
Chefs

Persona
Databricks’
In-built Role

Custom Group
Recommended? Note

Account Admin
(,)

Metastore Admin
(,)

Catalog Admin
(,)

Schema Admin
(,)

Workspace Admin
(,)

Compute Admin
(,)

AWS Azure

AWS Azure

AWS Azure

AWS Azure

AWS Azure

AWS Azure

Y Y This role is the highest possible level in the Databricks Privilege Hierarchy

Y Y This role is analogous to a central Data Steward group at the Organization Level

N Y

This role is analogous to the Data Owner for a Business Unit / Environment. We recommend that
you create multiple account-level catalog_admin groups, per BU as an example, for fine-grained
access control and then transfer ownership of catalogs to respective owner groups, or give the
CREATE CATALOG privilege so they can create+own it.

N Y

This role is analogous to the Data Owner for a Team within a BU. We recommend that you create
multiple account-level schema_admin groups, for fine-grained access control and then transfer
ownership of schemas to respective owner groups, or give the CREATE SCHEMA privilege so
they can create+own it.

Y Y

This role is the highest possible level in a workspace. We recommend that you create multiple
account-level workspace_admin groups, per BU as an example, for more fine-grained control
over access and entitlements, and then assign those groups to a workspace with the Workspace
Admin role.

N Y

Allows the designation of a select group of users who can spin up compute and create pools,
while not bound by cluster policy, without needing to give them workspace admin rights. Give
this group the 4 entitlements listed on the linked page. We recommend that you create multiple
account-level compute_admin groups, per BU as an example, and assign those groups to a
workspace with the User role.

Ingredients & Tools

Terms Definition

Unity Catalog

Metastore

Catalog

Schema

Table

View

Materialized View

Unity Catalog (UC) is a unified governance solution for all data and AI assets including files,
tables, machine learning models, and dashboards in your lakehouse.

A metastore is the top-level container of objects in the Unity Catalog. It stores data assets
(tables and views) and the permissions that govern access.

The first layer of the object hierarchy which is used to organize your data assets.

Schemas (aka databases) are the second layer of the object hierarchy and contain tables
and views.

The lowest level in the object hierarchy, tables can be external (stored in external locations
in your cloud storage of choice) or managed (stored in a storage container in your cloud
storage that you create expressly for Databricks)

A view is a read-only object created from one or more tables and views in a metastore. It
resides in the third layer of Unity Catalog’s three-level namespace. A view can be created
from tables and other views in multiple schemas and catalogs.

An automatically refreshed view that helps to improve query latency by pre-computing
queries and/or frequently used computation. (In Private Preview)

Function

External Location

Storage Credential

Provider

Share

Recipient

A user-defined function that is contained within a schema.

An object that combines a cloud storage path with a storage credential in order to authorize
access to the cloud storage path.

Encapsulates a long-term cloud credential that provides access to cloud storage.

An entity that has made data available for sharing.

A logical grouping for the tables you intend to share.

Identifies an organization with which you want to share any number of shares.

Division of Labor
Responsibility Account

Admin
Metastore

Admin
Catalog
Admin

Schema
Admin

Workspace
Admin

Compute
Admin

Task Status

Create Metastore Y

Y

Setup SSO Y

Create Catalog Y Y

Create Storage Credential Y

Create External Location Y

Delegate Access to Data Y Y Y

Manage Compute Access Y Y

Assign Principals to Workspace Y

Can do

Should do

Create Metastore

Setup SSO

Create Catalog

Create Storage Credential

Create External Location

Delegate Access to Data

Manage Compute Access

Assign Principals to Workspace

Manage Principals

Manage Principals

Cooking Steps
Task Persona Detail Status

Collaborate with Identity Admin; Identify Admin Personas

Collaborate with Cloud Admin; Create Cloud Resources

Create a Metastore

Create Storage Credentials & External Locations (for external tables)

Make the workspace UC-enabled

Create Catalog

Set up SCIM from IDP

Set up SSO

Identify Core Admin Personas
(Account, Metastore, Workspace)

Identify Recommended Admin Personas
(Catalog, Compute, Schema)

See Introducing the Chefs section
above

Create Root bucket

Create IAM role (AWS)
Create Access Connector Id (Azure)

Create Metastore

Transfer ownership of metastore to the metastore_admin group

Create Storage Credentials

Create External Locations

Create Workspace (if not exists)

Metastore Assignment
(assign metastore to the WS)

Workspace Permission Assignment
(assign principals to WS)

Account Admin
(+ Identity Admin)

Account Admin
(+ Cloud Admin)

Account Admin

Account Admin

Account Admin

Metastore Admin

Account Admin (AWS)
Cloud Admin (Azure)

Account Admin

Workspace Admin

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

AWS, Azure

Create Catalog

Transfer Ownership

Create Securables ,

Create share

Assign Share Privileges

Metastore Admin
(or Catalog Admin)

Metastore Admin

Catalog Admin

Metastore Admin

Metastore Admin

AWS, Azure

AWS, Azure

AWS, Azure
AWS, Azure

Assign Privileges to Catalog

Assign Share Privileges to Catalog securables (optional)

AWS Azure

Scenario Examples

Scenario 1: LOB#1

Scenario 2: LOB#2

-- Workspace Dev: Group1(Table1), Group2(Table2), Group3(Table3)
-- Assume a Metastore Admin has created CATALOG catalog_dev and schema1

-- Assume Group1 creates Table1, Group2 creates Table2
-- By default, the person who creates becomes the owner

-- Either the table owner or someone in a more privileged role eg. schema/catalog/metastore owner
-- can perform GRANTS on their behalf or change ownership

-- Workspace Sandbox: Group1(Table1), Group2(Table2), Group3(Table3)
-- Scenario: Since this is sandbox we could give all privileges on the schema to all groups

-- Assume a new Table2 is created

-- We will come back to the above table in the LOB2 scenario

-- Workspace Prod: ServicePrincipal
-- Scenario: A Production job run by a Service Principal reads from Table1 and writes to Table2

GRANT USE CATALOG ON CATALOG catalog_dev to Group1;
GRANT USE SCHEMA ON SCHEMA catalog_dev.schema1 to Group1;
GRANT CREATE TABLE on SCHEMA catalog_dev.schema1 to Group1;

CREATE TABLE catalog_dev.schema1.Table1;
CREATE TABLE catalog_dev.schema1.Table2;

GRANT SELECT on catalog_dev.schema1.Table1 to Group3;
GRANT SELECT on catalog_dev.schema1.Table2 to Group3;

GRANT USE CATALOG ON CATALOG catalog_sandbox to Group1;
GRANT ALL PRIVILEGES ON SCHEMA catalog_sandbox to Group1;

CREATE TABLE catalog_sandbox.schema1.Table2;

GRANT USE CATALOG ON CATALOG catalog_prod to SP;
GRANT SELECT on catalog_prod.schema_1.table1 to SP;
GRANT MODIFY on catalog_prod.schema_1.table2 to SP;

-- repeat for Group2, Group3
-- repeat for Group2, Group3
 -- repeat for Group2, Group3

-- Member of Group1 executes this
 -- Member of Group2 executes this

-- Table Owner for Table1 runs this
-- Table Owner for Table2 runs this

-- repeat for Group2, Group3
-- repeat for Group2, Group3

-- Member of Group2 executes this

-- Scenario: Group2 and Group4 in LOB2's Sandbox Workspace want to access the same data as was prepared in the LOB1's catalog_sandbox
-- No additional grants are needed for Group2 as they were already granted
-- Members of Group2 can access the same data that they could from previous LOB#1 Sandbox WS
-- We only need to provide the new access to Group4

-- Now Group4 can work on this table from this workspace (and any other workspace that you may connect to the same metastore)

-- Scenario: Workspace Prod has a new Group5 and they need access to LOB1's catalog_prod to create a derived data product

-- Now Group5 can read from this table from this workspace (and any other workspace that you may connect to the same metastore)
-- An upcoming feature of workspace-catalog bindings can be used to restrict the workspaces that specific catalogs can be accessed from thus
-- ensuring that Prod data can only be accessed from Prod workspaces, as an example

-- Scenario: Share Data with Metastore in a different region or cloud

-- Now Recipient Lob4 which is a metastore on a different cloud/region can read from this share, which has 1 table.
-- The share can be altered at any time to add or remove tables
-- The access to the share at the recipient can be similarly controlled via ACLs in the recipient metastore

GRANT USE CATALOG ON CATALOG catalog_sandbox to Group4;
GRANT USE SCHEMA on SCHEMA catalog_sandbox.schema1 to Group4;
GRANT SELECT, MODIFY on catalog_sandbox.schema1.Table2 to Group4;

GRANT USE SCHEMA on SCHEMA catalog_prod.schema1 to Group5;
GRANT SELECT on catalog_prod.schema1.Table2 to Group5;

CREATE SHARE IF NOT EXISTS ShareToLob4;
ALTER SHARE ShareToLob4 ADD TABLE catalog_sandbox.schema1.Table2;
CREATE RECIPIENT IF NOT EXISTS RecipientLob4;
GRANT SELECT ON SHARE ShareToLob4 TO RECIPIENT RecipientLob4;

Scenario 3: LOB#3

Scenario 4: LOB#4

