メインコンテンツへジャンプ
<
ページ 39
>

クラウドスケールでのサイバーセキュリティのためのSIEMの強化

翻訳: Masahiko Kitamura オリジナル記事: Augment Your SIEM for Cybersecurity at Cloud Scale この10年間で、セキュリティインシデント・イベント管理ツール(SIEM)は、企業のセキュリティ運用における標準的なものとなっています。しかし、SIEMには常に否定的な意見もあります。しかし、クラウドが爆発的に普及したことで、「クラウドスケールの世界ではSIEMは正しい戦略なのか?HSBCのセキュリティ・リーダーは、そう考えていません。HSBCは、最近の講演 「サイバーセキュリティのためのDatabricks LakehouseでSplunkやその他のSIEMを強化する」 で、レガシーSIEMの限界とDatabricks Lakehouseプラットフォームがサイバーセキュリティをどのように変革しているかを強調しました。3兆ドルの資産を持つHSBCの話は、少し調べてみる価値がありそうです。 このブログでは、変化するITとサイバー攻撃の脅威の状況、SIEMの

公開プレビュー:Databricks ジョブによる複数タスクのオーケストレーション

ドキュメントを読む 企業におけるビジネスインテリジェンス(BI)や、人工知能(AI)への取り組みの強化に伴い、シンプルで明確かつ信頼性の高いデータ処理タスクの オーケストレーション へのニーズが高まっています。Databricks のユーザーの選択肢はこれまで、複数のタスクを1つの Notebook で実行する、もしくは、別のワークフローのツールを使用して、ユーザーの環境全体をさらに複雑にするしかありませんでした。 本日、私たちは、タスクのオーケストレーションをサポートする Databricks ジョブのパブリックプレビューを発表しました。この機能により、複数タスクを有向非巡回グラフ(DAG)として実行することが可能になります。ジョブとは、Databricks のクラスタでアプリケーションを実行する非インタラクティブな方法です。例えば、ETL ジョブやデータ分析タスクをすぐに実行したり、スケジュールを設定して実行したりします。このジョブ内で複数のタスクをオーケストレーションする機能は、追加のコストは不要で、データ

Databricksのファイルシステム

June 17, 2021 Takaaki Yayoi による投稿 in ソリューション
こちら からサンプルノートブックをダウンロードできます。 Databricksでファイルを取り扱う際には、Databricks File System (DBFS) を理解する必要があります。 本記事では、DBFSの概要をご説明するとともに、具体的な使用例をご説明します。 Databricks File System (DBFS) Databricks File System (DBFS) はDatabricksのワークスペースにマウントされる分散ファイルシステムです。Databricksクラスターから利用することができます。DBFSはクラウドのオブジェクトストレージを抽象化するものであり、以下のメリットをもたらします: オブジェクトストレージ(S3/Azure Blob Storageなど)追加の認証情報なしにオブジェクトストレージにアクセスすることができます。 ストレージURLではなく、ディレクトリ、ファイルの文法に従ってファイルにアクセスできます。 ファイルはオブジェクトストレージで永続化されるので、クラス

機械学習を活用した小売業者・ブランドのためのアイテムマッチング

アイテムマッチングは、オンラインマーケットプレイスの中核的な機能です。小売業者は、最適化された顧客エクスペリエンスを提供すべく、新規/更新された商品情報を既存のリストと比較して、一貫性を確保し、重複を回避します。また、オンライン小売業者は、競合他社のリストと比較して、価格やインベントリの差異を確認します。複数のサイトで商品を提供しているサプライヤーでは、商品がどのように提示されているかを調べて、自社の基準との整合性を確保できます。 効果的なアイテムマッチングの必要性は、オンランコマースに限られたことではありません。DSR(デマンドシグナルリポジトリ)は、数十年もの間、補充オーダーのデータに POS やシンジゲートされた市場データを組み合わせて、消費財メーカーに需要の全体を把握するケイパビリティを提供してきました。しかし、メーカーが自社の製品定義と、数十もの小売店パートナーの製品説明との間の差異を埋めることができなければ、DSR の価値は制限されます。 このようなタイプのデータをまとめる際の課題は、異なるデータの照