メインコンテンツへジャンプ
<
ページ 5
>

大手金融機関がデータブリックスを採用したワケは

October 12, 2023 Hisae Inoue による投稿 in Databricks ブログ
去る6月28日、サンフランシスコで開催されたDATA+AI SUMMITにて、「APJ Partner Champion of the Year」を受賞したDatabricks Champion、NTTデータの齋藤が登壇いたしました。 NTTデータのData+AI Summit参加のレポートはこちら Data and AI Summit 2023 - Databricks 現地レポート(6/27 Partner Summit) - Qiita 今回のセッションでは、大手金融機関であるNTTデータのお客様が、データとAIを活用したデータ分析へと進化していく際、数あるサービスの中から、プラットフォームとして、データブリックスを採用された経緯や、基盤構築の際に苦労したポイントなどを紹介しています。お客様の既存のプラットフォームがどのような課題を抱え、データブリックスにどのような期待を持って導入されたのか。同じような課題をお持ちの企業様に参考にしていただければと思います。...

集まれ!Legendary Heroes of DATA + AI !! Vol 5

August 9, 2023 Hisae Inoue による投稿 in Databricks ブログ
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 5として、前回のVol4 に引き続き 株式会社ナレッジコミュニケーション様 から 山川 将也 様 をご紹介します。 —- 以前にご紹介したLegendary...

集まれ!Legendary Heroes of DATA + AI !! Vol 4 

June 29, 2023 Hisae Inoue による投稿 in Databricks ブログ
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。前回のポストから早5ヶ月。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 4として、 株式会社ナレッジコミュニケーション 小山 翼 様 をご紹介します。 —- 以前にご紹介したLegendary Heroes of...

Databricksで構築: 最新のソフトウェア製品でデータとAIのイノベーションを促進する

May 26, 2023 Victor Chang による投稿 in データ戦略
Original: Built on Databricks: Fueling Data and AI innovation in modern software products 翻訳: junichi.maruyama AIの時代が到来しています。すべての製品メーカーは、新しいデータとAIの能力をどのように活用するかを自問しなければ、その製品は生き残れないでしょう。従来の説明的な分析は、テーブルステークスです。最新のアプリケーションは、ユーザーの期待に応えるために、リアルタイムの洞察とAI主導のアクションを取り入れる必要があります。 クラウドは、ソフトウェア・アプリケーションの設計と運用を著しく複雑にする、目まぐるしく変化するデータスタックの選択肢を可能にしました。ベスト・オブ・ブリードのアプローチをとる製品開発者は、あっという間に互換性のない複数のデータサイロをつなぎ合わせ、管理することになります。開発者の生産性は低下し、データメンテナンスのコストは制御不能に陥ります。 Abnormal Security の

エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第5回:情報に基づいたビルドと購入の意思決定

Original : The Executive’s Guide to Data, Analytics and AI Transformation, Part 5: Make informed build vs. buy decisions translate by junichi.maruyama データおよびAIトランスフォーメーション戦略の重要な要素として、データエコシステムのどのコンポーネントを社内のエンジニアリングチームが構築し、どのコンポーネントをベンダーとの関係を通じて購入するかを決定することが挙げられます。エンジニアリング・チーム内では、「ビルダー」アプローチを取ることが重視されるようになってきています。つまり、エンジニアリング・チームは、ベンダー製品に依存するのではなく、自社で独自のソリューションを開発することを好むのです。...