Productizing Structured Streaming Jobs

Download Slides

Structured Streaming was a new streaming API introduced to Spark over 2 years ago in Spark 2.0, and was announced GA as of Spark 2.2. Databricks customers have processed over a hundred trillion rows in production using Structured Streaming. We received dozens of questions on how to best develop, monitor, test, deploy and upgrade these jobs. In this talk, we aim to share best practices around what has worked and what hasn’t across our customer base.

We will tackle questions around how to plan ahead, what kind of code changes are safe for structured streaming jobs, how to architect streaming pipelines which can give you the most flexibility without sacrificing performance by using tools like Databricks Delta, how to best monitor your streaming jobs and alert if your streams are falling behind or are actually failing, as well as how to best test your code.


Try Databricks
See More Spark + AI Summit in San Francisco 2019 Videos

« back
About Burak Yavuz

Burak Yavuz is a Software Engineer and Apache Spark committer at Databricks. He has been developing Structured Streaming and Delta Lake to simplify the lives of Data Engineers. Burak received his MS in Management Science & Engineering at Stanford and his BS in Mechanical Engineering at Bogazici University, Istanbul.