
Power BI on Databricks Best Practices Cheat Sheet
This document summarizes the most relevant best practices when using Power BI

PHASE DATA PREPARATION SQL SERVING POWER BI INTEGRATION POWER BI REPORT DESIGN

Read if you are Preparing the dataset that will be served
for the report

Setting up and configuring the Databricks SQL
Warehouse to which Power BI connects

Configuring the integration between
Power BI and Databricks

Designing semantic models and reports in
Power BI

Your objective ■ Implement an efficient
data model

 ■ Optimize storage layer for
query performance

 ■ Meet performance SLA
and scalability

 ■ Keep costs under control

 ■ Optimize semantic model
for performance

 ■ Leverage unified governance

 ■ Create fast and efficient
reports and dashboards

 ■ Inherit the optimizations
performed in all the
other layers

Best
practices:
What you
should do

 ■ Adopt medallion architecture on
Delta Lake (link) and serve the Gold
layer only (link) → leverage benefits of
Delta and aggregated data for better
report performance.

 ■ When designing your data model, opt if
possible for a star schema (link, link) →
Power BI performs better.

 ■ Leverage SQL views and persisted
tables with the required granularity
(e.g., date/time) → improve performance
by pre-aggregating data for the most
common and resource-intensive queries.

 ■ Declare primary and foreign keys (link),
and use RELY (link) where possible →
Power BI can leverage this information to
automatically create table relationships,
and the Databricks SQL engine can
optimize queries using PK constraints.

 ■ Avoid using wide data types and
high-cardinality columns → reduce
Power BI semantic model size and
improve query performance.

 ■ Use auto-generated columns when
you need to generate a derived value
from other existing columns (link) →
persisted columns minimize the need
for calculating values at query time.

 ■ Use Liquid Clustering (link); alternatively,
use Z-ordering (link) and consider
partitioning larger tables >1TB (link) →
improve query performance by efficient
file and data skipping.

 ■ Optimize your data layout by using
predictive optimization (link) or running
VACUUM (link) and OPTIMIZE (link) →
improve performance by deleting old files
and optimizing the physical data layout.

 ■ Periodically compute statistics (link)
or use automatic statistics (currently in
preview, link) → improve performance by
choosing a more efficient join strategy.

 ■ Evaluate using materialized views (link)
to calculate results incrementally using
the latest data in the source tables →
improve performance by leveraging
precomputed results.

 ■ Always use a SQL warehouse
(and not all-purpose clusters) (link) →
SQL warehouses are optimized for
BI workloads.

 ■ Use SQL Serverless warehouse (link) →
optimal price/performance and delivers
instant and elastic compute. Leverage
Serverless query result cache even when
SQL Warehouse is scaled or restarted.

 ■ Enable SQL warehouse Auto stop
(scale-to-zero) only if the SLA permits;
the SQL warehouse will take just 5–10s
to start up when the first query arrives →
save costs when the warehouse is
not used.

 ■ Use higher cluster size for larger
datasets (link) → the larger the cluster
(M, L, XL, etc.), the faster complex queries
run. If having only simple, short-running
queries, don’t increase the size (might be
slower due to data shuffling).

 ■ Use SQL Warehouse scaling
(min/max cluster count) (link) → handle
more concurrent users / queries.
SQL Warehouse scales out to handle the
increased workload. When hitting limits,
queries get queued, not rejected.

 ■ If expecting many concurrent queries,
increase the minimum number of
clusters → prevent queueing queries
waiting for scaling out.

 ■ Use the same SQL Warehouse
whenever the same dataset is queried →
will leverage the various layers of caching
available, increasing performance.

 ■ Use separate SQL warehouses for
different workloads and/or business
units → right-size SQL warehouses
to achieve better performance and
reasonable costs.

 ■ If unsure about sizing, start with a
Medium SQL Warehouse scaling
between 1 and 10; monitor query
response time and scaling →
then adjust the sizing based on
the observed results.

 ■ Leverage the Query History (link) and
SQL warehouse events (link) system
tables to programmatically monitor
SQL Warehouses and query performance
→ allows for identifying performance
bottlenecks and issues, implementing
more detailed analysis and setting
up alerts.

 ■ Ensure that Power BI and Databricks are
hosted as closely as possible, ideally in
the same region → this would minimize
network latency and may help avoid
cross-region traffic costs.

 ■ Use the most appropriate Power BI
storage mode: Direct Query for Fact
tables, Dual for Dimension tables
(NOT Import) (link) → let Power BI
generate more efficient SQL queries.

 ■ Evaluate where and how to use
composite models (link) → allows a
mixed usage of DirectQuery, Dual, Import
mode tables, as well as Aggregation and
Hybrid tables.

 ■ Use hybrid tables whenever you need
aggregated historical data augmented
with detailed real-time data for the same
table (link) → efficient and quick in-
memory queries combined with
the latest data changes directly
from the source.

 ■ In Import mode, use table partitioning
(link). Alternatively use incremental
refresh (link) → allows importing data
faster and managing larger datasets.

 ■ Check for query parallelization
configuration settings (link) → improves
query parallelization and maximizes
utilization of SQL warehouse to improve
overall performance.

 ■ Connect Power BI to Databricks using
single sign-on (SSO) (link) → allows
leveraging security and governance
controls implemented in Databricks
Unity Catalog (link) and allows audit
data access.

 ■ If you need to connect to different
Databricks environments, use Power
BI parameters (link) → allows flexibility
when connecting to different
Databricks workspaces or different
Databricks SQL warehouses.

 ■ Use gateway clusters (link) to
connect to IP ACL or private link-secured
Databricks workspaces → avoid single
points of failure and load balance traffic
across gateways in a cluster.

 ■ Use Publish to Power BI Service (link) →
enables seamless catalog integration and
data model sync, allowing you to publish
datasets directly to Power BI Service
without leaving the Databricks UI.

 ■ Use Automatic Publishing to
Power BI (link) → publish datasets
from Unity Catalog to Power BI
directly from data pipelines.

 ■ Limit the number of visuals on each
report page → limit the number of queries
that will be executed.

 ■ Limit the number of rows and columns
in semantic models and report visuals →
avoid large data transfers.

 ■ Leverage user-defined aggregations
(link) → improve query performance over
large DirectQuery semantic models by
caching pre-aggregated data.

 ■ Use automatic aggregations (link) →
continuously optimize DirectQuery
semantic models by building
aggregations based on Query History
for maximum report performance.

 ■ If referential integrity has been validated
in the upstream ingestion use “Assume
Referential Integrity” when defining
table relations (link) → more efficient
join strategies in SQL queries.

 ■ Avoid “many-to-many” relationships
where possible → decrease complexity
and improve Power BI model efficiency.

 ■ Configure “Is nullable” for table columns
where applicable → Power BI generates
simpler and more efficient SQL queries.

 ■ “Move left” transformations whenever
possible (e.g., prefer SQL views over
PowerQuery transformations and DAX
formulas) → leverage the power of
Databricks SQL engine for more efficient
report execution.

 ■ If using DAX, review your code to use
efficient DAX calculations (link) →
inefficient calculations can lead to
deteriorated performance.

 ■ Leverage query reduction settings by
adding Apply/Clear All Slicers button
(link) → prevent a new query from being
sent to the data source every time the
user interacts with the report’s filters.

 ■ Avoid using DAX calculated columns
and calculated tables in semantic
models → will perform better if
defined directly in your Gold tables.
Measures that can be precomputed
as columns also perform best if done
in the Gold layer.

Troubleshooting:
Why is my

report slow?

1. Ensure the data layout is regularly
optimized with VACUUM and OPTIMIZE.

2. Evaluate generating aggregated views for
the most common and resource-intensive
queries whenever applicable.

3. In the SQL Warehouse/Monitoring page
(link), review the Query History looking for
the queries with the longest duration:

a. Ensure the query leverages the way
the storage layer has been optimized
or adapt it if needed.

b. Open the Query Profile, enable
verbose mode, review the tasks that
took the most time and/or memory
looking for:

i. “Cloud storage request duration”
to check if the cloud storage has
been slow in responding.

ii. “Files read,” “Size of the smallest
file read” ensuring not too many
small files are read. If so ensure
OPTIMIZE is run regularly.

iii. “Number of output rows” and
“Rows skipped” ensure filters are
applied sooner than later.

1. Monitor the SQL Warehouse performance
in the SQL Warehouse/Monitoring page
(link) looking for:

a. Running queries vs. Queued
queries. If too many Queued
queries: 1) increase the number
of clusters if already reaching the
maximum allowed, 2) evaluate if worth
increasing the cluster size if there are
long-running queries.

b. Number of active clusters:
1) evaluate to set a higher minimum
number of clusters if queries are
queued while scaling out, 2) check if
the cluster scaled in to zero when the
queries arrived.

3. Monitor Query History in the SQL
Warehouse/Monitoring page (link),
reviewing query details for:

a. “Scheduling” (i.e., time spent in queue)
vs. “Optimizing Query” (i.e., time spent
mainly identifying data to be skipped)
vs. “Executing” (i.e., time spent
executing the query).

b. “Result fetching by client” (i.e., time
spent for the client to download the
result set).

c. “Rows returned” to ensure the query
does not return too many rows.

d. “Bytes read from cache” to evaluate
the disk cache efficiency.

e. “Bytes spilled to disk” to ensure no
data is spilled to disk; if so, increase
the cluster size.

1. Evaluate which Power BI storage mode
is used. Prefer DirectQuery for Fact
tables and Dual for Dimensions → ideal
compromise between performance and
freshness of the data.

2. For very small, static and performance-
sensitive (<2s) reports, evaluate the
usage of Import mode → would provide
the best report performance.

3. Especially for DirectQuery, check
how many queries Power BI can send
in parallel to Databricks. Ensure the
Databricks SQL warehouse is sized
accordingly to handle the required level
of parallelism → avoids queries to be
queued, resulting in a slow report.

4. For performance fine-tuning, evaluate
the following properties of Power BI
semantic models:

a. “Maximum connections
per data source”

b. “Maximum number
of simultaneous evaluations”

c. “Maximum number
of concurrent jobs”

d. “MaxParallelismPerQuery”

5. Monitor the queries in the SQL
Warehouse/Monitoring page, looking
at “Started at” and at which time
the queries arrived to validate the
effective parallelism in Power BI.

1. Use Power BI Performance Analyzer
to examine report element performance
(link) → identify the visual that takes
the most to load and where the
bottleneck is (DAX Query, Visual
Display, DirectQuery, etc.).

2. Ensure there are not too many visuals
in the same report → many visuals could
generate lots of queries that can be
queued by Power Bl or Databricks
(e.g., the query itself runs fast but spends
time in the queue).

3. For the most common and
resource-intensive queries, ask for
creating SQL views or persisted tables
in the Gold layer, which provides pre-
aggregated data (often valid for Date
dimension) → results in overall better
performance.

4. Ensure there are no SQL queries returning
large result sets (1,000s of records), which
is often an indication of inefficient DAX
formulas (e.g., TOPN function) → evaluate
the complexity of DAX formulas and
optimize where possible.

What you
should read

 ■ Power Up With Power BI and Lakehouse in
Azure Databricks: Part 3 — Tuning Azure
Databricks SQL (link)

 ■ Star Schema Data Modeling
Best Practices on Databricks SQL (link)

 ■ One Big Table vs. Dimensional Modeling
on Databricks SQL (link)

 ■ SQL Warehouse Sizing, Scaling and
Queuing Behavior (link)

 ■ DBSQL Warehouse Advisor (link)

 ■ Tune Query Performance in Databricks
SQL With the Query Profile (link)

 ■ Power Up Your BI With Microsoft Power Bl
and Lakehouse in Azure Databricks: Part
1 — Essentials (link)

 ■ Power BI — Databricks SQL QuickStart
Samples (link)

 ■ Power BI on DBSQL Design Patterns (link)

 ■ Boosting Power BI Performance With
Azure Databricks Through Automatic
Aggregations (link)

 ■ Power Up Your BI With Microsoft Power Bl
and Lakehouse in Azure Databricks: Part
2 — Tuning Power BI (link)

 ■ Optimization Guide for Power BI (link)

 ■ Monitor Report Performance
in Power BI (link)

 ■ Troubleshoot Report Performance in
Power BI (link)

https://docs.databricks.com/en/delta/index.html
https://www.databricks.com/glossary/medallion-architecture
https://learn.microsoft.com/en-us/power-bi/guidance/star-schema
https://www.databricks.com/glossary/star-schema
https://docs.databricks.com/en/sql/language-manual/sql-ref-syntax-ddl-create-table-constraint.html
https://docs.databricks.com/en/sql/user/queries/query-optimization-constraints.html
https://docs.databricks.com/en/delta/generated-columns.html
https://docs.databricks.com/en/delta/clustering.html
https://docs.databricks.com/en/delta/data-skipping.html
https://docs.databricks.com/aws/en/tables/partitions
https://docs.databricks.com/en/optimizations/predictive-optimization.html
https://docs.databricks.com/en/sql/language-manual/delta-vacuum.html
https://docs.databricks.com/en/sql/language-manual/delta-optimize.html
https://docs.databricks.com/en/sql/language-manual/sql-ref-syntax-aux-analyze-table.html
https://www.databricks.com/blog/introducing-predictive-optimization-statistics
https://docs.databricks.com/en/views/materialized.html
https://docs.databricks.com/en/compute/sql-warehouse/index.html
https://docs.databricks.com/en/compute/sql-warehouse/index.html#what-are-serverless-sql-warehouses
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.databricks.com/en/admin/system-tables/query-history.html
https://docs.databricks.com/en/admin/system-tables/warehouse-events.html
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-storage-mode
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-composite-models
https://learn.microsoft.com/en-us/power-bi/connect-data/service-dataset-modes-understand#hybrid-tables
https://learn.microsoft.com/en-us/analysis-services/tabular-models/create-and-manage-tabular-model-partitions?view=asallproducts-allversions
https://learn.microsoft.com/en-us/power-bi/connect-data/incremental-refresh-overview
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/power-up-your-bi-with-microsoft-power-bi-and-lakehouse-in-azure/ba-p/3816771
https://learn.microsoft.com/en-us/azure/databricks/partners/bi/power-bi
https://github.com/yati1002/Power-BI-DatabricksSQL-QuickStart-Samples/tree/main/01.%20Connection%20Parameters
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-high-availability-clusters
https://www.databricks.com/blog/announcing-general-availability-publish-microsoft-power-bi-service-unity-catalog
https://www.databricks.com/blog/announcing-automatic-publishing-power-bi
https://learn.microsoft.com/en-us/power-bi/transform-model/aggregations-advanced
https://learn.microsoft.com/en-us/power-bi/enterprise/aggregations-auto
https://learn.microsoft.com/en-us/power-bi/connect-data/desktop-assume-referential-integrity#setting-assume-referential-integrity
https://powerbi.microsoft.com/en-us/blog/best-practice-rules-to-improve-your-models-performance/
https://powerbi.microsoft.com/en-us/blog/deep-dive-into-the-new-apply-all-slicers-and-clear-all-slicers-buttons/
https://docs.databricks.com/en/sql/user/queries/query-history.html
https://docs.databricks.com/en/sql/user/queries/query-history.html
https://docs.databricks.com/en/sql/user/queries/query-history.html
https://learn.microsoft.com/en-us/power-bi/create-reports/desktop-performance-analyzer
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/power-up-with-power-bi-and-lakehouse-in-azure-databricks-part-3/ba-p/3825010
https://medium.com/dbsql-sme-engineering/star-schema-data-modeling-best-practices-on-databricks-sql-8fe4bd0f6902
https://medium.com/dbsql-sme-engineering/one-big-table-vs-dimensional-modeling-on-databricks-sql-755fc3ef5dfd
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://medium.com/dbsql-sme-engineering/lakeview-dashboards-for-observability-series-article-1-dbsql-warehouse-advisor-f73ec8df1060
https://medium.com/dbsql-sme-engineering/tune-query-performance-in-databricks-sql-with-the-query-profile-439196b18f47
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/power-up-your-bi-with-microsoft-power-bi-and-lakehouse-in-azure/ba-p/3810649
https://github.com/yati1002/Power-BI-DatabricksSQL-QuickStart-Samples?tab=readme-ov-file
https://medium.com/dbsql-sme-engineering/power-bi-on-dbsql-design-patterns-042a7a1f73a3
https://techcommunity.microsoft.com/blog/analyticsonazure/boosting-power-bi-performance-with-azure-databricks-through-automatic-aggregatio/4278890
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/power-up-your-bi-with-microsoft-power-bi-and-lakehouse-in-azure/ba-p/3816771
https://learn.microsoft.com/en-us/power-bi/guidance/power-bi-optimization
https://learn.microsoft.com/en-us/power-bi/guidance/monitor-report-performance
https://learn.microsoft.com/en-us/power-bi/guidance/report-performance-troubleshoot

