メインコンテンツへジャンプ
<
ページ 29
>

Unity Catalogを通じたデルタシェアリングで構造化ストリーミングを使う

Original : Using Structured Streaming with Delta Sharing in Unity Catalog 翻訳: junichi.maruyama この度、Azure、AWS、GCPにおいて、Structured StreamingをDelta Sharingで使用するためのサポートが一般提供(GA)されたことをお知らせします!この新機能により、Databricks Lakehouse Platform上のデータ受信者は、 Unity Catalog を通じて共有されたDelta Tableからの変更をストリーミングできるようになります。 データプロバイダーは、この機能を活用することで、Data-as-a-Service...

Unity Catalogにおけるデータ権限モデルとアクセス制御のためのヒッチハイカーズガイド

The Hitchhiker's Guide to data privilege model and access control in Unity Catalog 翻訳: junichi.maruyama データの量、速度、多様性が増すにつれ、組織は、中核となるビジネス成果を適切に満たすために、確固たるデータガバナンスの実践にますます頼るようになっています。 Unity Catalog は、Databricks Lakehouseを支えるデータとAIのためのきめ細かなガバナンス・ソリューションです。データアクセスを管理・監査するための一元的なメカニズムを提供することで、企業のデータ資産のセキュリティとガバナンスを簡素化することができます。 Unity Catalogがファイル、テーブルの権限モデルを統一し、すべての言語をサポートするようになる以前、お客様は レガシーワークスペースレベルのテーブルACL(TACL)...

新しいナビゲーションUIで目的のものを見つけましょう

Original: Find what you seek with the new navigation UI 翻訳: saki.kitaoka Databricksの新しいUIがリリースされ、ナビゲーションがより簡単になります。 顧客はよりシンプルなナビゲーションを求めています。 Databricksでは、顧客中心の文化があります。ユーザーからのフィードバックを真摯に受け止め、Databricksでのナビゲーション経験の改善を求めています。過去数か月間、多くの顧客と共に問題や改善されたナビゲーション経験を理解しました。 ユーザーはタスクごとにクリック数を減らしたい 話し合いを通じて、ナビゲーション改善に関連する2つの主題が見られました。まず、ワークスペース内でA地点からB地点への移動を容易にしたいとの要望がありました。経験豊富なユーザーや新規ユーザーにとって、目的地までのクリック数が多すぎる場合、時間がかかります。そのため、上部に統合検索を配置し、よく使われるタスクのための「はじめに」セクションを再設計しました

Databricks SQLのキャッシングを理解する: UIキャッシュ、リザルトキャッシュ、ディスクキャッシュ

Original: Understanding Caching in Databricks SQL: UI, Result, and Disk Caches 翻訳: junichi.maruyama キャッシングは、同じデータを何度も再計算またはフェッチする必要性を回避することで、データウェアハウスシステムのパフォーマンスを向上させるために不可欠な技術です。Databricks SQLでは、キャッシングによってクエリの実行を大幅に高速化し、ウェアハウスの使用量を最小限に抑えることができるため、コストの削減とリソースの効率的な利用が可能になります。 この記事では、キャッシングの利点を探り、DBSQLの3種類のキャッシング:ユーザー インターフェイス キャッシュ、リザルトキャッシュ(ローカルおよびリモート)、ディスク キャッシュ(旧デルタ キャッシュ)を掘り下げて説明します。 キャッシングのメリット キャッシングは、データウェアハウスにおいて、以下のような多くの利点をもたらします: スピード...

Databricks、dbt Labs、Fivetranと一緒にレイクハウスでモダンデータスタックを構築する5つの理由

Original : Five Reasons to Build your Modern Data Stack on the Lakehouse with Databricks, dbt Labs and Fivetran translate by junichi.maruyama 数年前、クラウドベースのモダンデータ・プラットフォームによって、アナリティクスとそれを支えるツールが実務者の手に渡るようになり、モダンデータ・スタック(MDS)が登場しました。オンプレミスで慎重にサイズを調整したHadoopクラスタの時代は終わり、瞬時に拡張でき、標準SQLを使用して新世代のETLおよびBIツールに接続できるデータウェアハウスに取って代わられました。レイクハウスパターンは、ここ数年で登場した最新の、そしておそらく最も強力なパターンです。データウェアハウスのシンプルさと拡張性、データレイクのオープン性とコスト面の優位性を一体化させたものです。重要なのは、レイクハウスパターンは厳密に加算型であることです。データ実務家として