arXiv:2509.03310v2 [cs.Al] 9 Jan 2026

APP.BUILD: A PRODUCTION FRAMEWORK FOR SCALING
AGENTIC PROMPT-TO-APP GENERATION WITH ENVIRONMENT

*
SCAFFOLDING
A PREPRINT
Evgenii Kniazev':f Arseny Kravchenko!f Igor Rekun®f James Broadhead'
Nikita Shamgunov! Pranav Sah? Pratik Nichite?

Ivan Yamshchikov?

! Databricks
2THWS University of Applied Sciences Wiirzburg-Schweinfurt (CAIRO)
YEqual contribution

eng-appbuild@databricks.com

ABSTRACT

Engineering teams increasingly experiment with LLM agents to synthesize full-stack web applica-
tions, yet production reliability and code generation reproducibility remain the blocking issues. On-
going improvements of foundational models alone do not reliably translate into deployable software;
what matters in practice is the environment that constrains, validates, and repairs model outputs.

We present the app.build framework and report our industrial experience using environment scaffold-
ing (stack-aware generate— validate—repair loops, sandboxed execution, and policy gates) to turn
prompt-to-app generation into a dependable workflow. We conducted 300 end-to-end generation ex-
periments with automated validation metrics, complemented by detailed human quality assessment
on 30 representative prompts. The framework has been deployed in production and generated 3000+
user applications during 4 months of operation.

Across end-to-end app-building tasks, structured validators and code execution isolation improve the
rate of viable apps (viability = pass boot + prompt-correspondence smoke checks) to 73.3% in our
tests, while generic end-to-end browser tests introduce brittleness. Large-scale automated metrics
(n=300) reveal that open-weights models achieve 80.8% performance of top closed model at 8.2
lower cost per viable app, with validation ablations showing lightweight smoke checks and backend
contract tests deliver most reliability lift, whereas broad end-to-end suites often reject working apps.

This paper frames the problem as a software engineering challenge (reliability, maintainability, and
cost in agentic development), provides a reproducible evaluation protocol validated at production
scale, and distills lessons for practitioners deploying LLM agents. We release the open-source
framework (650+ stars) and an artifact to reproduce the main tables.

Keywords software engineering - code generation - LLM agents - validation - environment scaffolding

1 Introduction

1.1 The Production Reliability Gap

The promise of Large Language Model (LLM) agents for automated software development has attracted significant
industrial interest, yet a critical gap persists between research benchmarks and production requirements. While re-
search systems demonstrate impressive capabilities on isolated benchmarks—HumanEval [Chen et al., 2021] leaders

*Accepted to SANER 2026 Industrial Track. Code: https://github.com/neondatabase/appdotbuild-agent

https://github.com/neondatabase/appdotbuild-agent
https://arxiv.org/abs/2509.03310v2

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

achieve 90%+ pass rates on function-level tasks, and LiveCodeBench [Jain et al., [2024] reaches over 80% on real
GitHub issues—these metrics do not translate to deployable software in industrial contexts.

The gap manifests in three critical dimensions that affect practitioner adoption:

Reliability under constraints. Production systems must operate within fixed time and cost budgets while maintaining
deterministic quality gates. LLMs generate probabilistically, producing syntactically correct code that fails integration
tests, violates security policies, or exhibits subtle runtime defects [Liu et al., 2023].

Reproducibility and debugging. When generation fails, practitioners need actionable diagnostics. Model-centric ap-
proaches offer little guidance for iterative refinement. Practitioners need structured validation feedback that pinpoints
specific failure modes, so that repairs can be targeted effectively.

Economic viability. At scale, token costs and iteration cycles determine feasibility. Closed frontier models like Claude
Sonnet 4 [Anthropic, 2024] achieve high success rates but at significant costs. For teams generating hundreds of
applications, these costs compound rapidly. The industry needs cost-performance tradeoffs: where can open-weights
models substitute for frontier models? What validation overhead is justified by reliability gains?

We claim that leaning on model-only improvements is insufficient. The prevailing approach treats reliability as a model
capability problem—scale parameters, improve training data, refine prompts. However, our production experience
generating thousands of applications reveals that environment design matters more than model selection for industrial
deployment. A frontier model without validation produces unreliable apps; industry needs explicit tradeoffs between
cost, speed, and correctness. Production-ready systems require frameworks that integrate validation, isolation, and
repair as first-class concerns—not post-hoc additions to model outputs. Recent surveys [Jiang et al.,[2024, |Paul et al.,
2024] note the field requires a shift from model-centric to environment-centric design.

1.2 Our Approach: Environment Scaffolding

Definition. We define environment scaffolding (ES) as an environment-first paradigm for LLM-based code generation
where the model operates inside a structured sandbox that constrains actions and provides continuous, deterministic
feedback. Rather than relying on larger models or prompt-only techniques, ES improves the context around the model
— shaping the action space, providing templates and tools, and validating each step — so that creativity is channeled
into safe, verifiable outcomes.

How environment scaffolding works in practice Environment scaffolding structures LLM-based code generation
around four core practices that address production reliability requirements:

Structured task decomposition. Rather than asking the model to generate an entire application at once, we break
work into explicit stages (schema — Application Programming Interface (API) — User Interface (UI)) with defined
inputs, outputs, and success criteria. This matches how developers actually build software and makes failures easier
to diagnose.

Multi-layered validation. After every generation step, deterministic checks run automatically: linters catch syntax
errors, type-checkers verify contracts, unit tests validate logic, and smoke tests ensure the app boots. Failures trigger
immediate repair loops before moving forward, preventing error accumulation.

Runtime isolation. Every generation and test runs in an isolated sandbox with ephemeral state. If the model generates
code that crashes or corrupts data, the container resets cleanly. This enables aggressive trial-and-error without risk to
production systems.

Model-agnostic design. The scaffolding layer sits between your workflow and the LLM, allowing you to swap models
(e.g., from Claude to Qwen) without rewriting validation logic. This protects against vendor lock-in and enables cost-
performance optimization.

Why this differs from model-centric approaches Most existing systems prompt an LLM to generate code
and then validate the complete output. This works for simple scripts but fails for full-stack applications where
a single integration error can invalidate hours of generation work. Environment scaffolding instead enforces
generate—validate—repair at each step, catching errors early when they are cheap to fix. Figure [T] and Table [T} il-
lustrate this architectural difference.

1.3 Contributions

Our work advances environment-first agent design. The main contributions are:

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

(a) Model-Centric (b) Environment Scaffolding

One-shot output User
(unchecked)

= I "

i Late Tests LLM

! repat
i -

| v

H R

Sandbox Validation
High failure rate (isolated) Pipeline

Manual debugging, prompt engineering required /
Characteristics: Accepted Artifacts

Key Properties:

Orchestrator (FSM)

User =t Prompt & LLM —E>t
structured sub-tasks

Bt Spec/Intent —

« Unstructured generation -
« Structured decomposition
+ Minimal validation o
« Early validation
« Brittle iteration cycles)
* Automated repair

+ High model depend
igh model dependence = Isolated execution

Figure 1: Environment scaffolding vs. model-centric generation. ES wraps the model with a finite, validated
workflow that catches errors early and repairs them before proceeding.

Table 1: Environment Scaffolding (ES) vs. Model-Centric

Generation

Aspect Model-Centric ES (Ours)

Task decomp. Single/loosely Explicit FSM: schema
guided; no fixed — API— UI
structure

Validation Late or ad-hoc Per-step: linters,

types, tests

Error recov- Manual/ad-hoc Auto repair loop w/

ery feedback

Execution Often on host Isolated containers

Model dep. Strong (prompt- Model-agnostic
specific)

Observability Limited logs Per-step metrics, arti-

facts

¢ Environment Scaffolding Paradigm. We formalize environment scaffolding (ES) and show how structuring
the action space with per-step validation enables reliable code generation without model-specific tricks.

* Open-Source Framework (app.build). We release an implementation of ES that targets three stacks (Type-
Script/tRPC, PHP/Laravel, Python/NiceGUI) and ships with validators and deployment hooks. The frame-
work has gained 650+ GitHub stars and 89 forks, demonstrating practitioner adoption.

* Two-Tier Empirical Evaluation. We conduct 300 end-to-end generation experiments with automated met-
rics (success rate, cost, tokens, duration) plus detailed human evaluation on 30 representative prompts with
6-criteria quality rubric. This methodology combines automated consistency checks at scale with manual
viability assessment on representative samples.

* Production-Scale Validation. The framework has been deployed in production since June 2025, generating
over 3000 user applications during the first 4 months with hundreds of applications generated daily at peak
usage, providing ecological validity beyond controlled experiments.

¢ Cost-Performance Analysis. We quantify validation overhead through token usage and cost-per-viable-app
metrics, showing open-weights models (Qwen3) achieve 70% success at 8.2x lower cost ($0.61 vs $5.01 per
viable app), while validation ablations reveal that comprehensive testing increases costs by $40 per cohort
but catches real defects.

* Methodological Insight. We find that improving the environment (constraints, tests, repair loops) often
matters more than scaling the model for production reliability, with lightweight smoke tests and backend
validation providing most gains while End-to-End (E2E) browser tests introduce brittleness.

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

2 Related Work

Repository-level agentic SE (2024-2025). The evolution of Al coding agents has progressed from code completion
to autonomous software engineering systems. SWE-bench [Jimenez et al., 2024 established the evaluation standard
with 2,294 real GitHub issues from 12 Python projects. Recent agents demonstrate that environment design rivals
model capability: OpenHands [Wang et al., 2024, published at ICLR 2025, achieves 53% on SWE-bench Verified
through an open platform for generalist agents with agent-computer interfaces. SWE-agent [Yang et al.|2024] showed
12.5% pass@1 through careful interface design rather than model improvements. Contemporary 2024 agents include
AutoCodeRover [Zhang et al.| 2024]], which combines LLMs with spectrum-based fault localization (19% on SWE-
bench, $0.43 per issue), and Agentless [Xia et al., 2024, challenging architectural complexity with a simple three-
phase process (localization, repair, validation) achieving 32% on SWE-bench Lite.

Validation and environment scaffolding. Production-ready code generation requires validation beyond correctness
testing. While early explorations in this space focused on code change classification [Kniazev} [2008]], modern frame-
works now integrate validation at multiple layers. Test-driven approaches [Fakhoury et al., 2024] achieve 45.97%
absolute improvement in pass@1 through interactive generation with dynamic test feedback. AST-based valida-
tion [Gong et al., 2024] provides structural guarantees, with AST-T5 outperforming CodeT5 by 2-3 points through
structure-aware pretraining. Tree search methods [Li et al.,[2025]] demonstrate that scaling compute through iterative
refinement and parallel branches can significantly improve success rates. Multi-agent systems [Hong et al.| 2024]]
show that role-based collaboration with structured validation outperforms single-agent approaches, achieving 85.9%
pass@1 on HumanEval with 100% task completion on development tasks. For web application generation, sandboxed
execution with database provisioning and browser emulation is essential for isolating and validating complex multi-tier
systems.

3 Industrial Context & System

3.1 Problem Formulation

LLM-based code generation enables rapid prototyping but often produces code that does not meet production stan-
dards. We formalize this as an environment design problem where success depends not just on model capability but
on the structured constraints and validation feedback provided by the generation environment.

3.2 Architecture

High-level design. The app.build agent implements ES with a central orchestrator that decomposes a user’s specifi-
cation into stack-specific stages and executes each stage inside an isolated sandbox with validation before acceptance.
The same workflow applies across supported stacks (TypeScript/tRPC, PHP/Laravel, Python/NiceGUI), selected for
their deterministic scaffolding patterns and comprehensive validator availability (TypeScript/ESLint/Playwright, PH-
PStan/Laravel feature tests, pytest/ruff/pyright). Per-stage validators are stack-aware, and the platform provisions
managed Postgres databases and CI/CD hooks.

Execution loop. For each sub-task, the agent (i) assembles minimal context (files, interfaces, constraints), (ii) prompts
the LLM, (iii) executes the result in a sandbox, (iv) collects validator feedback, and (v) either accepts the artifact or
re-prompts to repair. This iterative loop provides robustness without assuming a particular model, and scales by
parallelizing sandboxes and caching environment layers.

4 Experimental Setup

We designed experiments using a custom prompt dataset and metrics to evaluate viability and quality of generated
applications.

4.1 Evaluation Framework

Our evaluation methodology addresses the core challenge of assessing prompt-to-app generation systems: validating
that generated applications not only compile and boot, but actually implement the requested functionality correctly.
We combine manual-heavy viability assessment with automated checks across 300 end-to-end experiments, where
every generated application undergoes deterministic validation followed by human review on a representative subset.

Two-tier evaluation design. We conduct 300 end-to-end generation runs with automated checks measuring boot suc-
cess, smoke test passage, cost, token usage, and duration. These automated gates provide fast, deterministic feedback

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT
Stack Adapters
User I Orchestrator Validators
ec/Inte - ESL
Spec/Intent (FSM) Data Model Actor Ul/Frontend Actor db nt
Stack selection Schema gen Components Manager + TypeScript
anagel
iy L — (containers) O™
J] <l7 1 * pytest
: « ruff
API/Backend Actor : J] o)
Task Runner Route handlers i . * Playwright
. : Validation « Laravel
Generate — Validate I >t
A A Layer
- Repair : W + Feature
: accepted (lint, type, test) lests
context

LLM Backends
(pluggable)

Database

(generic, provisioned)

R Claue, GPT, Gemini___________ '

Legend:

Control flow
"""" Data flow

""" Feedback loop

1
| 1 Component group

Figure 2: app.build architecture expressed through environment scaffolding. The orchestrator plans stages per stack;
each sub-task runs in a sandbox, is validated, and only then merged. Continuous Integration/Continuous Deployment
(CI/CD) and database provisioning are integrated.

but cannot assess functional correctness or usability. For viability assessment, human evaluators systematically test
30 representative applications using a structured 6-criteria rubric (Section[4.4)), verifying that generated apps correctly
implement requested functionality, handle edge cases, and meet production quality standards. This manual assessment
is essential because automated metrics alone cannot detect integration bugs, incorrect business logic, or poor UX that
would block production deployment.

Viability vs. quality distinction. We separate binary viability (V' € {0, 1}) from continuous quality (Q € [0, 10]).
Viability requires only that an application boots successfully and demonstrates basic prompt correspondence—a mini-
mal threshold for deployment consideration. Quality scoring evaluates correctness, completeness, error handling, and
code maintainability through systematic human assessment. This distinction reflects industrial practice: automated
gates filter non-viable candidates before human review evaluates deployment readiness.

Production-scale validation. Beyond controlled experiments, we validate the framework through production deploy-
ment metrics. Since June 2025, the system has generated over 3000 user applications with peak usage exceeding
220 apps/day (Section [3). Production data provides ecological validity showing the framework operates reliably with
diverse real-world requirements beyond our curated test set.

Cost-performance tradeoffs. All experiments track token consumption (input/output) and API costs to quantify
validation overhead. We report both total cost per generation cohort and cost-per-viable-app to reveal true economics:
validation may increase upfront costs but reduces the effective cost of successful outcomes by filtering failures early.

4.2 Prompt Dataset

The evaluation dataset comprises 30 prompts designed to assess system performance across diverse application devel-
opment scenarios. Independent human contributors with no prior exposure to the app.build system created evaluation
prompts. Contributors developed tasks reflecting authentic development workflows from their professional experience.
Prompts were filtered to exclude enterprise integrations, AI/ML compute requirements, or capabilities beyond frame-
work scope. Raw prompts underwent automated post-processing using LLMs to anonymize sensitive information and
standardize linguistic structure. The resulting dataset consists of 30 prompts spanning a complexity spectrum (low:

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

static/single-page UI; medium: single-entity Create, Read, Update, Delete (CRUD); high: multi-entity/custom logic).
See the full list of prompts in Appendix

Each application generated by the agent was evaluated by the following metrics, designed to assess its viability and
quality under preset time and cost constraints.

* Viability rate (V' = 1) and non-viability rate (V = 0)

* Perfect quality rate (Q = 10) and quality distribution (mean/median for V' = 1 apps)
* Validation pass rates by check (AB-01 through AB-06, defined in Section4.4)

* Quality scores (), 0—10) using the rubric in Section4.4]

* Model/cost comparisons where applicable

4.3 Experimental Configurations

We designed three experimental configurations to systematically evaluate factors affecting app generation success
rates:

Configuration 1: Baseline. We generated baseline tRPC apps with default production setup and all checks ON to
assess default generation success rate, cost and time.

Configuration 2: Model Architecture Analysis. Using the tRPC stack, we evaluated open versus closed foundation
models. Claude Sonnet 4 served as the baseline coding model, compared against Qwen3-Coder-480B-A35B [Yang
et al.,[2025[] and GPT OSS 120B [OpenAl et al., [2025]] as open alternatives.

Configuration 3: Testing Framework Ablation. We conducted three ablation studies on the tRPC stack isolating the
impact of each type of checks by turning them off independently: (3a) disabled isolated Playwright UI smoke tests;
(3b) disabled ESLint checks; and (3c) removed handlers tests, eliminating backend validation.

4.4 Assessor Protocol and Scoring

To systematically assess generated application quality, we implement a structured evaluation protocol comprising six
standardized functional checks executed by human assessors. The evaluation reports two independent outcomes: a
binary viability indicator (V') and a 0-10 quality score (@Q)). The complete assessor handbook with detailed grading
criteria and example graded applications is publicly available [Kniazev et al.|[2025].

Viability (binary):
1 if AB-01 and AB-02 are not FAIL
V= . (1)
0 otherwise
Quality (0-10):
X S¢
Q — 10 x Zeea WX % @

Z(:EA w

where A is the set of applicable checks (excluding NA); all checks use equal weights prior to NA re-normalization;
and per-check grades s. are mapped as follows:

¢ AB-01 (Boot): PASS = 1.0, WARN = 0.5, FAIL =0.0
* AB-02 (Prompt Correspondence): PASS = 1.0, WARN = 0.5, FAIL = 0.0

e AB-03 (Create Functionality), AB-04 (View/Edit Operations), AB-05 (Clickable Sweep): PASS = 1.0,
WARN = 0.5, FAIL = 0.0

* AB-06 (Performance): continuous metric normalized to [0, 1]

5 Results

5.1 Production Deployment and Community Adoption

The app.build framework has been deployed in production since June 2025, demonstrating real-world viability beyond
controlled experiments. The open-source repository (https://github.com/neondatabase/appdotbuild-age

https://github.com/neondatabase/appdotbuild-agent
https://github.com/neondatabase/appdotbuild-agent

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Table 2: Check Weights and Definitions Used in Scoring

Check ID Description Weight Notes

AB-01 Boot 1/6 Hard gate for V'

AB-02 Prompt Correspondence 1/6 Hard gate for V'

AB-03 Create Functionality 1/6

AB-04 View/Edit Operations 1/6

AB-05 Clickable Sweep 1/6

AB-06 Performance 1/6 Normalized to
[0,1]

See Section [f-4] for rubric details. All weights equal after NA re-
normalization. AB-01 and AB-02 are hard gates for viability (V).

© Star History

so0ll® appdotbuild/agent

500

s
<]
S

GitHub Stars
o
o
o

200

100

April July October
Date star—history.com

Figure 3: GitHub star growth trajectory for appdotbuild/agent repository showing 13x growth over 5 months (May-
October 2025), with inflection point in June 2025 coinciding with production deployment launch. The sustained
upward trajectory through October 2025 indicates genuine practitioner adoption rather than transient interest. Data
from star-history.com.

saL a8 - saL 2 -
Apps Created x Apps Deployed Amount of users last 30 days

180
200 120

100
150 &0

60

Figure 4: Production usage metrics demonstrating real-world deployment scale. Left: Daily application creation and
deployment activity showing peak usage of 220+ apps/day in early August 2025. Right: User growth trajectory over
30 days showing rapid adoption spike coinciding with peak usage period, reaching 160+ active users. Data from
production database analytics.

nt)) has gained significant community traction with 650 stars and 89 forks as of October 2025, indicating strong
practitioner interest in environment-first approaches to agentic code generation.

Figure 3] shows the repository’s star growth trajectory, revealing an inflection point in June 2025 when the framework
reached production maturity. The repository grew from approximately 50 stars to 650+ stars over five months, repre-
senting 13x growth with peak velocity exceeding 100 stars per month during August-September 2025. This organic
adoption pattern—characterized by sustained acceleration rather than a single viral spike—suggests the framework
addresses genuine practitioner needs.

At peak usage, the platform generated hundreds of applications daily (Figure[d] left panel shows peak of 220+ apps/day
in early August 2025), with over 3000 user applications generated during the first 4 months (June-October 2025). The

https://github.com/neondatabase/appdotbuild-agent
https://github.com/neondatabase/appdotbuild-agent

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Table 3: Large-Scale Automated Results Across 300 Experiments

Configuration n Success HC Pass Cost Dur.(s)
Baseline (Claude) 30 86.7% 96.7% $110.20 478
No Lint 30 93.3% 96.7% $70.49 496
No Playwright 30 83.3% 93.3% $86.17 463
No Tests 30 93.3% 100% $71.05 373
Qwen3-480B 90 70.0% 86.7% $12.68 629

GPT-OSS-120B 90 30.0% 43.3% $4.55 628

Success = automated healthcheck (AB-01) + template validation (AB-02) passed;
excludes template-only apps with zero functionality. HC Pass = healthcheck (AB-
01) only; includes both functional apps and non-functional templates. Cost = total
for cohort. Dur. = mean per-app duration. Open model experiments used simplified
validation pipeline (AB-01 + AB-02 only).

concurrent user growth spike (Figure [4] right panel) demonstrates sustained platform adoption beyond initial experi-
mentation. This production-scale validation complements our controlled experiments: while our systematic evaluation
uses 30 prompts with detailed human assessment and 300 experiments with automated metrics, the production deploy-
ment provides ecological validity showing the framework operates reliably in uncontrolled real-world conditions with
diverse user requirements.

The community adoption metrics (650+ stars, 89 forks) position app.build among actively-used open-source agent
frameworks, demonstrating that practitioners value systematic environment scaffolding for production reliability over
model-only approaches. The correlation between production deployment launch (June 2025) and rapid community
growth validates the industrial relevance of our environment-first approach.

5.2 Two-Tier Evaluation Methodology

Our evaluation combines automated checks with manual viability assessment. We conducted 300 end-to-end gen-
eration experiments across baseline and ablation conditions, collecting objective metrics (success rate, healthcheck
pass rate, cost, duration, token usage) for each run. The automated “healthcheck” corresponds to AB-01 (Boot), while
full viability assessment requires both AB-01 and AB-02 (Prompt Correspondence) as defined in Section[d.4] These
automated checks enable consistent measurement and cost-effectiveness analysis across configurations. For viabil-
ity validation, we performed detailed human evaluation on 30 representative prompts using the AB-check rubric
(Section[4.4)), providing nuanced assessment of functional correctness and production readiness that automated metrics
cannot capture.

This two-tier approach reflects industrial practice: automated metrics enable systematic comparison across model
architectures and validation strategies, while human evaluation validates that generated applications actually work for
their intended purpose. Automated gates filter obviously broken candidates, but human assessors determine whether
apps meet production deployment criteria.

5.3 Automated Validation Results at Scale (n=300)

Table 3] presents aggregated results from 300 automated experiments across all conditions. The baseline configuration
(Claude Sonnet 4 with full validation) achieved 86.7% automated success rate at $110.20 total cost for 30 apps. Open-
weights models show cost-performance tradeoffs: Qwen3-Coder-480B achieved 70% success at $12.68 total cost,
delivering an 8.2x cost reduction per viable app ($0.61 vs $5.01), while validation ablations reveal systematic patterns
discussed in subsequent sections.

Key findings from automated metrics: (1) Removing comprehensive validation (no_lint, no_tests) increases automated
success by +6.7% but reduces costs by $40, suggesting validators catch real issues at measurable expense. (2) Play-
wright removal has minimal impact on automated success (-3.3%) while saving $24, indicating E2E brittleness. (3)
Open models achieve viable cost-performance tradeoffs for less critical applications.

5.4 Cost and Token Usage Analysis

Detailed telemetry from 300 experiments reveals systematic resource consumption patterns. The baseline configura-
tion (Claude Sonnet 4, full validation) consumed 27.7M input tokens and 1.8M output tokens across 30 apps, averaging

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Table 4: Resource Consumption Breakdown by Configuration

Config InTok OutTok Cost Viable

/App /App /App Cost
Baseline 923K 60K $3.67 $5.01
No Lint 531K 50K $2.35 $2.52
No Playwright 694K 53K $2.87 $3.45
No Tests 531K 52K $2.37 $2.54
Qwen3-430B 728K 26K $0.42 $0.61
GPT-OSS-120B 732K 26K $0.15 $0.51

Tok/App = tokens per application (K = thousands). Viable Cost = cost
per viable app (total cost/ viable count). Open models via OpenRouter
at reduced rates.

Table 5: Aggregated Evaluation Results for TypeScript/tRPC (n = 30)

Metric Value Note

Total Apps 30 tRPC stack only
Viability (V = 1) 73.3% 22/30 viable
Perfect (QQ = 10) 30.0% 9/30 perfect
Non-viable (V =0) 26.7% 8/30 failed
Mean Quality 8.78 V =1 apps only

Viability V' and quality @@ defined in Sec-
tion[f:4] Perfect = all checks PASS; non-viable
= AB-01 (Boot) or AB-02 (Prompt Correspon-
dence) FAIL.

923K input and 60K output tokens per app. This translates to $3.67 per app at standard API rates ($3/M input, $15/M
output).

The cost-per-viable-app metric reveals validation overhead: baseline achieves viability at $5.01 per app (22/30 viable),
while removing unit tests reduces this to $2.54 (24/30 viable) despite similar per-generation costs. This indicates that
comprehensive validation both increases initial costs and filters marginal cases, raising the effective cost per successful
outcome.

Open-weights models demonstrate dramatic cost advantages: Qwen3-Coder-480B generates viable apps at $0.61 each
(8.2x cheaper than Claude baseline), though at reduced success rates (70% vs 86.7%). For large-scale deployment or
less critical applications, this represents a viable engineering tradeoff.

Token efficiency varies by validation configuration: linting and unit tests consume substantial input tokens through
multi-round validation cycles (baseline: 923K vs no_tests: 531K), suggesting that validation rigor directly impacts
computational cost. The output token counts remain relatively stable (50K-60K), indicating that validation affects
iteration count more than generation verbosity.

5.5 Detailed Quality Assessment (Human Evaluation, n=30)

Evaluating 30 TypeScript/tRPC applications, we observe that 73.3% (22/30) achieved viability (V' = 1), with 30.0%
attaining perfect quality (@) = 10) and 26.7% non-viable (V' = 0). Once viability criteria are met, generated applica-
tions exhibit consistently high quality.

Smoke tests (AB-01, AB-02) determine viability. Among viable applications (V = 1, n = 22), quality averaged 8.78
with 77.3% achieving () > 9. Non-viability (V' = 0) arises from smoke test failures or missing artifacts.

5.6 Open vs Closed Model Performance

We evaluated Claude Sonnet 4 against two open-weights models using the TypeScript/tRPC stack with simplified
validation pipeline (AB-01 Boot + AB-02 Prompt Correspondence only) ensuring the app is bootable and renders
correctly. Claude achieved 86.7% success rate, establishing our closed-model baseline at $110.20 total cost. Qwen3-
Coder-480B-A35B reached 70% success rate (80.8% relative performance) while GPT OSS 120B managed only 30%
success rate. Both open models were accessed via OpenRouter, resulting in significantly lower costs: $12.68 for
Qwen3 and $4.55 for GPT OSS.

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Table 6: Check-Specific Outcomes Across n = 30 Tasks

Check Pass Warn Fail NA
AB-01 (Boot) 25 2 3 0
AB-02 (Prompt Correspondence) 19 3 5 3
AB-03 (Create Functionality) 22 2 0 6
AB-04 (View/Edit Operations) 17 1 1 11
AB-05 (Clickable Sweep) 20 4 1 5
AB-06 (Performance) 23 3 0 4

See Section for grading criteria. NA = not applicable
for prompt type. Pass rates (excl. NA): AB-01 (Boot):
83.3%, AB-02 (Prompt Correspondence): 70.4%, AB-03
(Create Functionality): 91.7%, AB-04 (View/Edit Opera-
tions): 89.5%, AB-05 (Clickable Sweep): 80.0%, AB-06
(Performance): 88.5%.

The performance gap reveals that environment scaffolding alone cannot eliminate the need for capable foundation
models. However, leading open-weights models like Qwen3 demonstrate that structured environments can enable
production-viable performance at substantially reduced costs. The 8.2x cost reduction per viable app for 19% perfor-
mance loss represents a viable tradeoff for many production scenarios.

Template detection reveals inflated success rates. Our evaluation uncovered a critical issue: many apps that pass
healthcheck validation are non-functional "Under Construction" templates with zero functionality. For GPT-OSS-
120B, 43.3% passed AB-01 (Boot), but only 30.0% passed both AB-01 and AB-02 (Prompt Correspondence), with
manual inspection revealing that a substantial portion of bootable apps were generic placeholder scaffolding rather
than functional implementations. In contrast, Qwen3-Coder-480B-A35B achieved 86.7% healthcheck pass and 70.0%
true success, showing better prompt adherence with fewer template generations. The Success column in Table[3|reports
only viable non-template apps that passed AB-02 validation, while HC Pass includes all bootable apps regardless of
functionality, demonstrating why boot checks alone are insufficient for evaluating code generation quality.

Operational characteristics differed notably between model types. Open models required more validation retries,
evidenced by higher LLM call counts (4,359 for Qwen3, 4,922 for GPT OSS vs 3,413 for Claude). AB-01 (Boot) pass
rates (86.7% for Qwen3 vs 96.7% for Claude) indicate open models generate syntactically correct code but struggle
with integration-level correctness, emphasizing the importance of comprehensive validation.

5.7 Ablation Studies: Impact of Validation Layers

To understand how each validation layer contributes to application quality, we conducted controlled ablations on the
same 30-prompt cohort, systematically removing one validation component while keeping others intact. The baseline
configuration (all validation layers active) achieved 73.3% viability with mean quality score () = 8.06.

Unit test removal trades quality for apparent viability. Disabling backend handler tests increased viability to 80.0%
(+6.7 pp) but reduced mean quality to Q = 7.78 (—0.28). This paradox reflects that unit tests catch critical CRUD
errors: apps boot successfully without them but fail on data operations. AB-04 (View/Edit Operations) pass rates
dropped from 90% to 60%, indicating that backend validation prevents functional regressions that smoke tests cannot
detect. The increased viability metric reflects false positives: apps that appear viable but contain latent data integrity
bugs.

Linting removal shows mixed effects with modest gains. Removing ESLint checks increased viability to 80.0%
(+6.7 pp) and slightly improved quality to Q = 8.25 (+0.19), suggesting some lint rules may be overly restrictive.
However, AB-03 (Create Functionality) dropped 8.3 pp and AB-04 (View/Edit) dropped 7.6 pp, indicating ESLint does
catch legitimate structural issues. The net positive quality score indicates that strict linting can reject valid alternative
implementations, though the effect size is small.

E2E test removal significantly improves outcomes (a negative result). Removing Playwright tests produced the
strongest effect: viability increased to 90.0% (+16.7 pp) with quality improving to @) = 8.62 (+0.56). AB-02 (Prompt
Correspondence) improved +11.8 pp and AB-05 (Clickable Sweep) improved +5.7 pp. This counterintuitive result
indicates that E2E tests introduce more false rejections than they catch real defects. Manual inspection of failed
Playwright runs reveals three root causes of brittleness: (1) Over-specified selectors: tests hardcode element IDs
or CSS classes that models generate variably across runs, causing spurious failures despite functional correctness;
(2) Race conditions: E2E assertions check Ul state before async data fetching completes, rejecting apps that function

10

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

correctly under human-realistic interaction delays; (3) False negatives from implementation variance: models generate
semantically equivalent but structurally different Uls (e.g., modal dialogs vs inline forms) that satisfy requirements
but fail brittle assertions expecting specific Document Object Model (DOM) structure. This finding suggests that
comprehensive E2E suites designed for deterministic codebases are poorly suited to probabilistic code generation,
where implementation details vary across generation runs while functional correctness remains stable.

5.8 Synthesis: Optimal Validation Strategy

Our ablation results reveal systematic trade-offs between validation rigor and success metrics. Unit/handler tests prove
essential for data integrity: removing them increases perceived viability (+6.7 pp) but causes real functional regres-
sions, particularly in AB-04 (View/Edit Operations, —30 pp drop). ESLint provides modest value with measurable
false positives; the small net quality gain (+0.19) and mixed per-check effects suggest selective application of rules
targeting actual errors rather than style preferences. E2E tests currently cause more harm than good, with removal
yielding +16.7 pp viability and +0.56 quality improvement, indicating these tests reject too many working applica-
tions due to brittleness rather than correctness issues.

These findings suggest a pragmatic validation architecture optimized for probabilistic code generation: retain
lightweight smoke tests (boot verification and primary route checks) combined with backend unit tests for CRUD
operations, which together provide high-confidence quality gates; refine static analysis to focus on structural correct-
ness and known anti-patterns while relaxing stylistic rules that reject valid implementations; replace comprehensive
E2E suites with targeted integration tests covering only critical user paths, avoiding brittle assertions on implemen-
tation details. This configuration balances defect detection against false rejection rates. For scenarios where quality
requirements dominate cost constraints, comprehensive validation including strict E2E tests remains viable, trading
lower automated success rates (—16.7 pp) for stronger guarantees about production correctness.

5.9 Failure Mode Analysis

We systematically categorize observed failure modes and map them to AB check coverage. Boot/Load failures (tem-
plate placeholders, incomplete artifacts) are reliably caught by AB-01 (Boot) during server startup. Prompt correspon-
dence failures (generic templates from generation failures) are detected by AB-02 when human evaluators identify that
apps render successfully but implement incorrect functionality. Content Security Policy (CSP) restrictions (blocked
images or media) are partially caught by AB-05 (Clickable Sweep) through visual inspection, though automated
checks miss these unless they break critical flows. Ul interaction defects (unbound event handlers, non-functional
controls) are exposed by AB-05 and AB-03 (Create Functionality) through manual interaction; automated E2E tests
theoretically detect these but suffer from brittleness as documented in Section G. State/integration defects (data per-
sistence failures across refresh, broken filters, authentication issues) are caught by AB-04 (View/Edit Operations),
though backend unit tests provide only partial coverage and miss client-side state management bugs. Finally, compo-
nent misuse (runtime exceptions from incorrect composition) is detected by AB-01 or AB-05 depending on timing,
with TypeScript catching some violations at compile time while others surface only during manual testing.

Validation blind spots and proposed upgrades. Our AB check suite exhibits systematic coverage gaps across five
dimensions. First, accessibility violations go undetected; apps may function for able-bodied users but fail Web Content
Accessibility Guidelines (WCAG) standards. We propose integrating axe-core for automated accessibility auditing.
Second, mobile responsiveness remains unchecked as all validation uses desktop viewports; extending smoke tests to
include mobile viewport validation would address this. Third, performance degradation under load is not measured;
AB-06 assesses only initial load time, missing runtime performance issues. Lighthouse performance budgets could
provide continuous monitoring. Fourth, security vulnerabilities beyond CSP violations (Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), injection attacks) are not detected; static analysis via semgrep with OWASP
rulesets would provide defense-in-depth. Fifth, data consistency in concurrent scenarios and transaction isolation
remain untested; implementing multi-client test scenarios would validate state consistency guarantees. These pro-
posed upgrades would strengthen production readiness while maintaining the environment scaffolding paradigm of
deterministic, automated validation.

5.10 Prompt Complexity and Success Rate

We categorize prompts by complexity: low (static/single-page UI), medium (single-entity CRUD), high (multi-entity
workflows with custom logic), and analyze success patterns. Medium-complexity CRUD prompts achieve highest
quality (QQ = 9-10), reflecting strong scaffolding alignment with data models and handler patterns. Low-complexity
UI prompts prove non-uniformly easy: several failed AB-02 (Prompt Correspondence) by generating generic templates

11

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

rather than task-specific implementations. High-complexity prompts exhibit lower viability due to interaction wiring
and state-consistency issues surfaced by AB-04 (View/Edit Operations) and AB-05 (Clickable Sweep).

Trajectory patterns reveal scaffolding trade-offs. Manual inspection of generation logs exposes distinct model
reasoning patterns across complexity levels. For medium-complexity CRUD tasks, environment scaffolding provides
effective guidance: structured schema definitions constrain data models to valid patterns, type-safe API contracts
prevent interface mismatches, and immediate validator feedback enables targeted repairs within 1-2 iterations. Rep-
resentative trajectory (plant-care-tracker): schema generation passed immediately; API handlers failed unit tests
due to missing foreign key constraints, triggering repair with validator feedback; UI generation succeeded on first
attempt using type inference from validated API. This demonstrates the intended scaffolding workflow.

Conversely, for low-complexity Ul-only tasks, scaffolding introduces bias: models over-engineer solutions using
CRUD templates when simple static pages suffice, causing AB-02 failures. The framework’s database-first workflow
assumes backend requirements even when unnecessary. Failure example (birthday-wish-app): model generated
full API routes and database schema for a static greeting card, achieving technical correctness but failing prompt cor-
respondence. This reveals a structural limitation where strong scaffolding can constrain creativity for tasks outside the
target domain.

High-complexity tasks expose scaffolding’s context limits. Multi-entity relationships and custom business logic re-
quire models to maintain architectural context across multiple validation cycles spanning frontend-backend bound-
aries. Failures cluster in AB-04 (state management) when models lose track of data flow requirements. Validation
feedback successfully catches syntax errors but provides limited architectural guidance, forcing models into trial-and-
error that exhausts retry budgets before convergence. This suggests that scaffolding effectiveness degrades as task
complexity increases beyond the structured patterns the environment encodes.

5.11 Threats to Validity & Limitations

Our current framework is limited to CRUD-oriented data applications, focusing on structured workflows with well-
defined input-output expectations. While effective for common web application patterns, it does not yet support
complex systems or advanced integrations. The evaluation focused exclusively on the TypeScript/tRPC stack because
it is the most mature and well-supported stack in our framework, enabling the most reliable assessment of environment
scaffolding effectiveness. We chose web application generation as the evaluation domain because it represents the most
widely adopted use case among both closed-source commercial generators and academic end-to-end code generation
systems, providing a relevant benchmark for comparison. The validation pipeline, though comprehensive, relies on
domain-specific heuristics and expert-defined anti-patterns, which may not generalize to novel or edge-case designs.
Additionally, our human evaluation protocol, while rigorous, is poorly scalable and constrained by subjectivity in
assessing maintainability and user experience nuances.

Benchmark applicability. We do not evaluate on SWE-bench [Jimenez et al., [2024] or HumanEval [Chen et al.,
2021]] because these benchmarks target fundamentally different tasks: repository-level bug fixing and function-level
code completion, respectively. SWE-bench evaluates patch correctness against existing test suites in mature code-
bases, while our work generates complete applications requiring multi-layered validation (schema correctness, API
contracts, UI functionality, integration testing). The evaluation methodology mismatch is structural: existing bench-
marks assume deterministic test oracles, whereas greenfield application generation requires human assessment of
prompt correspondence, as our template detection findings demonstrate—353.6% of GPT-OSS-120B outputs passed
automated healthchecks but were non-functional placeholders. Our ablation studies provide baseline comparisons
that demonstrate environment scaffolding’s value: configurations with validation layers disabled show that remov-
ing backend tests increases apparent viability (+6.7pp) but causes CRUD correctness to drop 30pp, revealing that
comprehensive validation trades automated success metrics for functional correctness.

5.12 Ethics & Broader Impact

The AI agent boom is accelerating, but real industry deployments often fail silently. Without environment scaffold-
ing, we risk massive overengineering of Al models while ignoring the real bottleneck. App.build represents a shift
from model-centric to system-centric Al engineering—a critical step toward scaling reliable agent environments. As
practitioners emphasize [Babushkin and Kravchenko, [2025]], production Al systems only become effective when de-
velopment integrates not just model performance, but core software engineering principles. By open-sourcing both the
framework and evaluation protocol, we provide a reproducible, transparent foundation for building and benchmarking
agent environments at scale.

12

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Our results suggest that for CRUD-oriented web applications, structured environment scaffolding complements model
capability in achieving production reliability. Through systematic validation, stack-specific orchestration, and iter-
ative repair, app.build demonstrates how probabilistic language models can be guided toward dependable software
generation within constrained domains.

Ablations reveal clear trade-offs: removing unit tests increases apparent viability but reduces CRUD correctness;
removing linting yields small gains with modest regressions; removing Playwright tests improves outcomes by elim-
inating flaky UI checks. These results support retaining minimal smoke tests for boot and primary flows, structural
checks for Ul/code consistency, and scoped E2E tests for critical paths only.

For production-oriented agent systems in structured domains, environment engineering with targeted validation layers
offers a complementary path to scaling model capability, providing measurable improvements in reliability while
managing cost. As model capabilities continue to advance, the systematic integration of validation and iterative repair
remains essential for bridging the gap between probabilistic generation and deterministic production requirements.

Data and Artifact Availability

To support reproducibility, we release the following artifacts:

* Framework source code: Open-source implementation athttps://github.com/neondatabase/appd
otbuild-agent|(experiments used commit e362615 from August 14, 2025)

» Evaluation dataset: Generated applications, configuration files, and generation logs at https://github
.com/keugenek/app.build-publications/tree/main/analysis/dataset (evaluation conducted
August 19-20, 2025)

e Analysis and results: Experimental results, validation data, and one-command reproduction script
(run_analysis_and_compare.sh) at https://github.com/keugenek/app.build-publication
s/tree/main/analysis/results

* Evaluation assessor handbook: Detailed grading criteria, example graded applications, and raw human
assessment scores [Kniazev et al., [2025]

* Prompt dataset: Complete set of 30 evaluation prompts with complexity ratings (Appendix

* Docker environment: Reproducible sandbox configurations included in the framework repository

Acknowledgments

This submission is prepared in collaboration between Databricks (app.build team) and THWS University of Applied
Sciences Wiirzburg-Schweinfurt (CAIRO). We thank the app.build community for their contributions and feedback
which have been invaluable in shaping this work. Special thanks to Databricks executive team for supporting the
open-source initiative and providing resources for this research. We also thank David Gomes for advocating for the
community-centered vision that guided this project.

References

Anthropic. Claude 4 model card. https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f
3b2f£47.pdf}, 2024. Model card for Claude 4.

Valerii Babushkin and Arseny Kravchenko. Machine Learning System Design with End-to-End Examples. Manning
Publications, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374.

13

https://github.com/neondatabase/appdotbuild-agent
https://github.com/neondatabase/appdotbuild-agent
https://github.com/keugenek/app.build-publications/tree/main/analysis/dataset
https://github.com/keugenek/app.build-publications/tree/main/analysis/dataset
https://github.com/keugenek/app.build-publications/tree/main/analysis/results
https://github.com/keugenek/app.build-publications/tree/main/analysis/results
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://arxiv.org/abs/2107.03374

app.build: Environment Scaffolding for Agentic Code Generation A PREPRINT

Sarah Fakhoury, Saikat Chakraborty, Miltiadis Allamanis, and Shuvendu K. Lahiri. LIm-based test-driven interactive
code generation: User study and empirical evaluation, 2024. URL https://arxiv.org/abs/2404.10100.

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. Ast-t5: Structure-aware pretraining for code gener-
ation and understanding, 2024. URL https://arxiv.org/abs/2401.03003.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jiirgen Schmidhuber.
Metagpt: Meta programming for a multi-agent collaborative framework, 2024. URL https://arxiv.org/abs/
2308.00352.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models
for code, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models for code
generation, 2024. URL https://arxiv.org/abs/2406.00515,

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-
bench: Can language models resolve real-world github issues?, 2024. URL https://arxiv.org/abs/2310.067
70.

Evgenii Kniazev, Arseny Kravchenko, and Igor Rekun. app.build evaluation assessor handbook. https://docs.goo
gle.com/spreadsheets/d/1hvx2IpySdcOP8VEibnWZr3unyDinJ790hQ51fqwWfp0/, 2025. Evaluation rubric,
grading criteria, and example graded applications.

Evgeny G Kniazev. Automated source code changes classification for effective code review and analysis. In Pro-
ceedings of the Spring/Summer Young Researchers’ Colloquium on Software Engineering. Institute for System
Programming of the Russian Academy of Sciences, 2008.

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E. Gonzalez,
and Ion Stoica. S*: Test time scaling for code generation, 2025. URL https://arxiv.org/abs/2502.14382,

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt really correct?
rigorous evaluation of large language models for code generation, 2023. URL https://arxiv.org/abs/2305.0
1210.

OpenAl, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K. Arora,
Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao, Nivedita Brett, Eugene Brevdo,
Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook,
Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun
Gogineni, Adam Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec
Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Dominik Kun-
del, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park Lennon, Scott Lessans, Mario
Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran
Martinovic, Lindsay McCallum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy,
Tong Mu, Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pan-
tuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry Pimenov,
Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu Ren, Kimmy Richardson, David
Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon,
Karan Singhal, Yang Song, Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil
Vyas, Eric Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric
Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting Zhan,
Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b & gpt-oss-20b model card, 2025.

Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. Benchmarks and metrics for evaluations of code generation: A
critical review, 2024. URL https://arxiv.org/abs/2406.12655,

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao,
Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and Gra-
ham Neubig. Openhands: An open platform for ai software developers as generalist agents, 2024. URL
https://arxiv.org/abs/2407.16741. Published at ICLR 2025.

Chungqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based software
engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

14

https://arxiv.org/abs/2404.10100
https://arxiv.org/abs/2401.03003
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://docs.google.com/spreadsheets/d/1hvx2IpySdcOP8VfibnWZr3unyDinJ79OhQ5lfqwWfp0/
https://docs.google.com/spreadsheets/d/1hvx2IpySdcOP8VfibnWZr3unyDinJ79OhQ5lfqwWfp0/
https://arxiv.org/abs/2502.14382
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2406.12655
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.01489

app.build: Environment Scaffolding for Agentic Code Generation

A PREPRINT

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin,
Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang
Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yugiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical
report, 2025. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press.
Swe-agent: Agent-computer interfaces enable automated software engineering, 2024. URL https://arxiv.or

g/abs/2405.15793,

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous program im-
provement, 2024. URL https://arxiv.org/abs/2404.05427,

A Prompt Dataset

This appendix provides the complete specification of evaluation prompts used in our experiments. Table [/] lists all
30 prompts with their complexity classifications, covering low-complexity UI tasks, medium-complexity single-entity
CRUD applications, and high-complexity multi-entity workflows with custom business logic.

Table 7: Complete Prompt Dataset Used in Evaluation (n = 30)

ID Prompt (summary) Complexity
plant-care-tracker Track plant conditions using moods with custom rule-based logic. No Medium
AI/ML/APIs.
roommate-chore-wheel Randomly assigns chores weekly and tracks completion. Medium
car-maintenance-dashboard Monitor car maintenance history and upcoming service dates. Medium
city-trip-advisor Suggest tomorrow’s trip viability based on weather forecast API. High
currency-converter Convert currency amounts using Frankfurter API. Low
book-library-manager Manage book library with CRUD operations, search, and filters. Medium
wellness-score-tracker Input health metrics, get daily wellness score with trends. High
event-tracker Basic event tracker with add, view, delete functionality. Low
daily-pattern-visualizer Log and visualize daily patterns (sleep, work, social time). High
pantry-inventory-app Track pantry items, expiry notifications, Al recipe suggestions. High
home-lab-inventory Catalog home lab infrastructure (hardware, VMs, IP allocations). High
basic-inventory-system Small business inventory with stock in/out transactions. Medium
pastel-blue-notes-app Notes app with pastel theme, folders, user accounts. Medium
teacher-question-bank Question bank with quiz generation and export features. High
beer-counter-app Single-page beer counter with local storage. Low
plumbing-business-landing- Professional landing page for lead generation. Low
page
kanji-flashcards Kanji learning with Spaced Repetition System (SRS), progress tracking, JLPT High
levels.
bookmark-management-app Save, tag, organize links with search and sync. Medium
personal-expense-tracker Log expenses, categories, budgets, spending visualization. Medium
gym-crm Gym CRM for class reservations with admin interface. High
todo-list-with-mood To-do list combined with mood tracker. Medium
birthday-wish-app Static birthday card with message and animation. Low
pc-gaming-niche-site Budget gaming peripherals review site with CMS. Medium
tennis-enthusiast-platform Social platform for finding tennis partners. High
engineering-job-board Niche job board for engineering positions. High
indonesian-inventory-app Inventory management app in Indonesian language. Medium
habit-tracker-app Track habits, daily progress, visualize streaks. Medium
recipe-sharing-platform Community platform for sharing recipes. High
pomodoro-study-timer Minimalistic Pomodoro timer with session logging. Low
cat-conspiracy-tracker Humorous app tracking cat suspicious activities. Low

Note. Dataset details in Section[4.2] Complexity rubric in Section[5.10f Low (static/single-page UI), Medium (single-entity

CRUD), High (multi-entity/custom logic).

15

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2404.05427

	Introduction
	The Production Reliability Gap
	Our Approach: Environment Scaffolding
	Contributions

	Related Work
	Industrial Context & System
	Problem Formulation
	Architecture

	Experimental Setup
	Evaluation Framework
	Prompt Dataset
	Experimental Configurations
	Assessor Protocol and Scoring

	Results
	Production Deployment and Community Adoption
	Two-Tier Evaluation Methodology
	Automated Validation Results at Scale (n=300)
	Cost and Token Usage Analysis
	Detailed Quality Assessment (Human Evaluation, n=30)
	Open vs Closed Model Performance
	Ablation Studies: Impact of Validation Layers
	Synthesis: Optimal Validation Strategy
	Failure Mode Analysis
	Prompt Complexity and Success Rate
	Threats to Validity & Limitations
	Ethics & Broader Impact

	Prompt Dataset

