
Unity Catalog: Open and Universal Governance
for the Lakehouse and Beyond

Ramesh Chandra
Haogang Chen
Ray Matharu
Sarah Cai
Jeff Chen

Priyam Dutta
Bogdan Ghita

Todd Greenstein
Gopal Holla
Peng Huang
Yuchen Huo

Adrian Ionescu
Adriana Ispas

Databricks
San Francisco, CA, USA

Tim Januschowski
Vihang Karajgaonkar

Stefania Leone
David Lewis
Andrew Li
Nong Li

Cheng Lian
Stephen Link

Qing Lu
Yesheng Ma
Chris Pettitt

Vijayan Prabhakaran
Databricks

San Francisco, CA, USA
firstname.lastname@databricks.com

Bogdan Raducanu
Kyle Rong
Paul Roome

Samarth Shetty
Sean Smith

Xiaotong Sun
Yuyuan Tang
Weitao Wen

Lei Xia
Junlin Zeng
Ben Zhang
Reynold Xin
Matei Zaharia

Databricks
San Francisco, CA, USA

Abstract
Enterprises are increasingly adopting the Lakehouse architecture
to manage their data assets due to its flexibility, low cost, and high
performance. While the catalog plays a central role in this archi-
tecture, it remains underexplored, and current Lakehouse catalogs
exhibit key limitations, including inconsistent governance, narrow
interoperability, and lack of support for data discovery. Additionally,
there is growing demand to govern a broader range of assets be-
yond tabular data, such as unstructured data and AI models, which
existing catalogs are not equipped to handle. To address these chal-
lenges, we introduce Unity Catalog (UC), an open and universal
Lakehouse catalog developed at Databricks that supports a wide va-
riety of assets and workloads, provides consistent governance, and
integrates efficiently with external systems, all with strong perfor-
mance guarantees. We describe the primary design challenges and
how UC’s architecture meets them, and share insights from usage
across thousands of customer deployments that validate its design
choices. UC’s core APIs and both server and client implementations
have been available as open source since June 2024.

CCS Concepts
• Information systems→ Data management; • Security and
privacy→ Database and storage security.

Keywords
Metadata Management, Data Governance, Lakehouse Catalog

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3724459

ACM Reference Format:
Ramesh Chandra, Haogang Chen, RayMatharu, Sarah Cai, Jeff Chen, Priyam
Dutta, Bogdan Ghita, Todd Greenstein, Gopal Holla, Peng Huang, Yuchen
Huo, Adrian Ionescu, Adriana Ispas, Tim Januschowski, Vihang Karaj-
gaonkar, Stefania Leone, David Lewis, Andrew Li, Nong Li, Cheng Lian,
Stephen Link, Qing Lu, Yesheng Ma, Chris Pettitt, Vijayan Prabhakaran,
Bogdan Raducanu, Kyle Rong, Paul Roome, Samarth Shetty, Sean Smith,
Xiaotong Sun, Yuyuan Tang, Weitao Wen, Lei Xia, Junlin Zeng, Ben Zhang,
Reynold Xin, and Matei Zaharia. 2025. Unity Catalog: Open and Universal
Governance for the Lakehouse and Beyond. In Companion of the 2025 In-
ternational Conference on Management of Data (SIGMOD-Companion ’25),
June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3722212.3724459

1 Introduction
Many enterprises store their data in elastic data lakes such as Ama-
zon S3, Azure Data Lake Storage, and Google Cloud Storage (see
e.g., [27] for an overview), and are increasingly adopting the Lake-
house architecture [35], which streamlines data management rel-
ative to traditional data warehouses by bringing data warehouse
capabilities directly to data lakes. This enables users to process all
their data in a uniform way, with a variety of compute engines.

Despite its popularity, a critical yet understudied component
of the Lakehouse architecture is the catalog. Current Lakehouses
typically rely on table catalogs like the Hive Metastore (HMS) [11]
as the operational catalog to organize data assets into a namespace
and manage their metadata. However, existing catalogs exhibit
several limitations. First, they provide limited and inconsistent
governance. For instance, access enforcement can differ depending
on whether a table is accessed via its catalog name or through its
cloud storage path, without a mechanism to enforce consistency—a
key challenge when presenting a table abstraction over data lake
storage systems that expose separate APIs. Moreover, many catalogs

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3722212.3724459
https://doi.org/10.1145/3722212.3724459


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

lack support for fine-grained access control features such as view-
based access control or row- and column-level security. Second,
while HMS is open and interoperable, many proprietary catalogs,
including AWS Glue [7] or those tightly integrated with specific
data warehouses, are not open, making it difficult to access data
from external workloads. Finally, existing operational catalogs often
lack discovery capabilities (e.g., searching for data tagged as ‘PII’
or tracking data lineage), which are critical for many users.

Furthermore, enterprises increasingly seek to manage and gov-
ern a broad range of assets beyond tables, including multiple ver-
sions of AI models, unstructured data (e.g., images and text), and
even on-premise data sources, in a unified way. The Lakehouse
architecture offers a natural solution for storing these assets in
low-cost data lake storage. However, existing data lake catalogs are
primarily designed for tabular data and lack the capability to repre-
sent unstructured data or AI assets, rendering them inadequate for
the increasingly important AI/ML workloads.

To address these limitations, an ideal Lakehouse catalog should
meet these fundamental requirements:

• Consistent governance. Ensures uniform enforcement of access
policies across all access paths, while offering comprehensive
auditing and fine-grained access control capabilities.

• Universality. Extensible to support diverse asset types (e.g., tab-
ular, unstructured, AI assets), interoperates with various clients
(e.g., SQL engines, User Interfaces (UI), AI tools), provides both op-
erational and discovery catalog features, enables cross-organizational
sharing, and operates across multiple cloud environments.

• High Performance. Supports workloads with varying perfor-
mance and consistency requirements, including low-latency in-
teractive workloads, transactional workloads requiring strong
consistency, and high-throughput batch workloads.

This paper presents Unity Catalog (UC), an open Lakehouse
catalog developed at Databricks to address these requirements. At a
high-level, UC provides a unified namespace for Lakehouse assets,
and introduces an entity-relationship data model that is extensible
to a broad range of data and AI asset types. It includes built-in
governance capabilities for these assets, and an API that enables
client integration to deliver end-to-end functionality to users.

The core UC API, along with its server and client implementa-
tions, has been open-sourced since June 2024 and currently supports
key asset types such as tables and ML models. In Databricks, UC
serves as the central catalog across all product features, with addi-
tional asset types and platform-specific optimizations implemented
through UC’s extension points. UC has been running in production
at Databricks since 2021 and is actively used by ∼9,000 customers,
managing ∼100 million tables, ∼550,000 volumes, and ∼400,000 ML
models, and serving ∼60,000 API calls per second.

Designing UC required addressing the following key challenges.
Uniform access control. Lakehouse workloads access tables at
two levels of abstraction: as higher-level catalog assets or directly
through cloud storage paths. Existing catalogs, like HMS, operate
solely at the catalog level, and direct access via raw storage paths
bypasses the catalog entirely. However, customers require consis-
tent access control regardless of the access method. UC addresses
this challenge with two key mechanisms: (i) it enforces a one-asset-
per-path principle, so that each cloud storage object maps to at most

one UC asset; (ii) clients do not have direct access to cloud storage;
instead, UC provides a credential vending API that issues temporary
credentials to clients. When a path-based access request is made,
UC resolves the asset from the path and enforces its access policies,
before issuing temporary credentials to that asset’s storage.
Support for diverse asset types. Customers need to manage as-
sets beyond tables for modern data and AI workloads, and also
wish to manage assets in external catalogs like HMS from UC.
To serve as a universal catalog, UC enables this through two key
mechanisms. First, it provides an open, extensible API to integrate
various open formats as asset types. For example, making UC act
as a MLflow [34] model registry only involved creating UC imple-
mentations of the MLflow base model registry RestStore and the
base ArtifactRepository, after adding UC asset type for regis-
tered models. UC uses the same one-asset-per-path and credential
vending approaches to ensure uniform governance for the model
asset type. Second, UC implements catalog federation, which allows
users to “mount” data managed by an external catalog, such as an
on-premise DBMS or HMS, and make it accessible in UC.
External access. An important use case is sharing data with exter-
nal workloads that may not support the format of data stored in UC,
without requiring additional data copies. For instance, this includes
scenarios like sharing a Delta Lake [6] table with an external work-
load that does not understand the Delta format or with one that
only supports Apache Iceberg [3]. UC addresses this challenge by
providing multiple open interfaces to access the same underlying
data, including the Delta Sharing protocol [15] to share Delta tables
with external Delta Sharing clients, Delta UniForm (Universal For-
mat) [16] to allow external Iceberg and Hudi clients to read Delta
tables in UC, and the Iceberg REST Catalog interface [24] to provide
access to the UC catalog functionality to Iceberg clients.
Discovery support.Many enterprise use cases require identifying
assets that meet specific criteria or understanding their lifecycles.
For instance, a user may need to verify that an asset has no down-
stream dependencies—using lineage information—prior to deletion,
or may wish to locate all assets tagged with ‘PII’. These needs are
typically addressed by discovery catalogs, which operate by “in-
dexing” metadata from operational catalogs. However, separating
operational and discovery catalog functionality introduces several
challenges: (i) collectingmetadata like lineage requires coordination
not onlywith the operational catalog but alsowith compute engines;
(ii) discovery catalogs often rely on polling operational catalogs for
updates, which incurs overhead and necessitates tradeoffs between
metadata freshness and system performance; (iii) efficiently enforc-
ing access control policies defined in the operational catalog during
discovery queries adds additional complexity.

UC is designed with discovery catalog functionality in mind to
address these challenges. It provides lineage APIs that allow com-
pute engines to submit lineage information for end-to-end data
tracking. To improve freshness and reduce polling overhead, UC of-
fers a change event stream that allows discovery catalogs to receive
timely updates. Additionally, UC exposes authorization APIs that
enable discovery systems to efficiently enforce access control poli-
cies at query time. In Databricks, these capabilities power features
such as lineage and search, and the same functionality is exposed
via APIs to enterprise discovery platforms like Collibra and Alation.



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Performance. Data warehouse workloads require Lakehouse cata-
logs to deliver significantly lower latency than traditional data lake
solutions. UC operates as an independent service that exposes an
open API, enabling integration with a variety of compute engines.
This separation is essential for UC to function as a universal catalog,
but it introduces additional network hops between engines and the
catalog service, which can increase metadata access latency. To
mitigate this overhead, UC incorporates both batching and caching
mechanisms. It consolidates all metadata access for a query into
a single batched API call, and employs specialized caches based
on the consistency requirements of the metadata. For immutable
metadata or metadata where weak consistency is acceptable (e.g.,
cloud credentials or user/group information), UC uses simple TTL-
based caches to bound staleness. For metadata requiring stronger
consistency—such as table commit information—UC utilizes a write-
through cache that respects the transaction isolation guarantees
of its underlying metadata store. These caches can be pushed to
clients to further reduce latency for frequently accessed metadata.

The rest of the paper is organized as follows. Section 2 presents
related work, Section 3 gives an overview of UC to set context for
Section 4, which discusses how key aspects of UC’s design address
the above challenges. Section 5 highlights implementation details,
and Section 6 presents UC’s usage statistics and evaluation results.

2 Background and Related Work
Catalogs come under the broader umbrella of metadata manage-
ment, which has been studied theoretically (e.g., [8, 25]) and in
applied work (e.g., [19–21]). Despite their practical importance and
existing proprietary and open source implementations for different
data management systems, catalogs remain an understudied area.

To differentiate the existing approaches, we contrast traditional
relational database systems (DBMS) with modern Lakehouses. In a
traditional DBMS, the catalog is a key component of a monolithic
architecture (e.g., [18, 29]) that stores schema metadata, such as
details about tables, columns, and relationships, and is tightly cou-
pled with query processing and data organization. While this tight
integration simplifies implementing end-to-end functionality span-
ning metadata and data, including optimizations and maintaining
consistency between them, it limits the scope and flexibility as the
catalog is bound to a specific engine and storage format.

In contrast, the Lakehouse architecture [35] separates data stor-
age from query engines to achieve greater flexibility and scalability.
By decoupling them, Lakehouses allow independent scaling of stor-
age and compute resources, to better handle big data workloads.
This also enables the use of specialized engines, each optimized
for different workloads—such as BI, ETL, or ML training—while
operating on the same copy of data. The Lakehouse catalog is also
separated from the engines and data storage, and this separation of
data storage, catalog, and engines makes it critical for organizations
to ensure consistent governance across the workloads.

Arguably the most widely used Lakehouse catalog today is the
Hive Metastore [11], an open-source project used by many open
source engines. Proprietary catalogs like AWS Glue [7] and man-
aged HMS offerings like Dataproc Metastore [13] also provide a
HMS compatible interface for interoperability with existing engines.
HMS provides the basic catalog functionality of organizing tables

Figure 1: The life of a SQL query in the Databricks Lakehouse
platform, which illustrates the main components of the plat-
form, separation of the engine and the catalog, and the data
and control planes. Arrows represent the logic flow.

into schemas and storing metadata for each table, and clients use it
to retrieve table metadata including the location and then access
cloud storage to process data. This makes it simple for clients to
integrate with HMS, but HMS does not have governance (it relies on
cloud storage policies for access control), does not natively support
advanced data warehouse functionality like transactions, and does
not support asset types beyond tables.

The recent Iceberg REST Catalog API [24] is another increasingly
adopted open catalog API. It is specific to the Iceberg table format
and supports transactions, but does not specify governance APIs
beyond temporary credential vending and does not support assets
beyond Iceberg tables. Polaris [4] is an open source implementation
of the Iceberg REST Catalog API and adds on a concrete governance
API, but it too does not support assets beyond Iceberg tables.

Commercial offerings include Fabric/Purview/OneLake [28], AWS
Glue, BigLake/Dataplex [9], and Horizon [31]. These catalogs are
not open (though some of them, like AWS Glue, provide a HMS or
Iceberg REST catalog interfaces for interoperability), and they do
not support managing assets beyond tables.

In contrast to the existing catalogs, Unity Catalog is open; has
built-in consistent governance including access control, tempo-
rary credential vending for underlying cloud storage, and auditing;
supports data and AI assets beyond tables; and is designed with
external access and discoverability in mind.

3 Unity Catalog Overview
This section provides an overview of UC, beginning with a brief
primer on the Databricks Lakehouse architecture to establish con-
text. It then introduces UC’s object and permissionmodels, followed
by a summary of the life cycle of a SQL query, highlighting key
design elements that are discussed in greater detail in Section 4.

3.1 Databricks Lakehouse Platform
The Databricks Lakehouse platform consists of three key compo-
nents relevant to UC’s design (illustrated in Figure 1): the data lake
storage, the Databricks runtime, and the Unity Catalog service.
Data lake storage. The Lakehouse platform decouples storage
from compute, allowing customers to choose their preferred storage



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

providers (e.g., S3, ADLS, GCS) and bring existing large datasets
without costly migrations. These datasets can be stored in open
formats such as Delta Lake, Iceberg, or Parquet.
Databricks Runtime (DBR). The Databricks Runtime is the core
execution engine that powers data processing across a wide range
of workloads, including SQL, machine learning, and both interac-
tive and batch operations. Built on open-source Apache Spark [36],
it incorporates substantial enhancements in performance and reli-
ability. The engine is structured around clusters, each comprising
a driver node responsible for query planning and one or more
executor nodes that execute tasks in parallel. Clusters are associ-
ated with workspaces, which offer a unified environment for teams,
integrating compute resources, notebooks, jobs, and other assets.
Unity Catalog service. The Unity Catalog service is a multi-tenant
service implementing all UC functionality and APIs. Execution
engines interact with it to deliver end-to-end functionality for users.
The Unity Catalog service is covered in more detail in Section 4.2.1.

The data lake storage and DBR are part of the data plane. Cus-
tomers have the option to manage the cloud resources for the data
plane themselves within their cloud accounts or to use Databricks-
managed ones within a Databricks-controlled cloud account. The
Unity Catalog service operates in the control plane, which runs
entirely within a Databricks-managed cloud account and is fully
operated by Databricks.

3.2 Object Model
The UC object model is shown in Figure 2. All data and AI assets
in UC are organized within a metastore, which defines a three-
level hierarchical namespace. Assets are referenced using fully
qualified names of the form “catalog.schema.table”. The first two
levels, namely catalogs and schemas, are containers that provide
different levels of logical isolation required by enterprises. The last
level contains the actual assets such as tables, views, volumes, ML
models, and functions. Common functionality across these asset
types is abstracted into a generic entity-relationship data model,
which is described in more detail in Section 4.2.1.

Catalogs typically reflect organizational units (e.g., per team)
or development scopes (e.g., separate catalogs for development
and production). Administrators can define “bindings” to restrict a
catalog’s access to specific Databricks workspaces. Catalogs also
serve as integration points for importing external data via Delta
Sharing and federation.

Schemas (or databases) reside within catalogs and organize data
and AI assets into finer-grained categories. A schema often repre-
sents a use case, project, or team sandbox, with access isolation
enforced through privileges. Alongside traditional asset types like
tables, views, and functions, UC also supports volumes, which
represent a logical storage in a cloud object storage location for
organizing files and non-tabular data, and models, which represent
ML models and their associated artifacts.

A metastore serves as the root of the namespace and provides
the highest level of naming isolation. Each metastore is associated
with a “home region,” where its primary metadata is stored. Every
Databricks workspace—and its workloads—is attached to a single
metastore, and objects in other metastores are inaccessible by de-
fault unless explicitly shared via Delta Sharing [15]. To optimize

Figure 2: The Unity Catalog object model, showing its three-
level hierarchical namespace and common asset types.

for locality, workspaces attach to a metastore in the same region by
default. In addition to catalogs, a metastore also contains non-data
configuration assets that abstract cloud resources, including cre-
dentials, storage locations, and connections, which abstract cloud
principals, cloud storage, and external data sources, respectively.
These assets enable UC to operate across clouds and engines.

3.3 Privilege Model
In UC, users require specific privileges to perform operations on
objects. UC’s privilege model is inspired by SQL-style grants. For
example, to run a SELECT query on a table, a user must have the
SELECT privilege on the table, the USE SCHEMA privilege on its
parent schema and the USE CATALOG privilege on its catalog; the
usage privileges allow container administrators to enforce broad
access restrictions on assets within the container, similar to other
SQL databases. Principals can be granted privileges on any object
within a metastore. These objects (containers, assets or configura-
tions) are referred to as securables in this section. Below are the key
aspects of UC’s privilege model.
Ownership. Every securable has an owner who holds all privileges
on the object, including administrative rights, and can grant privi-
leges to other principals. By default, regular users have no access to
any securables within a metastore. Administrators must bootstrap
access by granting privileges, including the right to create new
securables. When a securable is created, its creator is automatically
assigned as its owner. Owners may delegate privilege management
by granting the MANAGE privilege to other principals, which con-
fers the same authority as ownership.
Privilege inheritance. Privileges in UC are inherited down the
securable hierarchy. Granting a privilege on a catalog or schema
automatically propagates that privilege to all existing and future
securables within that scope. For example, a principal granted SE-
LECT on a catalog receives SELECT on all current and future tables
in that catalog. This inheritance model allows administrators to
scale access control efficiently by leveraging hierarchical grants.

Administrative privileges are also inherited, enabling container
administrators to manage privileges for all descendant securables.
However, they do not receive non-administrative privileges by
default. For instance, a schema owner does not automatically gain
SELECT access to tables in the schema unless they explicitly grant it



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

to themselves. This separation is crucial in regulated environments,
as it prevents unintended data access by privileged users.
Fine-grained access control (FGAC). Some use cases require
restricting access to specific rows or columns within a table—for
example, limiting access to sensitive data such as social security
numbers for non-privileged users. UC enables table administrators
to define row filters and column masks, allowing data to be selec-
tively hidden based on the accessing principal. Implementing fine-
grained access control (FGAC) requires coordination between UC
and a “trusted” query engine, as discussed further in Section 4.3.2.
Attribute-based access control (ABAC). To support scalable ac-
cess management in large enterprises, administrators often prefer
to define high-level access control policies based on data attributes
rather than individual securables. ABAC enables this by dynam-
ically applying privilege grants or FGAC policies based on meta-
data—such as tags—associated with a securable or table column.
For example, an administrator can define an ABAC policy at the
catalog level that applies a redacting column mask to all columns
tagged with ‘PII’ for unprivileged users. An ABAC policy applies
to all current and future securables within the policy’s scope that
satisfy the specified conditions. This approach enables flexible, com-
prehensive, and hierarchical policy enforcement at scale. ABAC is
currently available in private preview.

3.4 Life of a SQL Query
This section gives an overview of the interaction of DBR and Unity
Catalog during the execution of a typical SQL query to highlight
UC’s key design elements. Figure 1 illustrates this interaction.

(1) When a DBR engine receives a user’s SQL query (via a request
gateway that authenticates the user), it first parses the query
and finds all securable references, such as table names.

(2) Metadata resolution and access control: The engine issues REST
API requests to UC to retrieve metadata for the requested secur-
ables. UC first verifies that the caller has the necessary privileges
and then returns metadata such as column definitions and con-
straints for a table. For composite securables, such as views and
functions, UC also performs dependency resolution, authoriz-
ing access and including metadata for all referenced securables.
If the table is subject to FGAC (e.g., row filters) and the engine
is trusted, the response includes the applicable enforcement
rules. Details on securable-level access control and FGAC are
provided in Sections 4.3.1 and 4.3.2, respectively.

(3) The engine analyzes the query and generates a query plan
using the returned metadata. A large query might be divided
into smaller tasks and distributed to executors for processing.

(4) When the engine requires access to cloud storage that hosts the
table data, it sends API requests to UC to fetch a short-lived
credential with the appropriate access level.

(5) Credential vending: upon authorizing the credential request,
UC returns a least-privileged access token that is downscoped
to only have access to the data asset in question. UC might
cache unexpired tokens to accelerate future access. Credential
vending is described in Section 4.3.1.

(6) Storage access: the engine executors access cloud storage directly
using the received access token to process the query.

(7) (Optional) For tables subject to FGAC, a trusted engine applies
filtering or transformation to the query results based on the
enforcement rules included in the table metadata.

(8) The engine sends the final query result back to the user.
Audit logging and lineage tracking are done during query pro-

cessing in DBR and the Unity Catalog service; these are covered in
Section 4.2.1. UC is designed to be open, so the above interaction
has to generalize to other engines beyond DBR; the principle of
catalog-engine separation is discussed in Section 4.1.

4 System Design
This section describes the key components of UC’s design that
address the challenges from Section 1. Some functionality described
here is not yet available in the UC open-source implementation.
This may be because it is planned for future open-sourcing, relies on
amissing open standard (e.g., a “trusted engine” standard for FGAC),
or depends on Databricks internal infrastructure (e.g., caching).

4.1 Catalog-Engine Separation
As shown in Figure 1, the Lakehouse architecture follows the prin-
ciple of catalog-engine separation, even though workloads often
require close collaboration between the catalog and a processing
engine. Here, the term engine refers broadly to any client that pro-
cesses not onlymetadata but also data. This includes tabular engines
like Trino [32] and Apache Spark [36], as well as ML clients that
perform training. UC defines a clear interface between the catalog
and the engines.

The separation between the catalog and engines provides two
major benefits. First is enhanced manageability and security. The
catalog acts as a centralized authority for the Lakehouse asset
namespace, all asset metadata, and access control policies. This
single source of truth ensures that the core metadata is tightly man-
aged, with well-defined REST APIs. The namespace and governance
are unambiguous across different workloads and engines. Metadata
operations can be properly ordered if necessary to support use
cases like commit protocols on the catalog assets.

Second, it improves interoperability across engines. A unified
catalog allows different engines to work with the same set of assets,
making it easier to support a wide variety of workloads without
duplicatingmetadatamanagement logic in each engine. Engines can
focus on processing logic while relying on the catalog for metadata
and access control, which improves modularity, reduces duplication
of effort, and allows users to use the best engine for their workload.
Since the catalog does not serve or process data, it is agnostic to
the underlying format for the assets it manages. This gives the
engine full flexibility to choose and optimize the data layout, for
example, engines can choose optimizations such as Delta Lake
deletion vectors [14], without the catalog getting in the way.

Conversely, the catalog API by itself is not enough to provide the
functionality users need. Various engines need to use the catalog
API in the right way to provide the end-to-end functionality. For
instance, in the SQL query example in Section 3.4, FGAC requires
a trusted engine to correctly interpret and faithfully enforce the
row filters or column masks in order to meet the end-to-end access
control requirements. Other UC features that require catalog-engine
collaboration include fine-grained lineage tracking (see Section 4.4),



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

Figure 3: The layered architecture of the Unity Catalog ser-
vice, showing the separation of the functionality core to all
asset types and functionality specific to an asset type, and the
distinction between the foreground and background services.

multi-table transaction handling (see Section 6.3), external catalog
federation (see Section 4.2.4) and view materialization.

4.2 Support for Diverse Asset Types
This section describes the UC functionality that supports diverse
data and AI asset types to make it a universal catalog. It begins with
an overview of the Unity Catalog service, followed by a discussion
of the generic entity-relationship data model that serves as the
foundation for all asset types. Next, it illustrates how this was used
to incorporate ML model support into UC. Finally, it explains how
UC’s catalog federation imports data from external catalogs.

4.2.1 Unity Catalog Service. A key objective of UC’s design is to
maintain a uniform behavior for the common feature set shared by
all asset types, while allowing different asset types to have type-
specific functionalities. The Unity Catalog service, whose architec-
ture is shown in Figure 3, implements the core UC functionality. The
following metadata and functionality served by the Unity Catalog
service is considered essential for all asset types.
Asset namespaces. UC maintains the names of all assets and
enforces the uniqueness of fully qualified names for each asset type.
For example, it enforces that two table-like assets (e.g., a table and
a view) cannot have the same name in a given schema.
Storage paths and the one-asset-per-path principle. An asset
with storage, like a table or a volume, can either be managed or
external, depending on who allocates its cloud storage paths. For
managed assets, the Unity Catalog service allocates and de-allocates
cloud storage paths, whereas for external assets, storage path man-
agement is done outside, with UC only storing the metadata for
the assets. In both cases, the catalog enforces the one-asset-per-
path principle, which dictates that no two assets in a metastore can
have overlapping storage paths. This invariant guarantees an unam-
biguous mapping from a cloud storage path to the corresponding
UC asset and rules out ambiguous (or conflicting) access control
policies when the same data is accessed through different names.
Lifecycle. The Unity Catalog service keeps track of the creation and
deletion of assets in the 3-level namespace. It handles soft deletions
and propagates deletions of a parent object to its children. It also

garbage collects orphaned objects and cleans up the associated
resources, such as the storage blob for managed tables.
Access control. The Unity Catalog service maintains object owner-
ship, privilege grants, tag assignment, ABAC rules and fine-grained
access control policies. It is also the sole authority to make access
control decisions based on these governance metadata.
Credentials. Credentials used to access cloud storage and external
data sources are secured and governed by the Unity Catalog ser-
vice. It is also responsible for generating temporary down-scoped
credentials for data assets based on the requested access level.
Audit logging. The Unity Catalog service maintains an audit trail
for API requests, object life cycle changes, access control decisions
and other important events for all asset types.

4.2.2 Entity-Relationship Data Model. UC’s layered design, shown
in Figure 3, is essential for the separation of functionality core to
all asset types and functionality specific to certain asset types.

At the bottom there is a generic entity-relationship data model,
which is the building block for metadata operations of all asset
types. The model implements common interfaces such as asset look
up by name or by ID, parent-child look up and listing, retrieval of
privilege grants, and the state machine for resource provisioning
and clean up. Themodel also provides well-defined extension points
for type-specific functionality. An example extension is to support
looking up asset by path and checking for path overlaps, which is
used by all asset types that have backing storage.

The data model is persisted in a standard relational database
with the implementation detail hidden from the layers above. The
layered design allows performance optimizations such as caching
to be fully implemented within the persistence layer, as long as
consistency guarantees are maintained. In Databricks, UC adopts a
strong consistency model that enforces serializability of all meta-
data updates within a metastore. The details of persistence and
caching are discussed in Section 4.5.

The adapter layer provides the integration with different asset
types and with various cloud providers. To add an asset type to UC,
developers add a declarative manifest to UC’s asset types registry.
The manifest is a specification of the asset type, including its loca-
tion in the hierarchy, the operations and privileges supported on
it, the authorization rules for each operation, and how its lifecycle
should be managed. Developers can provide annotations or custom
logic for validating the asset type’s input attributes in Create, Read,
Update and Delete (CRUD) APIs. For example, annotations can
specify whether the comment field of a table securable is updatable,
and if so, define the valid input length for that field. The adapter
layer also defines a uniform interface for accessing cloud storage
and handling cloud credentials, so that higher-level features can be
implemented in a cloud-agnostic fashion.

The layer above implements core features critical for the cata-
log’s integrity, such as namespace and lifecycle management, access
control, storage path management and audit logging. The shared
implementation ensures uniformity and correctness of core behav-
iors across all asset types. The core service exposes CRUD APIs for
metadata management, credential APIs for engines to request tem-
porary storage credentials, and a metadata query API that allows
filter pushdown to support information schema functionality. It



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

also publishes metadata change events on asset changes, which is
used for discovery catalog functionality, as described in Section 4.4.

4.2.3 Extending UC to be a MLflow Registry. This section describes
using UC’s entity-relationship model to add support for MLflow
models and demonstrates extending UC to non-tabular assets. Un-
structured data encompasses a variety of formats (e.g., text, images,
audio, video), and the integration of MLflow models shows the ease
of modelling unstructured data representations as UC asset types.

MLflow [34], like other ML frameworks such as Weights & Bi-
ases [33], includes a model registry: a centralized store to manage
the full lifecycle of ML models and their versions, from staging to
production. To add MLflow model support, UC was extended to
be an MLflow model registry. This involved adding a new asset
type calledmodel to UC and extending the MLflow framework with
modules to support the UC model registry.

In MLflow, a model registry consists of a concept called a regis-
tered model, which can have multiple versions. Representing these
concepts in UCwas straightforward.We created an asset type called
RegisteredModel, which has multiple model versions. Most of the
functionality to manage a RegisteredModel was inherited from
the common functionality in the entity-relationshipmodel’s adapter
layer, including organizing the model asset within the namespace
(as a child of a schema), defining a CRUD API for models, defining
the permissions required to access models, managing metadata
storage, supporting cloud storage for model artifacts, enabling cre-
dential vending for cloud storage access, and implementing auditing,
lineage tracking, and retention policies.

Extending the open-source MLflow framework to integrate with
UC was also straightforward. This required implementing UC-
specific versions of MLflow’s base abstractions: RestStore and
ArtifactRepository, which are the abstractions for a model reg-
istry REST endpoint and for the cloud storage storing the model
artifacts. The UC RestStore implementation uses UC’s registered
model APIs to provide model registry functionality, and the UC
ArtifactRepository implementation uses UC’s model temporary
credentials API to securely fetch credentials for reading or writing
model artifacts in cloud storage.

4.2.4 Catalog Federation. Customers often have existing data in
catalogs like HMS that they want to integrate into UC, with minimal
effort and without redundant data copies, so that engines using UC
can access the data under UC governance. This may be required
either because data migration takes time or because the existing
data is managed by a team separate from the one managing UC.

To support such scenarios and serve as a universal catalog, UC
offers catalog federation. With federation, an administrator can
create a federated catalog in UC that mirrors an existing foreign
catalog by providing credentials to connect to the foreign catalog.
The foreign catalog metadata is mirrored into the UC federated
catalog either on demand during access or in the background.

In the current implementation, metadata mirroring occurs on
demand. For example, when a query references a table in the UC
federated catalog, the table’s metadata is fetched from the foreign
catalog and mirrored into the federated catalog. Similarly, when
listing tables in a schema in the federated catalog, their metadata
is mirrored. On-demand mirroring offers two key benefits: (i) it
ensures that queries use the most up-to-date metadata from the

foreign catalog, and (ii) it minimizes load on the foreign catalog by
reusing the metadata fetched during query execution for mirroring.

Metadata mirroring can be performed either by the client engine
or the catalog service. In the current implementation, this task is
handled by the engine, as it avoids the need for customers to con-
figure additional network or security settings to grant the catalog
service (running in the Databricks control plane) access to the for-
eign catalog. The engine is typically configured to already have the
required access to the foreign catalog. However, the tradeoff is that
simple clients, like the UI, that only connect to the UC federated
catalog and do not connect to the foreign catalog may see stale
metadata until it is mirrored by some engine.

4.3 Uniform Access Control
This section describes how UC enforces uniform access control
for securables regardless of whether they are accessed by name or
path, and how it enforces access control at a finer granularity than
a securable in collaboration with trusted engines.

4.3.1 Securable-level Access Control. The query flow shown in Fig-
ure 1 highlights the two places where access control is required:
first, when accessing an asset’s metadata, and second, when access-
ing its data. This applies universally to all asset types, though data
access control isn’t needed for asset types without associated data,
such as catalogs and functions. UC centralizes the enforcement
of both metadata and data access control within the Unity Cata-
log service. Metadata access control is enforced in the access path
when a client calls the REST API to fetch metadata. The permissions
required depend on the type of metadata operation—for example,
administrator privileges are needed to change ownership, while
MODIFY is sufficient to update a table’s comment field.

UC does not enforce access control directly on cloud storage
reads and writes, as it is by design not in the client’s data access
path to avoid performance bottlenecks. Instead, it controls access
through a temporary credential vending mechanism. In this model,
administrators grant storage access exclusively to the catalog ser-
vice by configuring UC external locations and storage credentials,
while clients only receive credentials to invoke UC and do not have
direct access to cloud storage. When a client needs access to data,
it invokes UC’s temporary credentials API, specifying the required
level of read or write access. If access is requested via a cloud stor-
age path, UC resolves the path to a unique asset (according to the
one-asset-per-path principle), validates the client’s privileges, and
issues a temporary credential scoped to the asset’s storage path and
access type. These credentials leverage the cloud provider’s tempo-
rary credential system (e.g., STS tokens for AWS S3) and are valid
for tens of minutes. While revoking privileges does not immedi-
ately block clients with active credentials, this trade-off is generally
acceptable to customers seeking centralized access control.

The metadata and data access control mechanisms described
here serve as building blocks for higher-level access control policies,
including UC’s current SQL grant-based permission model and the
upcoming ABAC functionality.

4.3.2 Fine-grained Access Control. Some use cases require control-
ling access to specific rows and columns within a table. For example,
when accessing an employee table containing salary information,



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

a user may be entitled to only the rows for employees who report
to them. Table-level access control is insufficient in such scenar-
ios. To address this, UC coordinates with the engine running the
workload to employ a two-level access control mechanism that
provides defense-in-depth: securable-level access control to grant
the engine temporary credentials to access just the table, with fine-
grained access control (FGAC) relying on the engine to enforce row
filtering and column masking, based on user privileges. Securely
applying FGAC requires an engine to be isolated from user code.
Engines with this ability are called trusted (authenticated to UC
with their machine identities) and access to tables with FGAC poli-
cies is restricted to only trusted engines. Engines that allow users to
execute unsandboxed, arbitrary code are not trusted. In Databricks,
sandboxing of user code from the core Apache Spark engine is
implemented by the Lakeguard system [17] using containers.

FGAC principles also apply to views and shallow clones. In UC’s
governance model, granting SELECT privilege on a view or shallow
clone allows access to its data, even if the user lacks privileges on
its base tables. This requires enforcing access to specific subsets of
the base tables’ data, with the same FGAC principles and trusted
engine restrictions applying for these use cases.

In some use cases, such as ML workloads requiring GPU access,
the engine may lack the isolation needed for FGAC. To support
access to tables with FGAC policies in such scenarios, UC supports
a data filtering service [17], a trusted engine to which untrusted
engines delegate queries involving FGAC policies. The data filtering
service securely executes these queries and returns the results to the
untrusted engines. In Databricks, an untrusted engine uses Spark
Connect [5] to send the queries to the data filtering service.

4.4 Discovery Catalog Support
As Figure 3 shows, discovery catalog functionality like search and
lineage is provided by second-tier services. However, they depend
on the core service, and the interaction between them reflects a
clear separation between “foreground” and “background” capabil-
ities. The design balances latency, functionality, scale, and data
freshness. Foreground capabilities, such as access control and audit
logging, are integral to the core service, where ensuring low-latency
responses and consistency is essential for the integrity and security
of metadata. In contrast, background capabilities, such as search,
discovery, and lineage, are built as extensions of the core service.
They rely on platform-level features like metadata change events to
asynchronously process metadata updates. This separation enables
second-tier services to focus on large-scale indexing operations
while tolerating slight staleness in metadata updates.

Metadata change events serve as the critical bridge between
the core and second-tier services. Whenever metadata is modified,
the core service propagates change events, which are consumed by
second-tier services to update their indexes, graphs, or lineage mod-
els. This event-driven approach ensures background services stay
synchronized with the core service while operating independently
in terms of processing and storage. The decoupled design not only
enhances scalability and fault isolation but also allows background
services to leverage core platform capabilities without introducing
significant complexity, ensuring a cohesive and scalable catalog
that supports both operational and discovery catalog functionality.

Figure 4: CDF of per-metastore working set sizes at steady
state across all UC metastores, which shows that almost all
metastores have working sets less than 100MB.

Another important functionality provided by the core service to
second-tier services is an efficient authorization API. The second-
tier services use this to govern the discovery catalog data. For
instance, when a user performs a search, the search service uses
this API to filter the results shown to the user.

4.5 Performance
As described in Section 3.4, UC is on the critical path for all work-
loads, including interactive analytics, BI tools, streaming, batch
processing, and ETL jobs. Consequently, UC’s access latencies di-
rectly affect the user experience across these workloads, and its
availability and throughput determine the overall availability and
performance of the workloads.

Several key characteristics of UC’s workload enable it to meet
its latency, throughput, and availability goals while supporting the
required read and write semantics.
(1) UC stores and serves metadata, which is relatively smaller in

size compared to the data. This makes it viable for UC to host
the entire working set of metadata for a metastore or Lakehouse
in memory. Moreover, UC’s workload is predominantly reads,
allowing it to use in-memory caching to provide low latency,
scalable reads. Figures 4 and 5 support these points. Figure 4
shows that almost all current metastores have a working set
less than 100 MB, while 90% have a working set of less than
∼10 MB. Figure 5 demonstrates temporal locality—90% of con-
tainer assets (e.g., schemas) across all metastores are re-accessed
within 10 seconds of access. Similarly, 90% of leaf-level assets
(e.g., tables) are re-accessed within 100 seconds. Together, they
make the case for in-memory caching of UC asset metadata.

(2) All operations in UC are scoped to a metastore, and UC provides
snapshot isolation for reads at a metastore granularity.

(3) UC provides serializable writes at a metastore granularity. Most
writes are scoped to a specific asset and writes that span assets
are relatively uncommon. Moreover, write APIs are also read-
heavy because they perform various metadata validations and
permission checks before the actual write. These characteristics
enable UC to scale write throughput.

(4) UC’s workload is especially amenable to batching, allowing
callers to authorize and fetch the different metadata required
for one or more operations in a single API call.
The following sections describe these aspects in more detail.

Caller-based optimizations. UC’s workload is read-heavy, with
∼98% of traffic being for read-only APIs that are used to fetch (i)



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Figure 5: CDF of inter-arrival times of accesses for the same
asset, plotted for different asset types. Container assets (cat-
alogs, schemas) and dependencies of other assets (external
locations, connections) have more frequent accesses (and
hence lower inter-arrival times) than “leaf level” assets (ta-
bles, functions, models).

mutable asset metadata, for example, a table’s name, columns, cloud-
path, or permissions, and (ii) immutable metadata that UC obtains
from other services, such as temporary storage credentials obtained
from cloud provider APIs or metastore-region information obtained
from UC peer services in other regions.

A single user operation, e.g., a SELECT query, typically requires
both types of metadata, which UC serves in a single API call. Use
cases where an asset depends on many other assets benefit signif-
icantly from such batching. A common example is nested views
with several nesting levels that depend on 100s of base tables.

Immutable metadata is cached at multiple levels, both at the
Unity Catalog service and at compute engines. In particular, the
Unity Catalog service caches temporary storage credentials in its
memory and on a RINK caching service [1] to survive restarts. It
also allows engines to cache them for the period of their validity
(typically 10s of minutes) and reuse them (when permissible) across
successive queries or across multiple Spark executors.
Mutablemetadata caching.UC uses an ACID-compliant database
(DB) as its backend, and implements a write-through in-memory
cache to optimize reads while guaranteeing metastore-level snap-
shot reads and serializable writes. The cache’s design has two key
components. First, UC shards metastores across its nodes, with each
node owning one or more metastores and responsible for caching
them. Metastore-to-node assignments can be static or dynamic, and
UC does not assume exclusive ownership.

Second, UC uses metastore versions to provide reads with snap-
shot isolation and writes with serializable isolation, and to detect
when more than one node owns a metastore and take remedial
action. This design avoids reliance on distributed-consensus-based
services, like ZooKeeper [23], for consistency. The metastore ver-
sions are persisted in the DB and a node owning a metastore also
caches the version in memory. Assets within a metastore don’t have
persistent versions; they only have an in-memory version, which is
the version of the containing metastore when an asset is read from
the DB into the cache. Versioned assets in the cache are identified
by their primary and secondary keys, for example, a table’s cached
metadata can be retrieved using either its ID, its path, or its name.
To allow in-progress reads to not block concurrent writes, the cache
is multi-versioned, but minimizes versions by maintaining only the
most recent asset versions.

To ensure snapshot reads, a node owning a metastore maintains
the invariant that a cached asset’s versions are the latest as of the
metastore version known to the node. To ensure this, on every DB
read, the node uses the DB’s metastore version to check that its
in-memory version is the latest one. Otherwise, it reconciles the
cache by bringing it up-to-date with the DB. A naive reconciliation
strategy is to evict all cached-state for a metastore, while an opti-
mized strategy is to consult a change-event system to selectively
invalidate cached entries that were modified between the cached
version and the version in the DB.

To provide serializable writes, a write to an asset increments its
metastore version in the DB, conditioned on it being the current
in-memory version. If this fails, another node could have written
to the metastore and the node initiates reconciliation as explained
earlier. If the write succeeds, the new asset version is inserted into
the cache to maintain the invariant mentioned above.
Cache eviction. UC’s multi-version cache requires two types of
eviction. First, to limit memory consumption of unpopular assets,
we use standard eviction algorithms, such as LRU and LFU, to evict
an unpopular cached asset and all its versions. Second, to limit the
number of cached versions for popular assets, we use the timeout
enforced for every UCAPI call by an upstream load-balancing proxy.
The idea is that when a write to an asset adds a new version to
the cache, existing cached versions of the asset will be in use by
in-flight requests for at most a timeout period of time. Past that,
existing versions can be evicted and it is done lazily by the next
request accessing the asset. Together these eviction mechanisms
limit the versions of popular assets and page out unpopular ones.

5 Implementation
Databricks UC is implemented as a web service in Java and Scala,
and an open-source Java-only version without dependencies on
Databricks internal services is available at https://www.unitycatalog.
io/. UC supports using various OLTP databases as the backend.
It is deployed in multiple regions in Azure, AWS, and GCP, and
has a variety of clients including engines like Apache Spark, UIs
like Databricks Catalog Explorer, and external tools like Immuta,
PowerBI, and SQLAnalytics.

Databricks UC servers are sharded using an internal sharding
service that, similar to Slicer [2], provides best-effort metastore-to-
node assignments with no hard guarantees. UC’s mutable metadata
cache is extensible to support different in-memory indexing struc-
tures optimized for different read patterns, and it currently uses
hash-maps, versioned-lists and URL-tries. These allow UC to effi-
ciently serve point lookups for assets (e.g., details of a table, schema,
or catalog, by name or ID), privileges, memberships (e.g., list of
models in a schema), as well as complex reads (e.g., finding assets
with storage paths overlapping with a given path, which is used
during asset creation or credential authorization).

6 Unity Catalog in Practice
This section reports on UC’s real world customer usage and per-
formance, and shows that they support the need to address the
challenges outlined in Section 1. In particular, we find that:

• Assets per catalog follows a typical heavy-tailed distribution.

https://www.unitycatalog.io/
https://www.unitycatalog.io/


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

(a) Usage of tables, volumes, and other types, measured
by counting schemas that have only tables, only volumes,
only tables and volumes, and other types in addition to
tables and volumes.

(b) Distribution of the number of tables of different types.

Figure 6: Distribution of different asset types used by customers, which supports the need for UC to support diverse asset types.

Figure 7: The growth in the number of volumes created is
accelerating over time.

• Tables are accessed by both catalog name and storage path, high-
lighting the need for uniform access control.

• Customers use a variety of asset types and different table formats,
and the accelerating usage of non-tabular assets underscores the
need to support diverse asset types.

• The variety of external BI tools accessing UC data and the growth
of Delta Sharing external recipients show the need to support
external access.

• UC’s current performance is on par with that of local HMS, in
spite of UC being a remote service and the significant additional
functionality of UC over HMS (e.g., governance), demonstrating
the benefits of performance optimizations from Section 4.5.

• UC enables use cases not possible before, with predictive opti-
mization showing a 20× query latency improvement.

6.1 Aggregate Usage Statistics
Currently, UC serves ∼9,000 distinct daily active customers, across
more than 75K workspaces. This generates ∼60K API requests per
second to UC across all regions, with 98.2% of requests being reads
and the remaining ∼2% writes. These API calls support various
operations such as creating, updating, and deleting asset types, as
well as managing access policies and grants.

UC governs more than 100M tables, 550K volumes, 400K models
across 4M schemas, 200K catalogs, and 100K metastores. Assets of
each type in UC follow a heavy-tailed distribution, as is common
in practice. Many catalogs contain only a few assets and the mode
of the distribution of volumes per catalog is fewer than six. This
suggests that volumes are often used as directories for files, with a

handful per catalog sufficing in many cases. For tables, the mode
is ∼30 tables per catalog. At the tail of the distribution, the largest
catalogs by table count contain ≥ 500K tables each, and the largest
catalogs by volume count have several thousand volumes each.
UC’s architecture flexibly supports this wide range of catalog sizes
to enable workloads that represent both the head and the tail of this
distribution—for customers with millions of assets in one catalog,
metadata handling itself turns into a “big data” challenge.

6.2 Evidence for Unity Catalog’s Key Challenges
We use real-world customer usage of UC’s functionality to demon-
strate the importance of the key challenges laid out in Section 1.
The need for uniform access control. Figure 11 shows the frac-
tion of tables that are accessed using their catalog names, using
their cloud storage paths, or both. Though most of the tables are
only accessed using their catalog names (as expected), ∼7% of ta-
bles are also accessed using their paths. This highlights the need to
support path-based access for tables, and consequently the need for
uniform and consistent access control whether a table is accessed
using its catalog name or storage path.
The need to support diverse asset types. UC supports diverse
asset types beyond tables, and within tables supports multiple table
types (e.g., managed, external, and views) and storage formats (e.g.,
Delta, Iceberg, and Parquet). We observe that real customer usage
highlights the importance of supporting these diverse asset types.

Figure 6(a) shows the relative usage of various asset types, focus-
ing on tables and volumes, with other types grouped under “Other”.
While ∼89% of schemas contain only tables, ∼3% contain only vol-
umes, ∼3% contain both tables and volumes, and the remaining
∼5% include a mix of asset types (e.g., and ∼2% contain only ML
models, which existing tables-only catalogs do not support).

Additionally, Figure 7 shows that the creation of volumes is ac-
celerating over time, indicating that non-tabular asset types like vol-
umes (which store unstructured data) and ML models will continue
to grow in importance as AI/ML workloads expand in enterprises.

Within tables, Figure 6(b) shows the usage distribution for dif-
ferent table types: managed tables account for ∼53% and are the
most common but other table types also have significant adoption.
Furthermore, Figure 8(b) shows the growing usage of all table types,



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

(a) Distribution of table storage formats.
Delta is the dominant format.

(b) Distribution of different table types over time. (c) Distribution of the top five foreign table types over time.

Figure 8: Tables are the most used asset type, which are themselves a diverse group of types and storage formats.

(a) External clients calling UC. (b) External clients calling HMS.

Figure 9: External clients (y-axis) calling UC and HMS over a 14 day period, and the type of SQL queries they run (x-axis). A
bubble’s size represents the number of queries of a type run by external clients of a given type. The x-axis and y-axis do not list
all commands and all external clients for brevity.

(a) Performance comparison of HMS vs. UC for TPCDS and TPCH
benchmarks. HMS is in “local metastore” mode, which is its best-
case configuration.

(b) Benefit of UC caching on latency and throughput. (c) Query latency improvement due to predic-
tive optimization, enabled by UC’s metadata
management.

Figure 10: Performance of UC in practice.

underscoring the need for broad support. In contrast, HMS supports only managed tables, external tables, and views, which cover 82%
of table usage and 67% of usage of all asset types.



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Ramesh Chandra et al.

Figure 11: Distribution of number of tables with accesses
via only the table’s catalog (shown in purple), only its cloud
storage path (shown in blue), or both (shown in green).

The need to support multiple table formats is showcased in
Figure 8(a). While the majority of tables are in the Delta format,
customers also use other storage formats. Moreover, Figure 6(b)
shows that ∼16% of tables are foreign tables; UC currently supports
26 foreign table types and Figure 8(c) shows the increasing usage
of the top 5 foreign table types, of which three are from other well-
known cloud data warehouses. This demonstrates how federation
helps UC support diverse table formats and be more open.

Volumes are the most common non-tabular asset type, which
are used as containers for files for a variety of use cases. From
anecdotal evidence, these use cases include: storing large collections
of unstructured data (e.g., images, audio, video, text, PDFs) for
AI/ML workloads; uploading and querying non-tabular files for
data exploration; working with tools lacking native support for
cloud object storage APIs (and expect files in the cluster’s local
file system); and staging and pre-processing raw data files during
early stages of ingestion before loading them into tables. These are
critical use cases that highlight the need to support non-tabular
assets—capabilities missing in existing catalogs like HMS.
The need for external access is perhaps harder to show with
usage data as most workloads use the Databricks Runtime. However,
we observe a large diversity of external clients that call UC and
we contrast this with external clients that call HMS (for customers
usingHMS). Figure 9 shows this comparison: the number of external
client types that call HMS is 95 (Figure 9(b)), which is ∼3.5× smaller
than the 334 client types that call UC (Figure 9(a)). Additionally,
a broader range of query types are invoked on UC, with 90 types
compared to HMS’s 30. Many of these clients and tools used by
our customers are unknown to us, which emphasizes the need for
openness to make such integrations work well.

Another indicator of the need for external access is Delta Shar-
ing [15]. Databricks UC implements the openDelta Sharing protocol
to allow customers to easily share data with recipients internal or
external to Databricks. This feature has seen wide adoption, and
usage metrics show that external data sharing recipients contribute
to a larger share of usage than internal recipients.
Performance of UC in practice. We evaluate UC’s end-to-end
performance using TPC-DS [26] and TPC-H [10] benchmarks. Ta-
bles are in the Delta storage format, with UC configured to use an
AWS db.m5.24xlarge MySQL instance as the backend database and
the optimizations described in Section 4.5 enabled. We compare it to
performance on HMS using a AWSMySQL instance of the same size
for its metastore DB configured as a “local metastore” [22], where
engines use JDBC to directly make SQL queries to the metastore

DB. This setup represents the optimal configuration for HMS. In
contrast, UC’s architecture is more similar to HMS’s slower “remote
metastore” setup, where engines communicate with the metastore
over a RPC interface, which introduces additional latency.

Figure 10(a) shows that there is no statistical difference between
the performance of UC and HMS, in spite of UC being a remote
metastore and providing extra capabilities not offered by HMS, in-
cluding privilege enforcement and temporary storage credential
generation. The UC optimizations from Section 4.5 play an impor-
tant role in UC’s competitive performance even when handicapped.
Figure 10(b) quantifies the benefit of UC’s server caching—it shows
the latency vs. throughput for a sample API used in the query path,
under different client loads with the same AWS MySQL instance as
the DB. Caching significantly boosts UC’s performance, with 3×
to 40× lower latency while scaling to higher request throughputs.
Without caching, the system is bottlenecked by database reads and
reaches its throughput limit at fewer than 10K requests per second.

6.3 New Applications Enabled by Unity Catalog
UC enables several important new use cases at Databricks, of which
we highlight two here.
Predictive optimization [30] is a recent feature that automates
key maintenance tasks such as optimizing data file layouts, remov-
ing unused files, performing incremental clustering, and updating
statistics. This removes the toil of manual maintenance and is en-
abled by UC’s metadata management. As shown in Figure 10(c),
predictive optimization significantly improves query latency: for
a TPCDS data set with 1M rows, it reduces the latency of a query
selecting ∼5% of the rows by up to 20×. This gain comes from
optimizing table file sizes using metadata stored in UC. Addition-
ally, predictive optimization’s garbage collection of unused files
improves storage efficiency by up to 2×.
Multi-table and multi-statement transactions. While ACID
table formats like Delta Lake support single-table transactions by
relying on storage layer atomic operations, extending this to multi-
table and multi-statement transactions is more complex as they
involve updates to metadata and data of multiple catalog objects
that can be stored on different storage buckets. As the centralized
metadata store, UC plays a critical role in enabling such transactions
via the ongoing work on Catalog-owned Delta tables [12].

7 Conclusion
This paper introduces Unity Catalog, an open and universal Lake-
house catalog developed at Databricks to address the limitations
of existing catalogs. Unity Catalog supports a wide range of asset
types, including tabular, unstructured, and AI assets, and integrates
with various engines through an open API, while being multi-cloud.
It provides consistent governance across asset types, engines, and
clouds, interoperates with external catalogs, and delivers high per-
formance. We discussed the challenges in building Unity Catalog
and how it addresses them, and validated its goals and approach
using real customer usage data.

References
[1] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast key-value

stores: An idea whose time has come and gone. In Proceedings of the Workshop
on Hot Topics in Operating Systems. 113–119.



Unity Catalog SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, et al. 2016.
Slicer: Auto-Sharding for datacenter applications. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 739–753.

[3] Apache Iceberg. 2025. https://iceberg.apache.org/.
[4] Apache Polaris. 2025. https://polaris.apache.org/.
[5] Apache Spark Connect overview. 2025. https://spark.apache.org/docs/latest/

spark-connect-overview.html.
[6] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
Michał Świtakowski, Michał Szafrański, Xiao Li, Takuya Ueshin,MostafaMokhtar,
Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold Xin, and
Matei Zaharia. 2020. Delta Lake: High-performance ACID table storage over
cloud object stores. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3411–3424. https:
//doi.org/10.14778/3415478.3415560

[7] AWS Glue. 2025. https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html.
[8] Philip A. Bernstein. 2003. Applying model management to classical meta

data problems. In First Biennial Conference on Innovative Data Systems Re-
search, CIDR 2003, Asilomar, CA, USA, January 5-8, 2003, Online Proceedings.
www.cidrdb.org. https://courses.cs.washington.edu/courses/csep544/04sp/
lectures/bernstein03.pdf

[9] BigLake. 2025. https://cloud.google.com/biglake.
[10] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H analyzed: Hidden

messages and lessons learned from an influential benchmark. In Revised Selected
Papers of the 5th TPC Technology Conference on Performance Characterization
and Benchmarking - Volume 8391. Springer-Verlag, Berlin, Heidelberg, 61–76.
https://doi.org/10.1007/978-3-319-04936-6_5

[11] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene Koifman,
Owen O’Malley, Vineet Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth Jay-
achandran, Siddharth Seth, Deepak Jaiswal, Slim Bouguerra, Nishant Bangarwa,
Sankar Hariappan, Anishek Agarwal, Jason Dere, Daniel Dai, Thejas Nair, Nita
Dembla, Gopal Vijayaraghavan, and Günther Hagleitner. 2019. Apache Hive:
From MapReduce to enterprise-grade big data warehousing. In Proceedings of
the 2019 International Conference on Management of Data (Amsterdam, Nether-
lands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
1773–1786. https://doi.org/10.1145/3299869.3314045

[12] Catalog-owned Delta tables. 2025. https://github.com/delta-io/delta/issues/4381.
[13] Dataproc Metastore. 2025. https://cloud.google.com/dataproc-metastore/docs/

overview.
[14] Delta Lake deletion vectors. 2025. https://docs.delta.io/latest/delta-deletion-

vectors.html.
[15] Delta Sharing Procotol. 2025. https://github.com/delta-io/delta-sharing/blob/

main/PROTOCOL.md.
[16] Delta UniForm (Universal Format). 2025. https://docs.delta.io/latest/delta-

uniform.html.
[17] Martin Grund, Stefania Leone, Herman van Howell, Sven Wagner-Boysen, Sebas-

tian Hillig, Hyukjin Kwon, David Lewis, Jakob Mund, Xiao Li, Polo-Francois Poli,
Lionel Montrieux, Othon Crelier, Michalis Petropoulos, Thanos Papathanasiou,
Reynold Xin, and Matei Zahari. 2025. Databricks Lakeguard: Supporting fine-
grained access control and multi-user capabilities for Apache Spark workloads.
In Proceedings of the 2025 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’25). Association for Computing Machinery, New York, NY,
USA.

[18] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the case for
simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1917–1923.
https://doi.org/10.1145/2723372.2742795

[19] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An intel-
ligent data lake system. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco, California, USA) (SIGMOD ’16). As-
sociation for Computing Machinery, New York, NY, USA, 2097–2100. https:
//doi.org/10.1145/2882903.2899389

[20] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven EuijongWhang. 2016. Goods: Organizing Google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 795–806. https://doi.org/10.1145/2882903.2903730

[21] Joseph M. Hellerstein, Vikram Sreekanti, Joseph E. Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka Bhat-
tacharyya, Shirshanka Das, Mark Donsky, Gabriel Fierro, Chang She, Carl Stein-
bach, Venkat Subramanian, and Eric Sun. 2017. Ground: A data context ser-
vice. In 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2017/papers/p111-hellerstein-cidr17.pdf

[22] Hive Metastore administration. 2025. https://cwiki.apache.org/confluence/
display/Hive/AdminManual+Metastore+Administration.

[23] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[24] Iceberg REST Catalog API. 2025. https://github.com/apache/iceberg/blob/main/
open-api/rest-catalog-open-api.yaml.

[25] Phokion G. Kolaitis. 2005. Schema mappings, data exchange, and metadata
management. In Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (Baltimore, Maryland) (PODS ’05).
Association for Computing Machinery, New York, NY, USA, 61–75. https://doi.
org/10.1145/1065167.1065176

[26] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-DS. In
Proceedings of the 32nd International Conference on Very Large Data Bases (Seoul,
Korea) (VLDB ’06). VLDB Endowment, 1049–1058.

[27] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data lake management: Challenges and opportunities. Proc. VLDB
Endow. 12, 12 (Aug. 2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[28] OneLake, the OneDrive for data. 2025. https://learn.microsoft.com/en-gb/fabric/
onelake/onelake-overview.

[29] Postgres Catalog. 2025. https://www.postgresql.org/docs/current/catalogs.html.
[30] Predictive optimization for Unity Catalog managed tables. 2025. https://docs.

databricks.com/en/optimizations/predictive-optimization.html.
[31] Snowflake Horizon Catalog. 2025. https://www.snowflake.com/en/data-cloud/

horizon/.
[32] Trino: a query engine. 2025. https://trino.io/.
[33] Weights and Biases. 2025. https://wandb.ai/site/.
[34] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy

Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. 2018. Accelerating the Machine Learning lifecycle
with MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45. http://sites.computer.org/
debull/A18dec/p39.pdf

[35] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lakehouse:
A new generation of open platforms that unify data warehousing and advanced
analytics. In 11th Conference on Innovative Data Systems Research, CIDR 2021,
Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

[36] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A unified engine for big data processing. Commun. ACM 59, 11 (Oct. 2016),
56–65. https://doi.org/10.1145/2934664

https://iceberg.apache.org/
https://polaris.apache.org/
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://courses.cs.washington.edu/courses/csep544/04sp/lectures/bernstein03.pdf
https://courses.cs.washington.edu/courses/csep544/04sp/lectures/bernstein03.pdf
https://cloud.google.com/biglake
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1145/3299869.3314045
https://github.com/delta-io/delta/issues/4381
https://cloud.google.com/dataproc-metastore/docs/overview
https://cloud.google.com/dataproc-metastore/docs/overview
https://docs.delta.io/latest/delta-deletion-vectors.html
https://docs.delta.io/latest/delta-deletion-vectors.html
https://github.com/delta-io/delta-sharing/blob/main/PROTOCOL.md
https://github.com/delta-io/delta-sharing/blob/main/PROTOCOL.md
https://docs.delta.io/latest/delta-uniform.html
https://docs.delta.io/latest/delta-uniform.html
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1145/2882903.2903730
http://cidrdb.org/cidr2017/papers/p111-hellerstein-cidr17.pdf
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml
https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml
https://doi.org/10.1145/1065167.1065176
https://doi.org/10.1145/1065167.1065176
https://doi.org/10.14778/3352063.3352116
https://learn.microsoft.com/en-gb/fabric/onelake/onelake-overview
https://learn.microsoft.com/en-gb/fabric/onelake/onelake-overview
https://www.postgresql.org/docs/current/catalogs.html
https://docs.databricks.com/en/optimizations/predictive-optimization.html
https://docs.databricks.com/en/optimizations/predictive-optimization.html
https://www.snowflake.com/en/data-cloud/horizon/
https://www.snowflake.com/en/data-cloud/horizon/
https://trino.io/
https://wandb.ai/site/
http://sites.computer.org/debull/A18dec/p39.pdf
http://sites.computer.org/debull/A18dec/p39.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Unity Catalog Overview
	3.1 Databricks Lakehouse Platform
	3.2 Object Model
	3.3 Privilege Model
	3.4 Life of a SQL Query

	4 System Design
	4.1 Catalog-Engine Separation
	4.2 Support for Diverse Asset Types
	4.3 Uniform Access Control
	4.4 Discovery Catalog Support
	4.5 Performance

	5 Implementation
	6 Unity Catalog in Practice
	6.1 Aggregate Usage Statistics
	6.2 Evidence for Unity Catalog's Key Challenges
	6.3 New Applications Enabled by Unity Catalog

	7 Conclusion
	References

