メインコンテンツへジャンプ
<
ページ 19
>

時系列予測ライブラリ Prophet と Spark との連携

1. 時系列予測と Prophet 時系列予測は、周期性や季節性変動がある事象に対して予測を行います。例えば、ある商品の毎月の売り上げを考えると、商品の特性で夏に売り上げが上がり、また、週末や休日前になると多く売れるなど、さまざまな季節性、周期性要因が売り上げに関与してきます。時系列予測では、こうした季節性、周期性要因をうまくモデル化することが求められます。 Prophet は、こうした時系列予測のためのオープンソースライブラリです。Facebook 社の Core Data Science チームが開発・リリースしており、年毎、週毎、日毎の周期性に加え、休日の影響などを考慮して非線形な傾向を持つ時系列データをシンプルにモデル化できるという特長があります。さらに、異常値や欠損データの扱いにも強く、また、人間が理解しやすいパラメタやドメイン知識などを加えることで、モデルの精度を向上させる機能も備えています。 Prophet は、R および Python で利用可能です。今回は、Python を使用した Prophe

Terraform による Databricks ワークスペースの環境構築(AWS 編)

September 29, 2021 Masahiko Kitamura による投稿 in チュートリアル
Databricks ワークスペースは、1 つの独立した Databricks 環境を提供します。 そのため、要件によっては複数のワークスペースを同時に作成・運用するケースもあります。 こうした状況では、Databricks ワークスペースを Code として管理(IaC)し、自動化することで運用がスムーズになります。 Databricks では、運用現場で求められる機能をツールとして提供する Labs Project の一環で、 Databricks Terraform Provider を公開しています。 このドキュメントでは、Terraform を用いて AWS 上に...

臨床データによる腫瘍学の知見抽出に NLP を活用

このブログで参照しているソリューションアクセラレータのノートブックは、 オンライン でご参照いただくか、ノートブックを ダウンロード してお使いの Databricks アカウントにインポートすることで、すぐにご利用いただけます。 米国における 死亡原因 および疾病原因の第 1 位は悪性腫瘍(がん)です。その数は驚異的で、今年、米国では新たに診断される がん患者は約 200 万人 になると予想されています。また、米国における医療費は、悪性腫瘍(がん)に関連するものが大部分を占めており、その額は、2020 年で 2,000 億ドルを超えると推定されています。このため、バイオ医薬品業界では、がん治療のための創薬に特に注力しています。2019 年、2020 年だけでも、FDA によって およそ...

データレイクハウスによるリアルタイムPOS分析

翻訳:Saki Kitaoka. Original Blog Link 製品供給の減少や倉庫のキャパシティの低下といったサプライチェーンの混乱に加え、 シームレスなオムニチャネル 体験に対する消費者の期待が急速に変化していることから、小売企業は自社のオペレーションを管理するためのデータ活用方法を見直す必要に迫られています。 パンデミック(世界的大流行)以前は、 小売企業の71% が、オムニチャネル目標を達成するための最大の障害として、在庫のリアルタイム可視性の欠如を挙げていました。パンデミックは、 オンラインと店舗を統合したエクスペリエンスへの需要を高める だけでなく、正確な商品の在庫状況を提示し、注文の変更を即座に管理しなければならないというプレッシャーを小売企業に与えることになりました。 リアルタイムの情報 へのアクセスを向上させることが、新たな時代の消費者の要求に応える鍵となります。 このブログでは、小売業におけるリアルタイムデータの必要性と、POSデータのリアルタイムストリーミングをデータレイクハウスで大

外部から Databricks 上の MLflow を使用する

September 2, 2021 Masahiko Kitamura による投稿 in チュートリアル
MLOps を効果的に実施するためのフレームワークである MLFlow はあらゆる環境での機械学習を一元的に管理することが可能です。Databricks ではこの MLflow をマネージドサービスとして提供しており、Databricks 上での機械学習はもちろん、Databricks 環境以外での機械学習についても連携することが可能です。 この記事では、 Databricks の外部環境(ローカル PC 上など)からワークスペース内の MLflow を使用する方法について説明します。 以下のステップで実行していきます Databricks ワークスペースに MLflow の experiment を作成する...