メインコンテンツへジャンプ
<
ページ 25
>

Facebook Prophet と Apache Spark による高精度で大規模な時系列予測・分析とは

Databricks の時系列予測・解析 Notebook を試してみる 時系列予測・分析技術の進展により、小売業における需要予測の信頼性は向上しています。しかし、より正確なインベントリ管理を実現したい企業にとっては、予測の精度とタイミングが課題となっています。従来のソリューションにおいては拡張性や正確性の面で制約がありましたが、 Apache Spark™ と Facebook Prophet の活用によってこれらの課題を克服する企業が増えてきています。 To see this solution for Spark 3.0, please read the post here...

データブリックスを活用した大規模な地理空間情報・ジオデータの処理と分析

December 5, 2019 Nima RazaviMichael Johns による投稿 in エンジニアリングのブログ
近年のテクノロジーの進化と統合により、リアルタイムで正確な地理空間情報・ジオデータを活用した市場が活性化しています。地理空間情報・ジオデータは日々、数十億ものハンドヘルドデバイスや IoT 機器、航空機や人工衛星に搭載された何千ものリモートセンシングプラットフォームから、数百エクサバイト生成されています。このような地理空間ビッグデータの拡大に、近年の機械学習の進展が加わり、業界ではこれを活用した新製品やサービスの開発が進められています。 図の説明:地理空間情報・ジオデータによるマップは、災害対策、防衛・インテリジェンス、インフラ事業、医療サービスなど、多くの分野で活用されている。 企業における地理空間情報・ジオデータの活用代表例として、ドローンを利用したマッピングや現地調査などのサービス提供があります。(参考: 「インテリジェントクラウドとインテリジェントエッジの発展」 )。地理空間データの活用で急速な成長を遂げているもう1つの産業は、自動運転車です。スタートアップ企業に加え、既存企業も車載センサーから豊富なコン

Delta Lake でのスキーマ(schema)DB の適用・展開とは

September 24, 2019 Burak YavuzBrenner Heintz による投稿 in Databricks ブログ
データブリックスの Notebook シリーズを試す データは常に進化し、蓄積されていきます。私たち人間の日々の経験と似ているかもしれません。私たちは、自身の周りの世界の変化についていくために、常に新しいデータを取り込み、認識し、ときにはその中から新たな概念や解釈を得ます。このような認識モデルは、まさにテーブルのスキーマそのものです。どちらも、新しく得る情報の分類と処理のしかたを決める役割を持っています。 データベースにおけるスキーマとは : そもそも「スキーマ(schema)」とは、日本人にとっても馴染みのある「スキーム(scheme)」という言葉の派生語です。計画や図などの意味を持ち、データベース関連だけでなく、哲学や心理学で使われている言葉でもあります。この記事で説明するデータベーススキーマ(DBスキーマ)とは、簡単に言えばデータベースの構造や整理の仕方のことです。細かな定義は、データベースの種類や会社によって異なりますので、今回は Databricks の次世代型データレイク・データウェアハウスである、D

Delta Lake を深堀り:トランザクションログの解析

August 21, 2019 Burak YavuzMichael ArmbrustBrenner Heintz による投稿 in Databricks ブログ
トランザクションログは、ACIDトランザクション、スケーラブルなメタデータ処理、タイムトラベルなど、Delta Lake の最も重要な機能の多くに共通する要素であるため、Delta Lake を理解するうえで重要な鍵となります。この記事では、Delta Lake のトランザクションログとは何か、ファイルレベルでどのように動作するのか、そして、複数の同時読み取りと書き込みの問題に対してどのようにエレガントなソリューションを提供するのかを探ります。 Delta Lake のトランザクションログとは Delta Lakeトランザクションログ(DeltaLog とも呼ばれる)は、Delta Lake テーブルで実行された全てのトランザクションの記録で、その開始以来、順番に記録されています。 トランザクションログの目的 シングルソースオブトゥルース Delta Lake は Apache Spark™ 上に構築されており、あるテーブルの複数のリーダーやライターが同時にテーブル上で作業することを可能にしています。ユーザーに常

機械学習モデル、決定木(ディシジョン・ツリー)による分析を活用した金融詐欺検知の大規模展開

Databricks の Notebook を試してみる 人工知能(AI)を活用した金融不正行為検知の大規模展開は、いかなるユースケースにおいても容易なことではありません。膨大の履歴データの取捨選択、絶えず進化する機械学習と深層学習技術の複雑さ、不正行為の実例の少なさなどが、不正行為パターンの検知を困難にしています。金融サービス業界においては、セキュリティに対する懸念の高まりや、不正行為がどのように特定されたかを説明することの重要性が加わり、複雑さがさらに増大しています。 一般的に、検知パターンを作成するために、まずはドメインエキスパートが不正行為者が行うであろう行為を想定して一連のルールを作成します。ワークフローに金融詐欺検知の専門家を含めて、特定の動作に関する要件をまとめる場合もあります。その後、データサイエンティストは、利用可能なデータのサブサンプルを取得し、これらの要件と、場合によっては既存の金融不正事例を参照して、深層学習または機械学習アルゴリズムのセットを選択します。そして、データエンジニアが、この検