI workloads like data science and machine learning. Data
exploration and refinement are standard for many analytic and data science
applications. Delta Lake is designed to let users incrementally improve the quality of
data in their lakehouse until it is ready for consumption.

A note about technical building blocks. While distributed file systems can be
used for the storage layer, object stores are more commonly used in lakehouses.
Object stores provide low-cost, highly available storage that excels at massively
parallel reads — an essential requirement for modern data warehouses.

From BI to AI
The lakehouse is a new data management architecture that radically simplifies
enterprise data infrastructure and accelerates innovation in an age when
machine learning is poised to disrupt every industry. In the past, most of the
data that went into a company’s products or decision-making was structured
data from operational systems, whereas today, many products incorporate
AI in the form of computer vision and speech models, text mining and others.
Why use a lakehouse instead of a data lake for AI? A lakehouse gives you data
versioning, governance, security and ACID properties that are needed even for
unstructured data.

Current lakehouses reduce cost, but their performance can still lag specialized
systems (such as data warehouses) that have years of investments and real-
world deployments behind them. Users may favor certain tools (BI tools, IDEs,
notebooks) over others so lakehouses will also need to improve their UX and their
connectors to popular tools so they can appeal to a variety of personas. These
and other issues will be addressed as the technology continues to mature and
develop. Over time, lakehouses will close these gaps while retaining the core
properties of being simpler, more cost-efficient and more capable of serving
diverse data applications.

https://databricks.com/product/data-lakehouse
https://azure.microsoft.com/en-us/blog/simply-unmatched-truly-limitless-announcing-azure-synapse-analytics/
https://databricks.com/blog/2019/11/04/new-microsoft-azure-data-warehouse-service-and-azure-databricks-combine-analytics-bi-and-data-science.html
https://cloud.google.com/bigquery/
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://iceberg.apache.org
https://hudi.apache.org
https://whatis.techtarget.com/definition/lift-and-shift
https://databricks.com/glossary/apache-spark-as-a-service

56The Delta Lake Series — Complete Collection

Databricks wrote a blog article that outlined how more and more enterprises are
adopting the lakehouse pattern. The blog created a massive amount of interest
from technology enthusiasts. While lots of people praised it as the next-generation
data architecture, some people thought the lakehouse is the same thing as
the data lake. Recently, several of our engineers and founders wrote a research
paper that describes some of the core technological challenges and solutions that
set the lakehouse architecture apart from the data lake, and it was accepted and
published at the International Conference on Very Large Databases (VLDB) 2020. You
can read the paper, “Delta Lake: High-Performance ACID Table Storage Over Cloud
Object Stores,” here.

Henry Ford is often credited with having said, “If I had asked people what they wanted,
they would have said faster horses.” The crux of this statement is that people often
envision a better solution to a problem as an evolution of what they already know
rather than rethinking the approach to the problem altogether. In the world of data
storage, this pattern has been playing out for years. Vendors continue to try to reinvent
the old horses of data warehouses and data lakes rather than seek a new solution.

Diving Deep Into the
Inner Workings of the
Lakehouse and Delta Lake

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/wp-content/uploads/2020/08/p975-armbrust.pdf
https://databricks.com/wp-content/uploads/2020/08/p975-armbrust.pdf

57The Delta Lake Series — Complete Collection

More than a decade ago, the cloud opened a new frontier for data storage. Cloud
object stores like Amazon S3 have become some of the largest and most cost-
effective storage systems in the world, which makes them an attractive platform to
store data warehouses and data lakes. However, their nature as key-value stores
makes it difficult to achieve ACID transactions that many organizations require. Also,
performance is hampered by expensive metadata operations (e.g., listing objects)
and limited consistency guarantees.

Based on the characteristics of cloud object stores, three approaches have emerged.

1. Data lakes
The first is directories of files (i.e., data lakes) that store the table as a collection
of objects, typically in columnar format such as Apache Parquet. It’s an attractive
approach because the table is just a group of objects that can be accessed from
a wide variety of tools without a lot of additional data stores or systems. However,
both performance and consistency problems are common. Hidden data corruption
is common due to failed transactions, eventual consistency leads to inconsistent
queries, latency is high, and basic management capabilities like table versioning and
audit logs are unavailable.

2. Custom storage engines
The second approach is custom storage engines, such as proprietary systems built for
the cloud like the Snowflake data warehouse. These systems can bypass the consistency
challenges of data lakes by managing the metadata in a separate, strongly consistent
service that’s able to provide a single source of truth. However, all I/O operations need
to connect to this metadata service, which can increase cloud resource costs and
reduce performance and availability. Additionally, it takes a lot of engineering work to
implement connectors to existing computing engines like Apache Spark, TensorFlow
and PyTorch, which can be challenging for data teams that use a variety of computing
engines on their data. Engineering challenges can be exacerbated by unstructured
data because these systems are generally optimized for traditional structured

58The Delta Lake Series — Complete Collection

data types. Finally, and most egregiously, the proprietary metadata service locks
customers into a specific service provider, leaving customers to contend with
consistently high prices and expensive, time-consuming migrations if they decide to
adopt a new approach later.

3. Lakehouse
With Delta Lake, an open source ACID table storage layer atop cloud object stores,
we sought to build a car instead of a faster horse with not just a better data store,
but a fundamental change in how data is stored and used via the lakehouse. A
lakehouse is a new architecture that combines the best elements of data lakes and
data warehouses. Lakehouses are enabled by a new system design: implementing
similar data structures and data management features to those in a data warehouse,
directly on the kind of low-cost storage used for data lakes. They are what you would
get if you had to redesign storage engines in the modern world, now that cheap and
highly reliable storage (in the form of object stores) are available.

Delta Lake maintains information about which objects are part of a Delta table in an
ACID manner, using a write-ahead log, compacted into Parquet, that is also stored in
the cloud object store. This design allows clients to update multiple objects at once,
replace a subset of the objects with another, etc., in a serializable manner that still
achieves high parallel read/write performance from the objects. The log also provides
significantly faster metadata operations for large tabular data sets. Additionally, Delta
Lake offers advanced capabilities like time travel (i.e., the ability to query point-in-time
snapshots or roll back erroneous updates), automatic data layout optimization, upserts,
caching, and audit logs. Together, these features improve both the manageability and
performance of working with data in cloud object stores, ultimately opening the door
to the lakehouse architecture that combines the key features of data warehouses and
data lakes to create a better, simpler data architecture.

59The Delta Lake Series — Complete Collection

Today, Delta Lake is used across thousands of Databricks customers, processing
exabytes of structured and unstructured data each day, as well as many organizations
in the open source community. These use cases span a variety of data sources and
applications. The data types stored include Change Data Capture (CDC) logs from
enterprise OLTP systems, application logs, time-series data, graphs, aggregate
tables for reporting, and image or feature data for machine learning. The applications
include SQL workloads (most commonly), business intelligence, streaming, data
science, machine learning and graph analytics. Overall, Delta Lake has proven itself to
be a good fit for most data lake applications that would have used structured storage
formats like Parquet or ORC, and many traditional data warehousing workloads.

Across these use cases, we found that customers often use Delta Lake to significantly
simplify their data architecture by running more workloads directly against cloud
object stores, and increasingly, by creating a lakehouse with both data lake and
transactional features to replace some or all of the functionality provided by message
queues (e.g., Apache Kafka), data lakes or cloud data warehouses (e.g., Snowflake,
Amazon Redshift).

In the research paper, the authors explain:
• The characteristics and challenges of object stores
• The Delta Lake storage format and access protocols
• The current features, benefits and limitations of Delta Lake
• Both the core and specialized use cases commonly employed today
• Performance experiments, including TPC-DS performance

Through the paper, you’ll gain a better understanding of Delta Lake and how it
enables a wide range of DBMS-like performance and management features for data
held in low-cost cloud storage. As well as how the Delta Lake storage format and
access protocols make it simple to operate, highly available, and able to deliver high-
bandwidth access to the object store.

https://databricks.com/research/delta-lake-high-performance-acid-table-storage-overcloud-object-stores

60The Delta Lake Series — Complete Collection

The Delta Engine ties together a 100% Apache Spark-compatible vectorized query
engine to take advantage of modern CPU architecture with optimizations to Spark
3.0’s query optimizer and caching capabilities that were launched as part of Databricks
Runtime 7.0. Together, these features significantly accelerate query performance on
data lakes, especially those enabled by Delta Lake, to make it easier for customers to
adopt and scale a lakehouse architecture.

Scaling execution performance
One of the big hardware trends over the last several years is that CPU clock speeds
have plateaued. The reasons are outside the scope of this chapter, but the takeaway
is that we have to find new ways to process data faster beyond raw compute power.
One of the most impactful methods has been to improve the amount of data that can
be processed in parallel. However, data processing engines need to be specifically
architected to take advantage of this parallelism.

In addition, data teams are being given less and less time to properly model data as
the pace of business increases. Poorer modeling in the interest of better business
agility drives poorer query performance. Naturally, this is not a desired state, and
organizations want to find ways to maximize both agility and performance.

Understanding
Delta Engine

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

61The Delta Lake Series — Complete Collection

Announcing Delta Engine for
high-performance query execution
Delta Engine accelerates the performance of Delta Lake for SQL and DataFrame
workloads through three components: an improved query optimizer, a caching
layer that sits between the execution layer and the cloud object storage, and a native
vectorized execution engine that’s written in C++.

The improved query optimizer extends the functionality already in Spark 3.0 (cost-based
optimizer, adaptive query execution, and dynamic runtime filters) with more advanced
statistics to deliver up to 18x increased performance in star schema workloads.

Delta Engine’s caching layer automatically chooses which input data to cache for the
user, transcoding it along the way in a more CPU-efficient format to better leverage
the increased storage speeds of NVMe SSDs. This delivers up to 5x faster scan
performance for virtually all workloads.

However, the biggest innovation in Delta Engine to tackle the challenges facing
data teams today is the native execution engine, which we call Photon. (We know.
It’s in an engine within the engine…). This completely rewritten execution engine for

62The Delta Lake Series — Complete Collection

Databricks has been built to maximize the performance from the new changes in
modern cloud hardware. It brings performance improvements to all workload types
while remaining fully compatible with open Spark APIs.

Getting started with Delta Engine
By linking these three components together, we think it will be easier for customers
to understand how improvements in multiple places within the Databricks code
aggregate into significantly faster performance for analytics workloads on data lakes.

We’re excited about the value that Delta Engine delivers to our customers. While the
time and cost savings are already valuable, its role in the lakehouse pattern supports
new advances in how data teams design their data architectures for increased
unification and simplicity.

For more information on the Delta Engine, watch this keynote address from
Spark + AI Summit 2020: Delta Engine: High-Performance Query Engine for Delta Lake.

https://www.youtube.com/watch?v=o54YMz8zvCY

CHAPTER 04
Streaming
Using Delta Lake to express
computation on streaming data

64The Delta Lake Series — Complete Collection

How Delta Lake Solves Common
Pain Points in Streaming

The pain points of a traditional streaming and data warehousing solution can be
broken into two groups: data lake and data warehouse pains.

Data lake pain points
While data lakes allow you to flexibly store an immense amount of data in a file system,
there are many pain points including (but not limited to):
• Consolidation of streaming data from many disparate systems is difficult.
• Updating data in a data lake is nearly impossible, and much of the streaming

data needs to be updated as changes are made. This is especially important in
scenarios involving financial reconciliation and subsequent adjustments.

• Query speeds for a data lake are typically very slow.
• Optimizing storage and file sizes is very difficult and often requires complicated logic.

Data warehouse pain points
The power of a data warehouse is that you have a persistent performant store of your
data. But the pain points for building modern continuous applications include (but are
not limited to):
• Constrained to SQL queries (i.e., no machine learning or advanced analytics).
• Accessing streaming data and stored data together is very difficult, if at all possible.
• Data warehouses do not scale very well.
• Tying compute and storage together makes using a warehouse very expensive.

65The Delta Lake Series — Complete Collection

How Delta Lake on Databricks solves these issues
Delta Lake is a unified data management system that brings data reliability and
performance optimizations to cloud data lakes. More succinctly, Delta Lake combines
the advantages of data lakes and data warehouses with Apache Spark™ to allow you
to do incredible things.
• Delta Lake, along with Structured Streaming, makes it possible to analyze

streaming and historical data together at high speeds.
• When Delta Lake tables are used as sources and destinations of streaming big

data, it is easy to consolidate disparate data sources.
• Upserts are supported on Delta Lake tables.
• Delta Lake is ACID compliant, making it easy to create a compliant data solution.
• Easily include machine learning scoring and advanced analytics into ETL

and queries.
• Decouples compute and storage for a completely scalable solution.

In the following use cases, we’ll share what this looks like in practice.

https://docs.databricks.com/delta/index.html

66The Delta Lake Series — Complete Collection

Real-time analysis of stock data is a complicated endeavor. After all, there are many
challenges in maintaining a streaming system and ensuring transactional consistency
of legacy and streaming data concurrently.

Thankfully, Delta Lake helps solve many of the pain points of building a streaming
system to analyze stock data in real time. In this section, we’ll share how to simplify
the streaming of stock data analysis using Delta Lake.

In the following diagram, you can see a high-level architecture that simplifies this
problem. We start by ingesting two different sets of data into two Delta Lake tables.
The two data sets are stock prices and fundamentals.

After ingesting the data into their respective tables, we then join the data in an ETL
process and write the data out into a third Delta Lake table for downstream analysis.

Delta Lake helps solve these problems by combining the scalability, streaming and
access to the advanced analytics of Apache Spark with the performance and ACID
compliance of a data warehouse.

U S E C A S E # 1

Simplifying Streaming Stock
Data Analysis Using Delta Lake

https://databricks.com/product/delta-lake-on-databricks

67The Delta Lake Series — Complete Collection

Implement your streaming
stock analysis solution with Delta Lake
Delta Lake and Apache Spark do most of the work for our solution; you can try out the
full notebook and follow along with the code samples below.

As noted in the preceding diagram, we have two data sets to process — one for
fundamentals and one for price data. To create our two Delta Lake tables, we specify
the .format(‘delta’) against our Databricks File System (DBFS) locations.

Create Fundamental Data (Databricks Delta table)

dfBaseFund = spark \\

.read \\

.format(‘delta’) \\

.load(‘/delta/stocksFundamentals’)

Create Price Data (Databricks Delta table)

dfBasePrice = spark \\

.read \\

.format(‘delta’) \\

.load(‘/delta/stocksDailyPrices’)

https://pages.databricks.com/rs/094-YMS-629/images/streaming-stock-data-analysis-setup.html
https://docs.databricks.com/data/databricks-file-system.html

68The Delta Lake Series — Complete Collection

While we’re updating the stockFundamentals and stocksDailyPrices,
we will consolidate this data through a series of ETL jobs into a consolidated view
(stocksDailyPricesWFund).

With the following code snippet, we can determine the start and end date of available
data and then combine the price and fundamentals data for that date range into DBFS.

Determine start and end date of available data

row = dfBasePrice.agg(

 func.max(dfBasePrice.price_date).alias(“maxDate”),

 func.min(dfBasePrice.price_date).alias(“minDate”)

).collect()[0]

startDate = row[“minDate”]

endDate = row[“maxDate”]

Define our date range function

def daterange(start_date, end_date):

 for n in range(int ((end_date - start_date).days)):

 yield start_date + datetime.timedelta(n)

Define combinePriceAndFund information by date and

def combinePriceAndFund(theDate):

 dfFund = dfBaseFund.where(dfBaseFund.price_date == theDate)

 dfPrice = dfBasePrice.where(

dfBasePrice.price_date == theDate

).drop(‘price_date’)

 # Drop the updated column

 dfPriceWFund = dfPrice.join(dfFund, [‘ticker’]).drop(‘updated’)

 # Save data to DBFS

 dfPriceWFund

.write

.format(‘delta’)

.mode(‘append’)

.save(‘/delta/stocksDailyPricesWFund’)

Loop through dates to complete fundamentals + price ETL process

for single_date in daterange(

startDate, (endDate + datetime.timedelta(days=1))

):

 print ‘Starting ’ + single_date.strftime(‘%Y-%m-%d’)

 start = datetime.datetime.now()

 combinePriceAndFund(single_date)

 end = datetime.datetime.now()

 print (end - start)

Now we have a stream of consolidated fundamentals and price data that is being
pushed into DBFS in the /delta/stocksDailyPricesWFund location. We can build a
Delta Lake table by specifying .format(“delta”) against that DBFS location.

dfPriceWithFundamentals = spark

.readStream

.format(“delta”)

.load(“/delta/stocksDailyPricesWFund”)

// Create temporary view of the data

dfPriceWithFundamentals.createOrReplaceTempView(“priceWithFundamentals”)

https://docs.databricks.com/data/databricks-file-system.html

69The Delta Lake Series — Complete Collection

Now that we have created our initial Delta Lake table, let’s create a view that will
allow us to calculate the price/earnings ratio in real time (because of the underlying
streaming data updating our Delta Lake table).

%sql

CREATE OR REPLACE TEMPORARY VIEW viewPE AS

select ticker,

 price_date,

 first(close) as price,

 (close/eps_basic_net) as pe

 from priceWithFundamentals

 where eps_basic_net > 0

 group by ticker, price_date, pe

Analyze streaming stock data in real time
With our view in place, we can quickly analyze our data using Spark SQL.

%sql

select *

from viewPE

where ticker == “AAPL”

order by price_date

70The Delta Lake Series — Complete Collection

As the underlying source of this consolidated data set is a Delta Lake table, this view
isn’t just showing the batch data but also any new streams of data that are coming in
as per the following streaming dashboard.

Underneath the covers, Structured Streaming isn’t just writing the data to Delta Lake
tables but also keeping the state of the distinct number of keys (in this case ticker
symbols) that need to be tracked.

Because you are using Spark SQL, you can execute aggregate queries at scale
and in real time.

%sql

SELECT ticker, AVG(close) as Average_Close

FROM priceWithFundamentals

GROUP BY ticker

ORDER BY Average_Close

In closing, we demonstrated how to simplify streaming stock data analysis using
Delta Lake. By combining Spark Structured Streaming and Delta Lake, we can use the
Databricks integrated workspace to create a performant, scalable solution that has
the advantages of both data lakes and data warehouses.

The Databricks Unified Data Platform removes the data engineering complexities
commonly associated with streaming and transactional consistency, enabling
data engineering and data science teams to focus on understanding the trends in
their stock data.

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/product/data-lakehouse

71The Delta Lake Series — Complete Collection

Tilting Point is a new-generation games partner that provides top development
studios with expert resources, services and operational support to optimize
high-quality live games for success. Through its user acquisition fund and its
world-class technology platform, Tilting Point funds and runs performance
marketing management and live games operations to help developers achieve
profitable scale.

By leveraging Delta Lake, Tilting Point is able to leverage quality data and make
it readily available for analytics to improve the business. Diego Link, VP of
Engineering at Tilting Point, provided insights for this use case.

The team at Tilting Point was running daily and hourly batch jobs for reporting on
game analytics. They wanted to make their reporting near real-time, getting insights
within 5–10 minutes.

They also wanted to make their in-game LiveOps decisions based on real-time player
behavior for giving real-time data to a bundles-and-offer system, provide up-to-the-
minute alerting on LiveOPs changes that actually might have unforeseen detrimental
effects and even alert on service interruptions in game operations. The goal was to
ensure that the game experience was as robust as possible for their players.

Additionally, they had to store encrypted Personally Identifiable Information (PII) data
separately in order to maintain GDPR compliance.

U S E C A S E # 2

How Tilting Point Does Streaming
Ingestion Into Delta Lake

72The Delta Lake Series — Complete Collection

How data flows and associated challenges
Tilting Point has a proprietary software development kit that developers integrate
with to send data from game servers to an ingest server hosted in AWS. This service
removes all PII data and then sends the raw data to an Amazon Firehose endpoint.
Firehose then dumps the data in JSON format continuously to S3.

To clean up the raw data and make it available quickly for analytics, the team
considered pushing the continuous data from Firehose to a message bus (e.g.,
Kafka, Kinesis) and then using Apache Spark’s Structured Streaming to continuously
process data and write to Delta Lake tables.

While that architecture sounds ideal for low latency requirements of processing
data in seconds, Tilting Point didn’t have such low latency needs for their ingestion
pipeline. They wanted to make the data available for analytics in a few minutes, not
seconds. Hence they decided to simplify our architecture by eliminating a message
bus and instead use S3 as a continuous source for their structured streaming job.

But the key challenge in using S3 as a continuous source is identifying files that
changed recently.

Listing all files every few minutes has two major issues:
• Higher latency: Listing all files in a directory with a large number of files has high

overhead and increases processing time.
• Higher cost: Listing lots of files every few minutes can quickly add to the S3 cost.

Leveraging Structured Streaming with blob store as
source and Delta Lake tables as sink
To continuously stream data from cloud blob storage like S3, Tilting Point uses
Databricks’ S3-SQS source. The S3-SQS source provides an easy way to incrementally
stream data from S3 without the need to write any state management code on what
files were recently processed.

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://docs.databricks.com/spark/latest/structured-streaming/sqs.html#optimized-s3-file-source-with-sqs

73The Delta Lake Series — Complete Collection

This is how Tilting Point’s ingestion pipeline looks:
• Configure Amazon S3 event notifications to send new file arrival information

to SQS via SNS.
• Tilting Point uses the S3-SQS source to read the new data arriving in S3. The S3-

SQS source reads the new file names that arrived in S3 from SQS and uses that
information to read the actual file contents in S3. An example code below:

spark.readStream \

 .format(“s3-sqs”) \

 .option(“fileFormat”, “json”) \

 .option(“queueUrl”, ...) \

 .schema(...) \

 .load()

• Tilting Point’s structured streaming job then cleans up and transforms the data.
Based on the game data, the streaming job uses the foreachBatch API of Spark
streaming and writes to 30 different Delta Lake tables.

• The streaming job produces lots of small files. This affects performance of
downstream consumers. So, an optimize job runs daily to compact small files in
the table and store them as right file sizes so that consumers of the data have
good performance while reading the data from Delta Lake tables. Tilting Point
also runs a weekly optimize job for a second round of compaction. Architecture showing continuous data ingest into Delta Lake tables

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

74The Delta Lake Series — Complete Collection

The above Delta Lake ingestion architecture helps in the following ways:
• Incremental loading: The S3-SQS source incrementally loads the new files in S3.

This helps quickly process the new files without too much overhead in listing files.
• No explicit file state management: There is no explicit file state management

needed to look for recent files.
• Lower operational burden: Since we use S3 as a checkpoint between Firehose

and Structured Streaming jobs, the operational burden to stop streams and re-
process data is relatively low.

• Reliable ingestion: Delta Lake uses optimistic concurrency control to offer ACID
transactional guarantees. This helps with reliable data ingestion.

• File compaction: One of the major problems with streaming ingestion is tables
ending up with a large number of small files that can affect read performance.
Before Delta Lake, we had to set up a different table to write the compacted
data. With Delta Lake, thanks to ACID transactions, we can compact the files and
rewrite the data back to the same table safely.

• Snapshot isolation: Delta Lake’s snapshot isolation allows us to expose the
ingestion tables to downstream consumers while data is being appended by a
streaming job and modified during compaction.

• Rollbacks: In case of bad writes, Delta Lake’s Time Travel helps us roll back to a
previous version of the table.

In this section, we walked through Tilting Point’s use cases and how they do
streaming ingestion using Databricks’ S3-SQS source into Delta Lake tables
efficiently without too much operational overhead to make good quality data
readily available for analytics.

https://docs.databricks.com/delta/optimizations/isolation-level.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

75The Delta Lake Series — Complete Collection

As traditional pay TV continues to stagnate, content owners have embraced direct-
to-consumer (D2C) subscription and ad-supported streaming for monetizing their
libraries of content. For companies whose entire business model revolved around
producing great content, which they then licensed to distributors, the shift to now
owning the entire glass-to-glass experience has required new capabilities, such as
building media supply chains for content delivery to consumers, supporting apps for
a myriad of devices and operating systems, and performing customer relationship
functions like billing and customer service.

With most services renewing on a monthly basis, subscription service operators need
to prove value to their subscribers at all times. General quality of streaming video
issues (encompassing buffering, latency, pixelation, jitter, packet loss and the blank
screen) have significant business impacts, whether it’s increased subscriber churn or
decreased video engagement.

When you start streaming, you realize there are so many places where breaks can
happen and the viewer experience can suffer. There may be an issue at the source in
the servers on-premises or in the cloud; in transit at either the CDN level or ISP level
or the viewer’s home network; or at the playout level with player/client issues. What
breaks at n x 104 concurrent streamers is different from what breaks at n x 105 or n
x 106. There is no pre-release testing that can quite replicate real-world users and
their ability to push even the most redundant systems to their breaking point as they

U S E C A S E # 3

Building a Quality of Service
Analytics Solution for Streaming
Video Services

https://nscreenmedia.com/us-tv-market-svod-exceed-pay-tv-2020/
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=112209
https://www.tvtechnology.com/opinions/why-buffering-remains-every-video-providers-worst-nightmare

76The Delta Lake Series — Complete Collection

channel surf, click in and out of the app, sign on from different devices simultaneously
and so on. And because of the nature of TV, things will go wrong during the most
important, high-profile events drawing the largest audiences. If you start receiving
complaints on social media, how can you tell if they are unique to that one user or
rather regional or a national issue? If national, is it across all devices or only certain
types (e.g., possibly the OEM updated the OS on an older device type, which ended up
causing compatibility issues with the client)?

Identifying, remediating and preventing viewer quality of experience issues becomes
a big data problem when you consider the number of users, the number of actions
they are taking and the number of handoffs in the experience (servers to CDN to ISP to
home network to client). Quality of Service (QoS) helps make sense of these streams
of data so you can understand what is going wrong, where and why. Eventually you
can get into predictive analytics around what could go wrong and how to remediate
it before anything breaks.

Databricks Quality of Service solution overview
The aim of this solution is to provide the core for any streaming video platform that
wants to improve their QoS system. It is based on the AWS Streaming Media Analytics
Solution provided by AWS Labs, which we then built on top of to add Databricks as
a Unified Data Analytics Platform for both the real-time insights and the advanced
analytics capabilities.

By using Databricks, streaming platforms can get faster insights by always
leveraging the most complete and recent data sets powered by robust and reliable
data pipelines. This decreases time to market for new features by accelerating
data science using a collaborative environment. It provides support for managing
the end-to-end machine learning lifecycle and reduces operational costs across
all cycles of software development by having a unified platform for both data
engineering and data science.

https://downdetector.com/
https://downdetector.com/
https://github.com/awslabs/aws-streaming-media-analytics
https://github.com/awslabs/aws-streaming-media-analytics
https://databricks.com/customers

77The Delta Lake Series — Complete Collection

Video QoS solution architecture
With complexities like low-latency monitoring alerts and highly scalable infrastructure
required for peak video traffic hours, the straightforward architectural choice was
the Delta Architecture — both standard big data architectures like Lambda and Kappa
Architectures have disadvantages around the operational effort required to maintain
multiple types of pipelines (streaming and batch) and lack support for a unified data
engineering and data science approach.

The Delta Architecture is the next-generation paradigm that enables all the data
personas in your organization to be more productive:
• Data engineers can develop data pipelines in a cost-efficient manner

continuously without having to choose between batch and streaming
• Data analysts can get near real-time insights and faster answers to their BI queries
• Data scientists can develop better machine learning models using more reliable data

sets with support for time travel that facilitates reproducible experiments and reports Delta Architecture using the “multi-hop” approach for data pipelines

78The Delta Lake Series — Complete Collection

Writing data pipelines using the Delta Architecture follows the best practices of
having a multi-layer “multi-hop” approach where we progressively add structure to
data: “Bronze” tables or Ingestion tables are usually raw data sets in the native format
(JSON, CSV or txt), “Silver” tables represent cleaned/transformed data sets ready for
reporting or data science, and “Gold” tables are the final presentation layer.

For the pure streaming use cases, the option of materializing the DataFrames in
intermediate Delta Lake tables is basically just a trade-off between latency/SLAs and
cost (an example being real-time monitoring alerts vs. updates of the recommender
system based on new content).

A streaming architecture can still be achieved while materializing DataFrames in Delta Lake tables

The number of “hops” in this approach is directly impacted by the number of consumers
downstream, complexity of the aggregations (e.g., Structured Streaming enforces
certain limitations around chaining multiple aggregations) and the maximization of
operational efficiency.

The QoS solution architecture is focused around best practices for data processing
and is not a full video-on-demand (VoD) solution — with some standard components
like the “front door” service Amazon API Gateway being avoided from the high-level
architecture in order to keep the focus on data and analytics.

79The Delta Lake Series — Complete Collection

Making your data ready for analytics
Both sources of data included in the QoS solution (application events and CDN logs)
are using the JSON format, great for data exchange — allowing you to represent
complex nested structures, but not scalable and difficult to maintain as a storage
format for your data lake / analytics system.

In order to make the data directly queryable across the entire organization, the
Bronze to Silver pipeline (the “make your data available to everyone” pipeline) should
transform any raw formats into Delta Lake and include all the quality checks or data
masking required by any regulatory agencies.

High-level architecture for the QoS platform

80The Delta Lake Series — Complete Collection

Video applications events
Based on the architecture, the video application events are pushed directly to
Kinesis Streams and then just ingested to a Delta Lake append-only table without
any changes to the schema.

Using this pattern allows a high number of consumers downstream to process the
data in a streaming paradigm without having to scale the throughput of the Kinesis
stream. As a side effect of using a Delta Lake table as a sink (which supports optimize!),
we don’t have to worry about the way the size of the processing window will impact the
number of files in your target table — known as the “small files” issue in the big data world.

Both the timestamp and the type of message are being extracted from the JSON
event in order to be able to partition the data and allow consumers to choose the
type of events they want to process. Again combining a single Kinesis stream for
the events with a Delta Lake “Events” table reduces the operational complexity while
making things easier for scaling during peak hours.

Raw format of the app events

All the details are extracted from JSON for the Silver table

https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-optimize.html

81The Delta Lake Series — Complete Collection

CDN logs
The CDN logs are delivered to S3, so the easiest way to process them is the Databricks
Auto Loader, which incrementally and efficiently processes new data files as they
arrive in S3 without any additional setup.

 auto_loader_df = spark.readStream.format(“cloudFiles”) \

 .option(“cloudFiles.format”, “json”) \

 .option(“cloudFiles.region”, region) \

 .load(input_location)

 anonymized_df = auto_loader_df.select(‘*’, ip_

anonymizer(‘requestip’).alias(‘ip’))\

 .drop(‘requestip’)\

 .withColumn(“origin”, map_ip_to_location(col(‘ip’)))

 anonymized_df.writeStream \

 .option(‘checkpointLocation’, checkpoint_location)\

 .format(‘delta’) \

 .table(silver_database + ‘.cdn_logs’)

As the logs contain IPs — considered personal data under the GDPR regulations — the
“make your data available to everyone” pipeline has to include an anonymization step.
Different techniques can be used, but we decided to just strip the last octet from IPv4
and the last 80 bits from IPv6. On top, the data set is also enriched with information
around the origin country and the ISP provider, which will be used later in the Network
Operation Centers for localization.

82The Delta Lake Series — Complete Collection

Creating the Dashboard /
Virtual Network Operation Centers
Streaming companies need to monitor network performance and the user experience
as near real-time as possible, tracking down to the individual level with the ability to
abstract at the segment level, easily defining new segments such as those defined by
geos, devices, networks and/or current and historical viewing behavior.

For streaming companies that has meant adopting the concept of Network Operation
Centers (NOC) from telco networks for monitoring the health of the streaming
experience for their users at a macro level, flagging and responding to any issues
early on. At their most basic, NOCs should have dashboards that compare the current
experience for users against a performance baseline so that the product teams can
quickly and easily identify and attend to any service anomalies.

In the QoS solution we have incorporated a Databricks dashboard. BI tools can also
be effortlessly connected in order to build more complex visualizations, but based
on customer feedback, built-in dashboards are, most of the time, the fastest way to
present the insights to business users.

The aggregated tables for the NOC will basically be the Gold layer of our Delta
Architecture — a combination of CDN logs and the application events. Example of Network Operations Center dashboard

https://docs.databricks.com/notebooks/dashboards.html

83The Delta Lake Series — Complete Collection

The dashboard is just a way to visually package the results of SQL queries or Python
/ R transformation — each notebook supports multiple dashboards so in case of
multiple end users with different requirements we don’t have to duplicate the code —
as a bonus the refresh can also be scheduled as a Databricks job.

Visualization of the results of a SQL query

Loading time for videos (time to first frame) allows better understanding of the
performance for individual locations of your CDN — in this case the AWS CloudFront
Edge nodes — which has a direct impact in your strategy for improving this KPI —
either by spreading the user traffic over multi-CDNs or maybe just implementing a
dynamic origin selection in case of AWS CloudFront using Lambda@Edge.

84The Delta Lake Series — Complete Collection

Failure to understand the reasons for high levels of buffering — and the poor video
quality experience that it brings — has a significant impact on subscriber churn rate.
On top of that, advertisers are not willing to spend money on ads responsible for
reducing the viewer engagement — as they add extra buffering on top, so the profits
on the advertising business usually are impacted too. In this context, collecting as
much information as possible from the application side is crucial to allow the analysis
to be done not only at video level but also browser or even type / version of application.

On the content side, events for the application can provide useful information about
user behavior and overall quality of experience. How many people that paused a video
have actually finished watching that episode / video? What caused the stoppage: The
quality of the content or delivery issues? Of course, further analyses can be done by
linking all the sources together (user behavior, performance of CDNs /ISPs) to not only
create a user profile but also to forecast churn.

85The Delta Lake Series — Complete Collection

Creating (near) real-time alerts
When dealing with the velocity, volume and variety of data generated in video
streaming from millions of concurrent users, dashboard complexity can make it
harder for human operators in the NOC to focus on the most important data at the
moment and zero-in on root cause issues. With this solution, you can easily set up
automated alerts when performance crosses certain thresholds that can help the
human operators of the network as well as set off automatic remediation protocols
via a Lambda function. For example:

• If a CDN is having latency much higher than baseline (e.g., if it’s more than 10%
latency vs. baseline average), initiate automatic CDN traffic shifts.

• If more than [some threshold, e.g., 5%] of clients report playback errors, alert the
product team that there is likely a client issue for a specific device.

• If viewers on a certain ISP are having higher-than-average buffering and
pixelation issues, alert frontline customer representatives on responses and ways
to decrease issues (e.g., set stream quality lower).

From a technical perspective, generating real-time alerts requires a streaming
engine capable of processing data real time and publish-subscribe service to push
notifications.

Integrating microservices using Amazon SNS and Amazon SQS

The QoS solution implements the AWS best practices for integrating microservices
by using Amazon SNS and its integrations with Amazon Lambda (see below for the

updates of web applications) or Amazon SQS for other consumers. The custom for
each writer option makes the writing of a pipeline to send email notifications based
on a rule-based engine (e.g., validating the percentage of errors for each individual
type of app over a period of time) really straightforward.

 def send_error_notification(row):

 sns_client = boto3.client(‘sns’, region)

 error_message = ‘Number of errors for the App has exceeded the

threshold {}’.format(row[‘percentage’])

 response = sns_client.publish(

 TopicArn=,

 Message= error_message,

 Subject=,

 MessageStructure=‘string’)

 # Structured Streaming Job

 getKinesisStream(“player_events”)\

 .selectExpr(“type”, “app_type”)\

 .groupBy(“app_type”)\

 .apply(calculate_error_percentage)\

 .where(“percentage > {}”.format(threshold)) \

 .writeStream\

 .foreach(send_error_notification)\

 .start()

Sending email notifications using AWS SNS

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/introduction.html
https://docs.databricks.com/spark/latest/structured-streaming/foreach.html
https://docs.databricks.com/spark/latest/structured-streaming/foreach.html

86The Delta Lake Series — Complete Collection

On top of the basic email use case, the Demo Player includes three widgets updated
in real time using AWS AppSync: the number of active users, the most popular videos
and the number of users concurrently watching a video.

Updating the application with the results of real-time aggregations

The QoS solution is applying a similar approach — Structured Streaming and Amazon
SNS — to update all the values allowing for extra consumers to be plugged in using AWS
SQS. This is a common pattern when huge volumes of events have to be enhanced and
analyzed; pre-aggregate data once and allow each service (consumer) to make their
own decision downstream.

Next steps: machine learning
Manually making sense of the historical data is important but is also very slow. If
we want to be able to make automated decisions in the future, we have to integrate
machine learning algorithms.

As a Unified Data Platform, Databricks empowers data scientists to build better data
science products using features like Runtime for Machine Learning with built-in
support for Hyperopt / Horvod / AutoML or the integration with MLflow, the end-to-
end machine learning lifecycle management tool.

https://docs.databricks.com/applications/machine-learning/automl-hyperparam-tuning/index.html#hyperopt-overview
https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/product/automl-on-databricks

87The Delta Lake Series — Complete Collection

We have already explored a few important use cases across our customer base while
focusing on the possible extensions to the QoS solution.

Point-of-failure prediction and remediation
As D2C streamers reach more users, the costs of even momentary loss of service
increases. ML can help operators move from reporting to prevention by forecasting
where issues could come up and remediating before anything goes wrong (e.g.,
a spike in concurrent viewers leads to switching CDNs to one with more capacity
automatically).

Customer churn
Critical to growing subscription services is keeping the subscribers you have. By
understanding the quality of service at the individual level, you can add QoS as a
variable in churn and customer lifetime value models. Additionally, you can create
customer cohorts for those who have had video quality issues in order to test
proactive messaging and save offers.

Getting started with the Databricks streaming video
QoS solution
Providing consistent quality in the streaming video experience is table stakes at this
point to keep fickle audiences with ample entertainment options on your platform.
With this solution we have sought to create a quick start for most streaming video
platform environments to embed this QoS real-time streaming analytics solution in
a way that:
1. Scales to any audience size
2. Quickly flags quality performance issues at key parts of the distribution workflow
3. Is flexible and modular enough to easily customize for your audience and your

needs, such as creating new automated alerts or enabling data scientists to test
and roll out predictive analytics and machine learning

To get started, download the notebooks for the Databricks streaming video QoS
solution. For more guidance on how to unify batch and streaming data into a single
system, view the Delta Architecture webinar.

https://databricks.com/notebooks/QoS/index.html#00.config.html
https://databricks.com/notebooks/QoS/index.html#00.config.html
https://pages.databricks.com/201908-WB-Delta-Architecture-A-Step-Beyond-Lambda-Architecture_Reg.html

CHAPTER 05
Customer Use Cases
See how customers are using
Delta Lake to rapidly innovate

89The Delta Lake Series — Complete Collection

U S E C A S E # 1

As the shepherds of the National Health Services Directory (NHSD), Healthdirect
is focused on leveraging terabytes of data covering time-driven, activity-based
healthcare transactions to improve health care services and support. With
governance requirements, siloed teams and a legacy system that was difficult
to scale, they moved to Databricks. This boosted data processing for downstream
machine learning while improving data security to meet HIPAA requirements.

Spotlight on Healthdirect
Industry: Healthcare and life sciences

6x
Improvement in data processing

20M
Records ingested in minutes

Data quality and governance issues, silos, and the
inability to scale
Due to regulatory pressures, Healthdirect Australia set forth to improve overall data
quality and ensure a level of governance on top of that, but they ran into challenges
when it came to data storage and access. On top of that, data silos were blocking the
team from efficiently preparing data for downstream analytics. These disjointed data

Healthdirect Australia
Provides Personalized and Secure Online
Patient Care With Databricks

90The Delta Lake Series — Complete Collection

sources impacted the consistency of data reads, as data was oftentimes out-of-sync
between the various systems in their stack. The low-quality data also led to higher
error rates and processing inefficiencies. This fragmented architecture created
significant operational overhead and limited their ability to have a comprehensive
view of the patient.

Further, they needed to ingest over 1 billion data points due to a changing landscape
of customer demand such as bookings, appointments, pricing, eHealth transaction
activity, etc. — estimated at over 1TB of data.

“We had a lot of data challenges. We just couldn’t process efficiently enough. We
were starting to get batch overruns. We were starting to see that a 24-hour window
isn’t the most optimum time in which we want to be able to deliver healthcare data
and services,” explained Peter James, Chief Architect at Healthdirect Australia.

Ultimately, Healthdirect realized they needed to modernize their end-to-end process
and tech stack to properly support the business.

Modernizing analytics with Databricks and Delta Lake
Databricks provides Healthdirect Australia with a Unified Data Platform that simplifies
data engineering and accelerates data science innovation. The notebook environment
enables them to make content changes in a controlled fashion rather than having to
run bespoke jobs each time.

“Databricks has provided a big uplift for our teams and our data operations,” said
James. “The analysts were working directly with the data operations teams. They are
able to achieve the same pieces of work together within the same time frames that
used to take twice as long. They’re working together, and we’re seeing just a massive
acceleration in the speed at which we can deliver service.”

91The Delta Lake Series — Complete Collection

With Delta Lake, they’ve created logical data zones: Landing, Raw, Staging and Gold.
Within these zones, they store their data “as is,” in their structured or unstructured
state, in Delta Lake tables. From there, they use a metadata-driven schema and hold
the data within a nested structure within that table. What this allows them to do is
handle data consistently from every source and simplifies the mapping of data to the
various applications pulling the data.

Meanwhile, through Structured Streaming, they were able to convert all of their
ETL batch jobs into streaming ETL jobs that could serve multiple applications
consistently. Overall, the advent of Spark Structured Streaming, Delta Lake and the
Databricks Unified Data Platform provides significant architectural improvements
that have boosted performance, reduced operational overheads and increased
process efficiencies.

Faster data pipelines result in better patient-driven
healthcare
As a result of the performance gains delivered by Databricks and the improved data
reliability through Delta Lake, Healthdirect Australia realized improved accuracy of
their fuzzy name match algorithm from less than 80% with manual verification to 95%
and no manual intervention.

The processing improvements with Delta Lake and Structured Streaming allowed
them to process more than 30,000 automated updates per month. Prior to Databricks,
they had to use unreliable batch jobs that were highly manual to process the same
number of updates over a span of 6 months — a 6x improvement in data processing.

“Databricks delivered the time to market as well as the analytics and operational
uplift that we needed in order to be able to meet the new demands of the
healthcare sector.”

– Peter James, Chief Architect, Healthdirect Australia

92The Delta Lake Series — Complete Collection

They were also able to increase their data load rate to 1 million records per minute,
loading their entire 20 million record data set in 20 minutes. Before the adoption
of Databricks, this used to take more than 24 hours to process the same 1 million
transactions, blocking analysts from making swift decisions to drive results.

Last, data security, which was critical to meet compliance requirements, was greatly
improved. Databricks provides standard security accreditations like HIPAA, and
Healthdirect was able to use Databricks to meet Australia’s security requirements.
This yielded significant cost reductions and gave them continuous data assurance
by monitoring changes to access privileges like changes in roles, metadata-level
security changes, data leakage, etc.

“Databricks delivered the time to market as well as the analytics and operational
uplift that we needed in order to be able to meet the new demands of the healthcare
sector,” said James.

With the help of Databricks, they have proven the value of data and analytics and how
it can impact their business vision. With transparent access to data that boasts
well-documented lineage and quality, participation across various business and
analyst groups has increased — empowering teams to collaborate and more
easily and quickly extract value from their data with the goal of improving
healthcare for everyone.

93The Delta Lake Series — Complete Collection

Spotlight on Comcast
Industry: Media and entertainment

10x
Reduction in overall compute costs to process data

90%
Reduction in required DevOps resources to manage infrastructure

Reduced
Deployment times from weeks to minutes

As a global technology and media company connecting millions of customers to
personalized experiences, Comcast struggled with massive data, fragile data pipelines
and poor data science collaboration. With Databricks — leveraging Delta Lake and MLflow
— they can build performant data pipelines for petabytes of data and easily manage the
lifecycle of hundreds of models to create a highly innovative, unique and award-winning
viewer experience using voice recognition and machine learning.

Comcast
Uses Delta Lake and MLflow to
Transform the Viewer Experience

U S E C A S E # 2

94The Delta Lake Series — Complete Collection

Infrastructure unable to support data and ML needs
Instantly answering a customer’s voice request for a particular program while turning
billions of individual interactions into actionable insights, strained Comcast’s IT
infrastructure and data analytics and data science teams. To make matters more
complicated, Comcast needed to deploy models to a disjointed and disparate range
of environments: cloud, on-premises and even directly to devices in some instances.
• Massive data: Billions of events generated by the entertainment system and 20+

million voice remotes, resulting in petabytes of data that need to be sessionized
for analysis.

• Fragile pipelines: Complicated data pipelines that frequently failed and were
hard to recover. Small files were difficult to manage, slowing data ingestion for
downstream machine learning.

• Poor collaboration: Globally dispersed data scientists working in different
scripting languages struggled to share and reuse code.

• Manage management of ML models: Developing, training and deploying hundreds
of models was highly manual, slow and hard to replicate, making it difficult to scale.

• Friction between dev and deployment: Dev teams wanted to use the latest tools
and models while ops wanted to deploy on proven infrastructure.

95The Delta Lake Series — Complete Collection

Automated infrastructure, faster data
pipelines with Delta Lake
Comcast realized they needed to modernize their entire approach to analytics from
data ingest to the deployment of machine learning models to delivering new features
that delight their customers. Today, the Databricks Unified Data Platform enables
Comcast to build rich data sets and optimize machine learning at scale, streamline
workflows across teams, foster collaboration, reduce infrastructure complexity, and
deliver superior customer experiences.

• Simplified infrastructure management: Reduced operational costs through
automated cluster management and cost management features such as
autoscaling and spot instances.

• Performant data pipelines: Delta Lake is used for the ingest, data enrichment and
initial processing of the raw telemetry from video and voice applications and devices.

• Reliably manage small files: Delta Lake enabled them to optimize files for rapid
and reliable ingestion at scale.

• Collaborative workspaces: Interactive notebooks improve cross-team
collaboration and data science creativity, allowing Comcast to greatly accelerate
model prototyping for faster iteration.

• Simplified ML lifecycle: Managed MLflow simplifies the machine learning lifecycle
and model serving via the Kubeflow environment, allowing them to track and
manage hundreds of models with ease.

• Reliable ETL at scale: Delta Lake provides efficient analytics pipelines at scale
that can reliably join historic and streaming data for richer insights.

96The Delta Lake Series — Complete Collection

Delivering personalized experiences with ML
In the intensely competitive entertainment industry, there is no time to press the
Pause button. Armed with a unified approach to analytics, Comcast can now fast-
forward into the future of AI-powered entertainment — keeping viewers engaged and
delighted with competition-beating customer experiences.
• Emmy-winning viewer experience: Databricks helps enable Comcast to create

a highly innovative and award-winning viewer experience with intelligent voice
commands that boosts engagement.

• Reduced compute costs by 10x: Delta Lake has enabled Comcast to optimize data
ingestion, replacing 640 machines with 64 while improving performance. Teams
can spend more time on analytics and less time on infrastructure management.

• Less DevOps: Reduced the number of DevOps full-time employees required for
onboarding 200 users from 5 to 0.5.

• Higher data science productivity: Fostered collaboration between global data
scientists by enabling different programming languages through a single
interactive workspace. Also, Delta Lake has enabled the data team to use data at
any point within the data pipeline, allowing them to act more quickly in building
and training new models.

• Faster model deployment: Reduced deployment times from weeks to minutes as
operations teams deployed models on disparate platforms.

97The Delta Lake Series — Complete Collection

Banco Hipotecario — a leading Argentinian commercial bank — is on a mission
to leverage machine learning to deliver new insights and services that will delight
customers and create upsell opportunities. With a legacy analytics and data
warehousing system that was rigid and complex to scale, they turned to Databricks
to unify data science, engineering and analytics.

As a result of this partnership, they were able to significantly increase customer
acquisition and cross-sells while lowering the cost for acquisition, greatly impacting
overall customer retention and profitability.

Spotlight on Banco Hipotecario
Industry: Financial services

35%
Reduction in cost of acquisition
Technical use cases: Ingest and ETL, machine learning and SQL Analytics

Banco Hipotecario
Personalizes the Banking
Experience With Data and ML

U S E C A S E # 3

98The Delta Lake Series — Complete Collection

Legacy analytics tools are slow, rigid and
impossible to scale
Banco Hipotecario set forth to increase customer acquisition by reducing risk and
improving the customer experience. With data analytics and machine learning
anchoring their strategy, they hoped to influence a range of use cases from fraud
detection and risk analysis to serving product recommendations to drive upsell and
cross-sell opportunities and forecast sales.

Banco Hipotecario faced a number of the challenges that often come along with
outdated technology and processes: disorganized or inaccurate data; poor cross-
team collaboration; the inability to innovate and scale; resource-intensive workflows,
— the list goes on.

“In order to execute on our data analytics strategy, new technologies were needed
in order to improve data engineering and boost data science productivity,” said
Daniel Sanchez, Enterprise Data Architect at Banco Hipotecario. “The first steps we
took were to move to a cloud-based data lake, which led us to Azure Databricks
and Delta Lake.”

99The Delta Lake Series — Complete Collection

A unified platform powers the data lake
and easy collaboration
Banco Hipotecario turned to Databricks to modernize their data warehouse
environment, improve cross-team collaboration, and drive data science innovation.
Fully managed in Microsoft Azure, they were able to easily and reliably ingest massive
volumes of data, spinning up their whole infrastructure in 90 days. With Databricks’
automated cluster management capabilities, they are able to scale clusters on-
demand to support large workloads.

Delta Lake has been especially useful in bringing reliability and performance to Banco
Hipotecario’s data lake environment. With Delta Lake, they are now able to build
reliable and performant ETL pipelines like never before.

Meanwhile, performing SQL Analytics on Databricks has helped them do data
exploration, cleansing and generate data sets in order to create models, enabling the
team to deploy their first model within the first three months, and the second model
generated was rolled out in just two weeks.

At the same time, data scientists were finally able to collaborate, thanks to interactive
notebooks; this meant faster builds, training and deployment. And MLflow streamlined
the ML lifecycle and removed the overreliance on data engineering.

“Databricks gives our data scientists the means to easily create our own experiments
and deploy them to production in weeks, rather than months,” said Miguel Villalba,
Head of Data Engineering and Data Science.

100The Delta Lake Series — Complete Collection

An efficient team maximizes customer
acquisition and retention
Since moving to Databricks, the data team at Banco Hipotecario could not be happier,
as Databricks has unified them across functions in an integrated fashion.

The results of data unification and markedly improved collaboration and autonomy
cannot be overstated. Since deploying Databricks, Banco Hipotecario has increased
their cross-sell into new products by a whopping 90%, while machine learning has
reduced the cost of customer acquisition by 35%.

101The Delta Lake Series — Complete Collection

Viacom18 Media Pvt. Ltd. is one of India’s fastest-growing entertainment networks
with 40x growth over the past decade. They offer multi-platform, multigenerational
and multicultural brand experiences to 600+ million monthly viewers.

In order to deliver more engaging experiences for their millions of viewers, Viacom18
migrated from their Hadoop environment due to its inability to process data at scale
efficiently. With Databricks, they have streamlined their infrastructure management,
increased data pipeline speeds and increased productivity among their data teams.

Today, Viacom18 is able to deliver more relevant viewing experiences to their
subscribers, while identifying opportunities to optimize the business and drive
greater ROI.

Spotlight on Viacom18
Industry: Media and entertainment

26%
Increase in operational efficiency lowers overall costs

Viacom18
Migrates From Hadoop to Databricks to
Deliver More Engaging Experiences

U S E C A S E # 4

102The Delta Lake Series — Complete Collection

Growth in subscribers and terabytes of viewing data
push Hadoop to its limits
Viacom18, a joint venture between Network18 and ViacomCBS, is focused on
providing its audiences with highly personalized viewing experiences. The core
of this strategy requires implementing an enterprise data architecture that enables
the building of powerful customer analytics on daily viewer data. But with millions of
consumers across India, the sheer amount of data was tough to wrangle: They were
tasked with ingesting and processing over 45,000 hours of daily content on VOOT
(Viacom18’s on-demand video subscription platform), which easily generated 700GB
to 1TB of data per day.

“Content is at the heart of what we do,” explained Parijat Dey, Viacom18’s Assistant
Vice President of Digital Transformation and Technology. “We deliver personalized
content recommendations across our audiences around the world based on
individual viewing history and preferences in order to increase viewership and
customer loyalty.”

Viacom18’s data lake, which was leveraging on-premises Hadoop for operations,
wasn’t able to optimally process 90 days of rolling data within their management’s
defined SLAs, limiting their ability to deliver on their analytics needs, which impacted
not only the customer experience but also overall costs.

To meet this challenge head-on, Viacom18 needed a modern data warehouse with the
ability to analyze data trends for a longer period of time instead of daily snapshots. They
also needed a platform that simplified infrastructure by allowing their team to easily
provision clusters with features like auto-scaling to help reduce compute costs.

103The Delta Lake Series — Complete Collection

Rapid data processing for analytics
and ML with Databricks
To enable the processing power and data science capabilities they required, Viacom18
partnered with Celebal Technologies, a premier Salesforce, data analytics and big data
consulting organization based in India. The team at Celebal leveraged Azure Databricks
to provide Viacom18 with a unified data platform that modernizes its data warehousing
capabilities and accelerates data processing at scale.

The ability to cache data within Delta Lake resulted in the much-needed acceleration
of queries, while cluster management with auto-scaling and the decoupling of

storage and compute simplified Viacom18’s infrastructure management and
optimized operational costs. “Delta Lake has created a streamlined approach to
the management of data pipelines,” explained Dey. “This has led to a decrease in
operational costs while speeding up time-to-insight for downstream analytics and
data science.”

The notebooks feature was an unexpected bonus for Viacom18, as a common workspace
gave data teams a way to collaborate and increase productivity on everything from
model training to ad hoc analysis, dashboarding and reporting via PowerBI.

104The Delta Lake Series — Complete Collection

Leveraging viewer data to power personalized
viewing experiences
Celebal Technologies and Databricks have enabled Viacom18 to deliver innovative
customer solutions and insights with increased cross-team collaboration and
productivity. With Databricks, Viacom18’s data team is now able to seamlessly
navigate their data while better serving their customers.

“With Databricks, Viacom18’s engineers can now slice and dice large volumes of data
and deliver customer behavioral and engagement insights to the analysts and data
scientists,” said Dey.

In addition to performance gains, the faster query times have also lowered the overall
cost of ownership, even with daily increases in data volumes. “Azure Databricks has
greatly streamlined processes and improved productivity by an estimated 26%,”
concluded Dey.

Overall, Dey cites the migration from Hadoop to Databricks has delivered significant
business value — reducing the cost of failure, accelerating processing speeds at
scale, and simplifying ad hoc analysis for easier data exploration and innovations that
deliver highly engaging customer experiences.

What’s
next?

© Databricks 2021. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

Now that you understand Delta Lake, it may be time to take a look
at some additional resources.

Do a deep dive into Delta Lake >
• Getting Started With Delta Lake Tech Talk Series
• Diving Into Delta Lake Tech Talk Series
• Visit the site for additional resources

Try Databricks for free >
Learn more >

http://www.apache.org/
https://databricks.com/discover/getting-started-with-delta-lake-tech-talks
https://databricks.com/discover/diving-into-delta-lake-talks
https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/try-databricks
https://pages.databricks.com/delta-lake-open-source-reliability-for-data-lakes-reg.html

	What is Delta Lake?
	Here’s what you’ll find inside
	Fundamentals & Performance
	The Fundamentals of Delta Lake: Why Reliability and Performance Matter
	Challenges with data lakes
	Delta Lake’s key functionalities

	Unpacking the Transaction Log
	Dealing with multiple concurrent reads and writes
	Implementing atomicity to ensure
operations complete fully
	Time travel, data lineage and debugging

	How to Use Schema Enforcement and Evolution
	Understanding table schemas
	How does schema enforcement work?
	What is schema enforcement?
	How does schema evolution work?
	How is schema enforcement useful?
	What is schema evolution?
	How is schema evolution useful?
	Summary

	Delta Lake
DML Internals
	Delta Lake DML: UPDATE
	UPDATE + Delta Lake time travel = Easy debugging
	UPDATE: Performance tuning tips
	UPDATE: Under the hood

	Delta Lake DML: DELETE
	DELETE + VACUUM: Cleaning up old data files
	DELETE: Under the hood
	DELETE: Performance tuning tips
	Delta Lake DML: MERGE
	Here’s how an upsert works:
	MERGE: Performance tuning tips
	MERGE: Under the hood

	How Delta Lake Quickly
Processes Petabytes With Data Skipping and Z-Ordering
	Exploring the details
	Using data skipping and Z-Order clustering

	Features
	Why use MERGE With Delta Lake?
	When are upserts necessary?
	Introducing MERGE in Delta Lake
	Why upserts into data lakes have
traditionally been challenging
	Applying change data from databases
	Simplifying use cases with MERGE
	Deleting data due to GDPR

	Updating session information from streaming pipelines
	How to start using Delta Lake
	Loading and saving our Delta Lake data
	Delete our flight data
	In-place conversion to Delta Lake
	Merge our flight data
	Update our flight data
	View table history
	Clean up old table versions with vacuum
	Travel back in time with table history
	Common challenges with changing data
	Working with Time Travel
	1. Using a timestamp
	Scala syntax
	Python syntax
	SQL syntax

	2. Using a version number
	Python syntax
	SQL syntax
	Scala syntax

	Audit data changes
	Reproduce experiments and reports
	Rollbacks
	Pinned view of a continuously updating
Delta Lake table across multiple downstream jobs
	Queries for time series analytics made simple

	Easily Clone Your Delta Lake
for Testing, Sharing and ML
Reproducibility
	Shallow clones
	What are clones?
	Deep clones
	Staging major changes to a production table
	Testing and experimentation with a production table
	Where do clones help?
	Machine learning result reproducibility
	Data migration
	Data sharing
	Data archiving
	How can I use it?
	Looks awesome! Any gotchas?

	Enabling Spark SQL DDL
and DML in Delta Lake on
Apache Spark 3.0
	Support for SQL DDL commands
to define tables in the Hive metastore
	Create or replace tables
	 Explicitly alter the table schema

	Support for SQL Insert, Delete, Update and Merge
	Automatic and incremental Presto/Athena manifest generation
	Configuring your table through table properties
	Support for adding user-defined metadata
in Delta Lake table commits
	Other highlights

	Lakehouse
	What Is a
Lakehouse?
	A lakehouse combines the best elements
of data lakes and data warehouses
	From BI to AI
	Some early examples

	Diving Deep Into the
Inner Workings of the Lakehouse and Delta Lake
	1. Data lakes
	2. Custom storage engines
	3. Lakehouse
	In the research paper, the authors explain:

	Delta Engine
	Scaling execution performance
	Announcing Delta Engine for
high-performance query execution
	Getting started with Delta Engine

	Understanding

	Streaming
	How Delta Lake Solves Common Pain Points in Streaming
	Data lake pain points
	Data warehouse pain points
	How Delta Lake on Databricks solves these issues

	Simplifying Streaming Stock Data Analysis Using Delta Lake
	Implement your streaming
stock analysis solution with Delta Lake
	Analyze streaming stock data in real time

	How Tilting Point Does Streaming Ingestion Into Delta Lake
	How data flows and associated challenges
	Leveraging Structured Streaming with blob store as
	source and Delta Lake tables as sink

	Building a Quality of Service Analytics Solution for Streaming Video Services
	Databricks Quality of Service solution overview
	Video QoS solution architecture
	Making your data ready for analytics
	Video applications events
	CDN logs

	Creating the Dashboard /
Virtual Network Operation Centers
	Creating (near) real-time alerts
	Next steps: machine learning
	Customer churn
	Point-of-failure prediction and remediation

	Getting started with the Databricks streaming video QoS solution

	Customer Use Cases
	Healthdirect Australia
	Data quality and governance issues, silos, and the inability to scale
	Modernizing analytics with Databricks and Delta Lake
	Faster data pipelines result in better patient-driven healthcare

	Comcast
	Infrastructure unable to support data and ML needs
	Automated infrastructure, faster data
pipelines with Delta Lake
	Delivering personalized experiences with ML

	Banco Hipotecario
	Legacy analytics tools are slow, rigid and
impossible to scale
	A unified platform powers the data lake
and easy collaboration
	An efficient team maximizes customer
acquisition and retention

	Viacom18
	Growth in subscribers and terabytes of viewing data push Hadoop to its limits
	Rapid data processing for analytics
and ML with Databricks
	Leveraging viewer data to power personalized viewing experiences

	What's next?

