メインコンテンツへジャンプ
<
ページ 21
>

Azure 環境でのモダン IIoT 分析 - Part 3

August 20, 2020 Samir GuptaLana KoprivicaHubert Duan による投稿 in 製品
モダン IIoT(産業用 IoT)アプリケーションのための Azure データ分析に関するブログを 3 部構成でお届けしています。前回の Part 2 では、フィールドデバイスからリアルタイムの IIoT データを Azure に取り込み、データレイク上で直接実行する複雑な時系列処理について解説しました。Part 3 となる今回は、機械学習を活用した予測メンテナンスで風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コストを最小限に抑え、利益を最大化する手法を解説します。 モデルのトレーニングによって得られた結果とそれを視覚化したものは、以下のような Power BI レポートに表示されます。 下の図は、エンドツーエンドのアーキテクチャを示したものです。 機械学習:出力と残存耐用年数の最適化 風力タービンのような産業用資産のユーティリティ、耐用期間、運用効率における最適化は、収益とコストに多くのメリットをもたらします。このブログでは、風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コスト

Delta Engine の概要

本日、Databricks は Delta Engine を発表しました。Delta Engine は、Apache Spark 完全互換のベクトル化クエリエンジンで、最新の CPU アーキテクチャに対応し、Databricks Runtime 7.0 に含まれている Spark 3.0 のクエリオプティマイザおよびキャッシング性能の最適化機能を連携させます。その相乗効果により、データレイク、特に Delta Lake で実現されたデータレイクでのクエリ性能が大幅に高速化され、 レイクハウス アーキテクチャの採用やスケーリングが容易になります。 実行性能のスケーリング...

Apache Spark 3.0 概要|Python API の強化・PySpark API の拡充など新機能搭載

Apache Spark TM 3.0.0 が Databricks Runtime 7.0 で利用できるようになりました。Spark 3.0.0 はオープンソースコミュニティでの多くのコントリビュートが結実したものです。3,400 以上のパッチが含まれ、Python API および ANSI SQL の機能拡充に加え、開発や調査が行いやすくなるような工夫が施されています。オープンソースプロジェクトとして 10 年目を迎え、多くの参加者の意見と多様なユースケースに応え続けてきた結果が反映されています。 Apache Spark 3.0 の主な新機能...

MLflow モデルレジストリをエンタープライズ機能に拡張

Databricks の MLflow モデルレジストリ にエンタープライズレベルの新機能が追加されました。 Databricks の統合分析プラットフォーム をご利用いただいている場合、MLflow モデルレジストリはデフォルトで有効になります。 このブログでは、モデル管理を一元化するハブとしての MLflow モデルレジストリのメリットをご紹介し、組織内のデータチームによるモデル共有やアクセス制御、モデルレジストリ API を活用した統合や検証について解説します。 MLflow によるハブの一元化が、モデルライフサイクル管理のコラボレーションを可能に MLflow には、実験の一部としての メトリクス 、 パラメータ 、 アーティファクトをトラッキングする機能...

COVID-19 のデータセットが データブリックスで利用可能に ― データコミュニティによる貢献

2020年4月14日初稿、2020年4月21日更新 新型コロナウイルス感染症(COVID-19)の感染拡大による混乱の中、データエンジニアやデータサイエンティストの多くが「データコミュニティとして何ができるだろうか」と自問し続けています。データコミュニティは、この短期間で実際に大きな貢献をしており、その代表例として、 米国ジョンズ・ホプキンス大学のシステム科学工学センター(CSSE)が提供するデータリポジトリ が挙げられます。このデータセットは、COVID-19(2019-nCoV)について最も広く利用されているものの1つです。次のGIF動画は、3月22日から4月14日にかけての検査確定症例(郡地域)と死亡者(円で表現)の比例数を視覚的に示しています。 他にも、病原体の進化をリアルタイムで追跡できる 新型コロナウイルスのゲノム情報 などの例があります(マウスのクリックで 感染と系統が再生 を再生します)。 病院からのリソース使用率のモデリングの有力な例には、 ワシントン大学保健指標評価研究所(IHME) によるC

データレイクとデータウェアハウスとは?それぞれの強み・弱みと次世代のデータ管理システム「データレイクハウス」を解説

Databricks では近年、独立した新しいデータ管理のためのオープンアーキテクチャである「 データレイクハウス 」を利用する多くのユースケースを見てきました。今回は、この新しいアーキテクチャと、かつてのアプローチであるデータウェアハウス(DWH: Data Warehouse)、データレイク(Data Lake)それぞれと比較して優れている点について解説します。 データウェアハウス(DWH)とは データウェアハウス(DWH)とは、膨大な量のデータを利用者の目的に応用しやすくするため、整理・格納する管理システムのことを指します。意思決定支援や BI(ビジネスインテリジェンス)アプリケーションにおいて広く利用されてきており、これには 長い歴史 があります。データウェアハウスの技術は、1980 年代後半の登場以来進化を続け、MPP アーキテクチャなどの並列処理技術の進歩によって、より大規模なデータ処理が可能なシステムがもたらされました。しかし、データウェアハウスには、エクセルで作成されたような構造化データ(あらかじ

Facebook Prophet と Apache Spark による高精度で大規模な時系列予測・分析とは

Databricks の時系列予測・解析 Notebook を試してみる 時系列予測・分析技術の進展により、小売業における需要予測の信頼性は向上しています。しかし、より正確なインベントリ管理を実現したい企業にとっては、予測の精度とタイミングが課題となっています。従来のソリューションにおいては拡張性や正確性の面で制約がありましたが、 Apache Spark™ と Facebook Prophet の活用によってこれらの課題を克服する企業が増えてきています。 To see this solution for Spark 3.0, please read the post here...

データブリックスを活用した大規模な地理空間情報・ジオデータの処理と分析

December 5, 2019 Nima RazaviMichael Johns による投稿 in エンジニアリングのブログ
近年のテクノロジーの進化と統合により、リアルタイムで正確な地理空間情報・ジオデータを活用した市場が活性化しています。地理空間情報・ジオデータは日々、数十億ものハンドヘルドデバイスや IoT 機器、航空機や人工衛星に搭載された何千ものリモートセンシングプラットフォームから、数百エクサバイト生成されています。このような地理空間ビッグデータの拡大に、近年の機械学習の進展が加わり、業界ではこれを活用した新製品やサービスの開発が進められています。 図の説明:地理空間情報・ジオデータによるマップは、災害対策、防衛・インテリジェンス、インフラ事業、医療サービスなど、多くの分野で活用されている。 企業における地理空間情報・ジオデータの活用代表例として、ドローンを利用したマッピングや現地調査などのサービス提供があります。(参考: 「インテリジェントクラウドとインテリジェントエッジの発展」 )。地理空間データの活用で急速な成長を遂げているもう1つの産業は、自動運転車です。スタートアップ企業に加え、既存企業も車載センサーから豊富なコン

Delta Lake でのスキーマ(schema)DB の適用・展開とは

September 24, 2019 Burak YavuzBrenner Heintz による投稿 in Databricks ブログ
データブリックスの Notebook シリーズを試す データは常に進化し、蓄積されていきます。私たち人間の日々の経験と似ているかもしれません。私たちは、自身の周りの世界の変化についていくために、常に新しいデータを取り込み、認識し、ときにはその中から新たな概念や解釈を得ます。このような認識モデルは、まさにテーブルのスキーマそのものです。どちらも、新しく得る情報の分類と処理のしかたを決める役割を持っています。 データベースにおけるスキーマとは : そもそも「スキーマ(schema)」とは、日本人にとっても馴染みのある「スキーム(scheme)」という言葉の派生語です。計画や図などの意味を持ち、データベース関連だけでなく、哲学や心理学で使われている言葉でもあります。この記事で説明するデータベーススキーマ(DBスキーマ)とは、簡単に言えばデータベースの構造や整理の仕方のことです。細かな定義は、データベースの種類や会社によって異なりますので、今回は Databricks の次世代型データレイク・データウェアハウスである、D

Delta Lake を深堀り:トランザクションログの解析

August 21, 2019 Burak YavuzMichael ArmbrustBrenner Heintz による投稿 in Databricks ブログ
トランザクションログは、ACIDトランザクション、スケーラブルなメタデータ処理、タイムトラベルなど、Delta Lake の最も重要な機能の多くに共通する要素であるため、Delta Lake を理解するうえで重要な鍵となります。この記事では、Delta Lake のトランザクションログとは何か、ファイルレベルでどのように動作するのか、そして、複数の同時読み取りと書き込みの問題に対してどのようにエレガントなソリューションを提供するのかを探ります。 Delta Lake のトランザクションログとは Delta Lakeトランザクションログ(DeltaLog とも呼ばれる)は、Delta Lake テーブルで実行された全てのトランザクションの記録で、その開始以来、順番に記録されています。 トランザクションログの目的 シングルソースオブトゥルース Delta Lake は Apache Spark™ 上に構築されており、あるテーブルの複数のリーダーやライターが同時にテーブル上で作業することを可能にしています。ユーザーに常