import os import warnings import sys import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.model_selection import train_test_split from sklearn.linear_model import ElasticNet import mlflow import mlflow.sklearn def eval_metrics(actual, pred): rmse = np.sqrt(mean_squared_error(actual, pred)) mae = mean_absolute_error(actual, pred) r2 = r2_score(actual, pred) return rmse, mae, r2 def train_model(wine_data_path, model_path, alpha, l1_ratio): warnings.filterwarnings("ignore") np.random.seed(40) # Read the wine-quality csv file (make sure you're running this from the root of MLflow!) data = pd.read_csv(wine_data_path, sep=None) # Split the data into training and test sets. (0.75, 0.25) split. train, test = train_test_split(data) # The predicted column is "quality" which is a scalar from [3, 9] train_x = train.drop(["quality"], axis=1) test_x = test.drop(["quality"], axis=1) train_y = train[["quality"]] test_y = test[["quality"]] # Start a new MLflow training run with mlflow.start_run(): # Fit the Scikit-learn ElasticNet model lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) lr.fit(train_x, train_y) predicted_qualities = lr.predict(test_x) # Evaluate the performance of the model using several accuracy metrics (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities) print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio)) print(" RMSE: %s" % rmse) print(" MAE: %s" % mae) print(" R2: %s" % r2) # Log model hyperparameters and performance metrics to the MLflow tracking server # (or to disk if no) mlflow.log_param("alpha", alpha) mlflow.log_param("l1_ratio", l1_ratio) mlflow.log_metric("rmse", rmse) mlflow.log_metric("r2", r2) mlflow.log_metric("mae", mae) mlflow.sklearn.log_model(lr, model_path) return mlflow.active_run().info.run_uuid
alpha_1 = 0.75 l1_ratio_1 = 0.25 model_path = 'model' run_id1 = train_model(wine_data_path=wine_data_path, model_path=model_path, alpha=alpha_1, l1_ratio=l1_ratio_1) model_uri = "runs:/"+run_id1+"/model"
Elasticnet model (alpha=0.750000, l1_ratio=0.250000):
RMSE: 0.7837307525653582
MAE: 0.6165474987409884
R2: 0.1297029612600864
Training a model and adding to the mlFlow registry
Last refresh: Never