
1

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

 Guide

Snowflake to
Databricks
Migration Guide

https://www.databricks.com

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Table of Contents

Preface	 3

Migration Strategy	 4

Overview of the Migration Process	 6

Phase 1: Migration Discovery and Assessment	 7

Phase 2: Architecture and Feature Mapping Workshop	 9

Phase 3: Data Migration	 12

Recommended Approach	 13

Schema Migration	 13

Data Migration	 14

Key Considerations: Schema Migration and Data Migration	 16

Phase 4: Data Pipeline Migration	 17

1. Orchestration Migration	 17

2. Source/Sink Migration	 18

3. Query Migration and Refactoring	 18

4. Migration Validation	 21

Key Considerations: Data Pipeline Migration	 22

Data Pipeline Refactoring and Optimization	 22

Data Pipeline Cutover	 23

Phase 5: Downstream Tools Integration	 24

Best Practices	 26

Databricks Platform	 26

Delta Lake and Performance Optimization	 26

File Sizing	 26

Partitioning	 26

Data Skipping	 27

Z-Ordering (Clustering)	 27

Merge/Upsert	 27

Generated Columns	 27

Join Strategies	 28

Query Profile	 28

Analyze Table	 29

Governance and Security	 29

Identity Management	 29

Privileges and Securable Objects	 30

Compute	 30

Need Help Migrating?	 30

Appendix	 31

Appendix 1: Delta vs. Snowflake — Storage Format Comparison	 31

Appendix 2: Data Types	 32

Appendix 3: Example SQL Differences	 33

https://www.databricks.com

3

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Preface

The purpose of this document is to provide an overview of the process of

migrating workloads from Snowflake to Databricks. The goal is to lay out

foundational differences, common patterns in migrating data/code, best

practices, tooling options, and more from Databricks’ collective experience.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

4

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Migration Strategy

When migrating from Snowflake to Databricks, it is crucial to plan and execute the process

carefully to ensure a successful outcome. By adopting a structured approach, it is possible

to minimize risks and increase the chances of success. The migration process can take

different routes depending on various factors such as the current architecture state,

workload types and migration goals. The strategy employed in the migration process is

influenced by several key factors, including the urgency and timelines, workload dependency

(integrated vs. isolated pipelines), shared vs. isolated warehouses, current architectural

limitations, road map backlog, new business requirements, access to migration tools, and

migration effort.

Based on these factors, one can choose to undertake a bulk migration or a phased migration.

A phased migration involves executing the migration in stages such as use case, schema,

data mart or data pipeline. It is recommended to adopt a phased migration approach to

mitigate risks and show progress early in the process. From a high-level strategy perspective,

there are two popular approaches to migration.

1 | �Lead with migrating data ingestion and transformation workloads by landing

all data in the cloud storage (Amazon S3, Azure Data Lake Storage Gen2, or

Google Cloud Storage), taking advantage of the commoditized cloud storage,

in Delta Lake format. Perform ETL — on both batch and streaming data — using

Databricks and move cleaned, aggregated, ready-to-serve data to consumers.

On top of this there are plenty of features in Databricks Lakehouse

to support end-to-end ETL orchestration using Delta Live Tables and

Databricks Workflows, unified governance and data lineage using Unity

Catalog, and cross-organization data collaboration using Delta Sharing.

This approach allows Snowflake use, in the interim, for serving downstream

applications and BI dashboards. This way you could minimize the disruption

to end users and slowly migrate downstream applications to the data

consumption (Gold) layer on Databricks eventually.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta-live-tables/index.html
https://docs.databricks.com/workflows/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/data-sharing/index.html

5

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

2 | �Lead with modernizing the reporting layer by replicating the data

warehouse “Gold/presentation” layer tables from Snowflake in Databricks.

This quickly unlocks the value by breaking data silos and enabling cross-

functional reporting and cross-functional data science projects. Then

work on reconfiguring the ETL in Databricks and cut off the ingestion and

transformation in Snowflake.

In the next few sections, we will dive into the migration process, focusing on the approach

and leading with the first approach described above: migrating ETL workloads first and then

migrating BI workloads.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

6

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Overview of the Migration Process

Typically, data and ETL migrations from legacy on-prem technologies to cloud are complex

and lengthy engagements. Whereas migrations from Snowflake are relatively easy because of

SQL support in Apache Spark™ and both platforms being cloud based managed applications,

a lot of concepts are similar. The migration process typically consists of the following steps,

but can vary depending on customer situation and needs.

In addition to migrating technical artifacts, a common activity that spans the entire migration

process is change management, which involves user enablement and adoption. This will

start with creating a few champions at the beginning and scale out to more developers and

consumers. Databricks Academy is a good place to get started with some self-learning.

In general, migrating from one platform to another platform can be complex, which is why

it is recommended to consider implementing using experts, at least for the initial pipelines.

The Databricks Professional Services team has experience, skills, automation and access to

expert partners in helping customers reduce risks and successfully migrate from Snowflake

to Databricks. The Databricks Brickbuilder Solution for migrations has preferred partners

who have demonstrated a unique ability in migrating Snowflake workloads to lakehouse

successfully.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Migration
Discovery and
Assessment

Data MigrationArchitecture and
Feature Mapping
Workshop

Data Pipeline
Migration

Downstream Tools
Integration

https://www.databricks.com
https://www.databricks.com/learn/training/home
https://www.databricks.com/blog/2022/08/11/announcing-brickbuilder-solutions-for-migrations.html

7

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Phase 1: Migration Discovery and Assessment

Before migrating any data or workloads, one or more migration assessments should be

conducted in order to:

 �Understand the types of workloads (ETL, BI, ingress/egress, etc.) and their size by
warehouses and databases

 �Understand the scope of data and queries/workloads to be migrated

 �Understand the upstream and downstream technologies and applications involved
in the architecture

 �Understand the current security setup and protocols

 �Understand the level of effort required to complete the migration

 �Collect information relevant to developing estimates for infrastructure costs and
person-hours

Databricks strongly recommends using automation tools (Snowflake Profiler and/or the

BladeBridge Code Analyzer) to expedite the process of gathering migration-related information.

The Snowflake Profiler reads system tables in Snowflake (e.g., snowflake.account_usage.

query_history) and other warehouse tables, and returns insights such as workload types,

long running ETL queries and surface background optimizations costs. This analysis provides

guidance on identifying warehouses/databases/DAGs contributing to high costs and supports

prioritization. The profiler classifies queries into T-shirt sizes for complexity, evaluates function

compatibility, and extracts information for data migration (clustering keys, table size).

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Figure 1:
Sample output
from example
profiler result

https://www.databricks.com

8

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Another option for gaining deeper insights on data types, DDL (data definition language),

DML (data manipulation language) code complexity and data dependencies is by running

the BladeBridge Analyzer tool. The tool parses Snowflake SQL code and generates:

 �An inventory of the code base: Table DDLs, Views, Stored Procedures, Functions,
Tasks, Sequences, etc.

 �Complexity of each script categorized from low to very complex based on
number of statements

 �List of data types and functions

 �List of code and table cross-references that can provide support in understanding
a table popularity

The complexity counts are used to size the software costs for using the BladeBridge Code

Converter and help you estimate the number of hours you should forecast for the migration

project. This tool is available free of cost and a Databricks Architect can assist you in running

the tool. Figure 2 shows the summary output from the Analyzer results of sample Snowflake

code base.

The outcome of this phase is a migration scope covering information across queries/

workloads, data/tables, and usage of any Snowflake proprietary features/tools.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

CO D E BAS E D E TA I LS

Total SQL Scripts 906

Total FILE Scripts 906

Total DDLs 341

Total CTAS Scripts 22

Total Tables (in scripts) 363

Total Views 4

Total Materialized Views 0

Total Packages 0

Total Procedures 65

Total Functions 20

Total Tasks 0

Total Loops & Cursors 3

Total Conditionals 2

Total Lines of Code 414637

Total Duplicated SQL Items 1

J O B CO M PLE XI T Y CAT EG O R I Z AT I O N

LOW 519

MEDIUM 330

COMPLEX 31

VERY_COMPLEX 25

Figure 2:
Summary of output from
BladeBridge Analyzer

https://www.databricks.com
https://bladebridge.com/analyzer/

9

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Phase 2: Architecture and Feature Mapping Workshop

When planning your Snowflake migration, it is important to correctly map Snowflake

capabilities to Databricks Lakehouse capabilities. The second phase of the migration

journey is understanding current-state architecture and Snowflake features in order to

map them to future-state architecture and Databricks features. In this phase, we design

the ideal lakehouse architecture that serves all the data and AI use cases, and design how

each component of the current architecture needs to be modernized to map to the target

architecture.

We then will compare/contrast current- and future-state architecture diagrams and align

on the intermediate phases of the architecture as the migration progresses through each

phase. As an example, the intermediate architecture will require running ETL pipelines in both

Snowflake and Databricks in parallel for some period of time, so we will want to architect an

optimal solution to ensure data stays in sync and external systems/tooling can continue to

function without impact to the rest of the organization.

Following architectural alignment, we will conduct a deep dive into all features currently

used in Snowflake. Phase 1 will help surface this information, but Phase 2 will dive deeper into

how they are used to ensure each existing Snowflake feature/functionality is mapped to the

appropriate Databricks feature/functionality.

SNOWFLAKE VS. DATABRICKS FEATURE MAPPING EXAMPLE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

FE AT U R ES S N OW FL A K E DATA B R I C KS

Compute One type of compute for all workloads
called Snowflake Virtual Warehouse

Databricks Managed Clusters optimized
for workload types with a runtime:

 �All-purpose for interactive/developer use
 �Jobs for scheduled pipelines
 �SQL warehouse for BI workloads

Storage Snowflake’s own storage layer Cloud storage
(Amazon S3, Azure Blob Storage, Azure Data
Lake Storage Gen2, Google Cloud Storage)

Format Snowflake FDN format (proprietary
compressed format)

Open source Delta format (Parquet)

Architecture
Layers

Cloud services layer
Query processing
Database storage

Control plane
Data plane

https://www.databricks.com

10

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

FE AT U R ES S N OW FL A K E DATA B R I C KS

Stages/Tables External stage
Internal stage
External tables
Internal tables

External tables
Managed tables

Interface Snowpark
Snowsight
SnowSQL CLI

Databricks collaborative notebooks
Databricks SQL workspace
Databricks CLI

Database
Objects

Tables, temporary tables, transient tables
Views, materialized views
Stored procedures
UDFs

Tables, temporary views
Views, materialized views
Databricks notebooks
UDFs

Metadata
Catalog

No native cataloging feature
Third-party tools such as Collibra, Alation

Unity Catalog

Data Ingestion COPY INTO
Snowpipe

COPY INTO
CONVERT TO DELTA
Auto Loader
DataFrame Reader
Integrations via Partner Connect
Add data UI

Data Types Data Types in Snowflake Data Types in Databricks

Workload
Management

Load monitoring chart, custom
query tags

Cluster configuration (policies),
ganglia metrics

Security System defined roles and custom roles
Hierarchy of roles
Table-/column-/row-level security

System roles: account admins, workspace
admins, metastore admin, account users
and workspace users

Users, groups and service principals

Object based controls using access
control lists (ACLs)

Table-/column-/row-level security

Data Clustering Clustering Z-ordering

Programming
Language

SQL, Java, JavaScript, Python, Scala SQL, Python, R, Scala, Java

Data
Integration

External tools (dbt, Matillion, Talend,
Pentaho, Informatica, etc.)

Delta Live Tables
Databricks Jobs
External tools (dbt, Matillion, Prophecy,
Informatica, Talend, etc.)

Orchestration Snowflake Tasks
External third-party tools (e.g., Airflow)

Databricks Workflows
External third-party tools (e.g., Airflow)

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.snowflake.com/en/sql-reference/intro-summary-data-types
https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html

11

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

FE AT U R ES S N OW FL A K E DATA B R I C KS

Machine
Learning

Python tools on Snowpark, external third-
party tools (e.g., Alteryx, DataRobot)

Databricks ML (Runtime with OSS ML
packages, MLflow, Feature Store, AutoML)

Change Data
Capture

Snowflake Streams Delta Change Data Feed

Time Travel Snowflake Time Travel Delta Time Travel

Data Sharing Snowflake Secure Data Sharing
Snowflake Marketplace

Delta Sharing
Delta Sharing Marketplace

Pricing Unit Snowflake credits
Snowflake storage

Databricks units (DBUs)

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

The table above is an example of mapping key features between Snowflake and Databricks.

A similar exercise comparing all relevant features for your environment should be performed

in this step.

Typically, by the end of this phase we have a good handle on the scope and complexity

of the migration, and can come up with a more accurate migration plan and migration

cost estimate.

https://www.databricks.com

12

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Phase 3: Data Migration

Before you start the migration process, one or more Databricks workspaces will need to be

provisioned if not available. The decision to create one or more workspaces typically revolves

around the following considerations:

 �Separation of environments: Requiring different workspaces for development, staging,
production and other environments

 �Separation of business units: Requiring different workspaces for marketing, finance, risk
management and other departments

 �Implementation of modern data architectures: Requiring different workspaces to
support modern data architectures, such as Data Mesh architecture, to decentralize data
ownership for different domains

Once the workspace is set up, the first step of the migration is migrating the data.

Databricks is optimized for cloud object storage: Amazon S3, ADLS2 and Google Cloud

Storage. In addition to cloud storage, Databricks can read/write from, write to other storage

endpoints, including relational databases (Oracle, SQL Server, Teradata, etc.), HDFS, Apache

Hive, NoSQL (HBase, Cassandra, Neo4j, MongoDB), in-memory cache (Redis, RocksDB),

message bus (Kafka), files (delimited text files, JSON, Parquet, ORC, Avro), JDBC/ODBC

sources/sinks, and many more.

When migrating data out of Snowflake, there are key decisions that need to be made. Some

of these could include:

 �What is the target design for the tables being migrated?

 �Should the destination retain the same hierarchy of catalogs, databases,
schemas, tables?

 Should there be any cleanup or organization of the existing data footprint in Snowflake?

Once these are decided, the data migration can proceed. Generally speaking, we do not

recommend introducing many changes in the schema structure during migration. Given the

Schema Evolution capability in Delta, it is a common practice to evolve the schema after

it is put in Delta. This approach also allows us to easily compare the data in Snowflake and

Databricks during parallel runs.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

13

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

RECOMMENDED APPROACH

It is important to note that not every data migration will follow the same pattern, but

Databricks recommends the following flow:

1 | �Migrate EDW (enterprise data warehouse) and staging tables (optional) into

Delta Lake medallion data architecture

2 | �Migrate/build data pipelines that incrementally populate Bronze/Silver/Gold

in Delta Lake

3 | �Backfill Bronze/Silver/Gold tables as needed

Typically, data in a Snowflake ELT pipeline moves through a staging or landing zone

(Bronze), then an optional integration layer (Silver), and ends up in a data model in an

EDW/reporting layer (Gold). Whatever data model (dimensional model, data vault, etc.)

is implemented in Snowflake can be implemented in the Databricks Lakehouse in a

more performant manner using Delta Lake. Data architecture in Databricks Lakehouse

follows Delta Lake — Bronze, Silver, Gold paradigm — and the data model belongs in the

Gold layer.

SCHEMA MIGRATION

Before the tables are offloaded to Databricks, the schema of the tables must be created

in Databricks. If you have DDL scripts, you could leverage that with some tweaks to data

types used in the DDLs. DDLs can also be extracted from Snowflake using the get_ddl

function. Once the scripts are extracted, automation tools (e.g., BladeBridge code converter)

can handle the converting Snowflake DDLs to Databricks DDLs. Refer to guidance around

matching data types in both Databricks and Snowflake in Appendix 1.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://www.databricks.com/blog/2022/06/24/data-warehousing-modeling-techniques-and-their-implementation-on-the-databricks-lakehouse-platform.html

14

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

DATA MIGRATION

In terms of implementation, several approaches have been validated by Databricks for

migrating the data and are already in production use by various customers. For the initial

Gold table migration, options include:

 1 | �Leveraging Snowflake’s COPY INTO command to push data out of Snowflake

and into cloud storage in Parquet format, then using one of these options

to load into Databricks to write to Delta Lake format tables using one of the

following options:

 ��Auto Loader

 ��Databricks COPY INTO command

 ��Spark batch/streaming APIs

2 | �Leveraging the Snowflake Connector for Spark to read data from Snowflake

and write to Delta Lake format tables

 ��This bypasses the write to Parquet, but requires running Snowflake virtual
warehouses and Databricks clusters in parallel, which can be costly

 ��This method is commonly used for small tables up to 15GB in size and
a manageable number of tables, but for larger tables, the first approach
above is recommended

3 | �Leverage data ingestion partners such as Arcion from Databricks Partner

Connect for quick data migration using automation with built-in schema

management, high availability (HA), and auto-scaling

After the initial Gold table offload, recurring jobs should be set up to continuously

sync data from Snowflake to Databricks for those Gold tables until data pipelines are

migrated to Databricks and are feeding data to those Gold tables. For continuous

replication and real-time sync, options include:

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.snowflake.com/en/sql-reference/sql/copy-into-location.html
https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/sql/language-manual/delta-copy-into.html
https://docs.databricks.com/external-data/snowflake.html

15

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

 1 | �Leveraging the Snowflake Stream Reader library to ingest data from

Snowflake in a CDC (change data capture) fashion into cloud storage and

load into Delta Lake tables using Databricks Auto Loader

2 | �Leveraging real-time change data capture tools from Databricks Partner

Connect. Read this blog for an example of how to implement real-time sync

using Arcion, a data ingestion partner of Databricks. Databricks and any

partners involved will work with your team to align on the best approach(es)

for each team’s requirements.

As you go through the migration, the current architecture slowly changes as you start

offloading data and workloads in a phased manner. Figure 3 shows the architecture

during the data migration phase.

 1 | �One-time offload of EDW tables into Silver and Gold layers via:

 ��COPY INTO External Stage as Parquet and use Auto Loader to Delta or

 ��Use Spark Snowflake Connector

Continuous jobs to offload change data from Snowflake EDW until data

pipelines are cutover

Figure 3:
Transient state
architecture:
post-data
migration

Stage/Landing

Raw tables from source

Transform

EDW

BI-ready tables

GoldSilNer

Applications and

Dashboards

Datj

Sources

Bronze

Self-Ser�ice

Analytics

AI and ��

Use Cases

12

3

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://github.com/rchynoweth/SnowflakeStreamReader
https://www.databricks.com/partnerconnect
https://www.databricks.com/partnerconnect
https://medium.com/@l.h.g/real-time-change-data-capture-from-snowflake-to-databricks-with-arcion-ee373c9ba44c

16

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

2 | � One-time offload of Stage/Landing tables via:

 ��COPY INTO External Stage as Parquet and use Auto Loader to Delta or

 ��Use Spark Snowflake Connector

If stage is a cloud storage, convert data into Delta

3 | � �For continuous data source jobs, use Auto Loader to monitor S3/ADLS/GCS

buckets for change data and MERGE into Bronze Delta Table

After validation and testing, the Bronze and Gold layer data is available for immediate

use in Databricks by end users for ad hoc analysis and machine learning while data

pipelines are being offloaded to Databricks in parallel. This is the advantage of the

lakehouse architecture, to make the data available for different use cases instantly

without having to move data around.

KEY CONSIDERATIONS: SCHEMA MIGRATION AND DATA MIGRATION

 �Data Modeling: As part of the migration, there might be a need to refactor the data

model or reproduce a similar data model in an automated and scalable manner. Visual

data modeling tools such as a Quest ERWIN or SqlDBM, from Databricks Partner Connect,

can accelerate this development and deployment of the data model in a few clicks.

Both of these tools can reverse engineer a Snowflake data model (table structures) and

implement them in Databricks easily.

 �When migrating DDLs of a table, it is important to check the schema of the source data.

For example, let’s say one of the data sources is in Parquet format. Some numeric column

types in DDL generated from the Snowflake table will be different from the type in the

source Parquet files. If we don’t use the source column types during DDL creation, we

will be forced to have unnecessary casting on our ingestion pipeline after the data is

migrated from Snowflake.

 �In Snowflake and Databricks, keeping schemas in sync during the transient stage can

become critical if there are changes introduced to table schemas during migration.

Approaches such as making a change in a central MDM (master data model) first —

leveraging tools like SqlDBM — and then implementing it in both Snowflake and

Databricks are gaining traction.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/partners/data-governance/erwin.html#partner-connect
https://sqldbm.com/SqlDbm-Plus-Databricks/
https://sqldbm.com/SqlDbm-Plus-Databricks/

17

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Phase 4: Data Pipeline Migration

An end-to-end view of the pipelines from data sources to the consumption layer considering

the governance aspects must be thoroughly understood to effectively migrate the

workloads. Data pipeline migrations from Snowflake to Databricks consist of several key

components: orchestration, source/sink migration, query migration and refactoring.

ORCHESTRATION MIGRATION

An ETL orchestration can refer to orchestrating and scheduling end-to-end pipelines

covering data ingestion, data integration, result generation or orchestrating DAGs of a

specific workload type like data integration. In Snowflake the orchestration is typically done

using external tools such as Airflow, Matillion or by using Snowflake Tasks. There are generally

two options when migrating these workflows.

1 | �Use Databricks Workflows to orchestrate the migrated pipelines. In addition,

Delta Live Tables can be used for building reliable and efficient data processing

pipelines. Using Delta Live Tables provides a standard framework for building

both batch and streaming use cases along with critical data engineering

features such as automatic data testing, deep pipeline monitoring and

recovery. Tasks in Snowflake get created as Databricks Workflows. It also

has out-of-the-box functionality to SCD Type 1 and Type 2 tables.

2 | �It is also possible to use the external tools for orchestration and repoint

these tools from Snowflake compute to Databricks compute. You would

be just translating Snowflake SQL queries to Spark SQL queries in the

orchestration job while retaining most of the orchestration elements.

However, it is recommended to use Databricks Workflows for better

integration, simplicity and lineage.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/workflows/index.html
https://docs.databricks.com/delta-live-tables/index.html

18

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

SOURCE/SINK MIGRATION

Similar to orchestration, in most cases an external ETL tool is seen in Snowflake architecture

to extract data from source systems, transform (optional) and load it into the Snowflake

staging layer.

 1 | � Source data connections:

 ��Ingestion pipelines using tools such as Fivetran and Qlik Replicate

can be duplicated and configured to point to Databricks Delta Lake

instead of Snowflake staging. Delta is an open source format and widely

supported as the target data format for popular data ingestion tools.

 ��Ingestion pipelines using Snowpipe are replaced with Databricks Auto

Loader or Spark DataFrame APIs. Delta Live Tables supports Auto Loader

and Spark DataFrame APIs.

 ��Native Spark integrations (e.g., Kafka) are leveraged to refactor the streams

2 | � Sink data connections:

 ��Ingestion tools and framework will now generate data in Delta Lake

format instead of Snowflake format

QUERY MIGRATION AND REFACTORING

Queries here refer to any DML query that transforms the data or to ad hoc data analysis

queries run by the user for data analysis. The interface from where queries are initiated could

be directly in Snowflake or coming from an external ETL tool such as dbt or Matillion.

In situations where SQL queries are triggered from an external ETL platform such as Matillion,

the refactoring is straightforward, especially for user-written SQL queries. Any Snowflake-

specific integration features should be refactored, which in most cases is equivalent to

tweaking underlying Snowflake SQL query.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

19

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Migrate from Snowflake SQL to Spark SQL, identifying and replacing any incompatible/

proprietary Snowflake SQL functions or syntax. A few options for tackling this are:

 1 | � �(Recommended) Use BladeBridge Converter to automate lift-and-shift

portion of query migration

2 | � �(Recommended) Use SQLGlot to convert Snowflake SQL to Spark SQL

3 | � �(Not recommended) Develop custom script in-house to convert Snowflake

SQL to Spark SQL

4 | � �(Not recommended) Manually convert Snowflake SQL to Spark SQL

Given that both Snowflake and Databricks support ANSI SQL standards, a large

portion of the Snowflake SQL query can be automatically converted to Databricks

syntax to accelerate the migration. The BladeBridge conversion tool supports schema

conversion (tables and views), SQL queries (select statements, expressions, functions,

user-defined functions, etc.), stored procedures and data loading utilities such as

COPY INTO. The conversion configuration is externalized, meaning conversion rules

can be extended by users during migration projects to handle new code pattern sets

to achieve a greater percentage of automation. Check out this short demonstration of

the conversion tool.

Refer to Appendix 3 for some examples of SQL translation differences between Snowflake

and Databricks. Check out this handy cheat sheet packed with essential tips and tricks to

help you get started on Databricks using SQL programming in no time!

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://github.com/tobymao/sqlglot
https://www.youtube.com/watch?v=X72cBi6SNDs
https://www.databricks.com/explore/data-warehousing/sql-cheat-sheet#page=1

20

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

 1 | �Source data pipelines are duplicated and refactored to save to Delta

For continuous data source jobs, use Auto Loader to monitor S3/ADLS/GCS

buckets for change data and MERGE into Bronze Delta Table

2 | � �Implement Medallion data flow architecture and convert transformation

pipelines from Snowflake SQL to Spark SQL

3 | � �Extract change data feed from Gold tables into Parquet or flat file format

and load into Snowflake EDW tables via Snowpipe

Data quality checks should be performed at the end of each change data

offloading job until data pipelines are cutover

Figure 4:
Transient state
architecture
during pipeline
migration

Stage/Landing

Raw tables from source

Transform

EDW

BI-ready tables

Applications and

Dashboards

Dat�

Sources

Bronze

Raw tables from

sources

Sil�e�

Refine tables�

apply ETL logic

Gold

BI-ready tables

Change data feed

Self-SerKice

Analytics

AI and QY

Use Cases

3

1 2 2

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

21

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

MIGRATION VALIDATION

Validation is mostly done around the data in both the platforms. Establish a unit testing for

sink-to-sink comparisons. As there might be thousands of tables migrated, it is manually

impossible to compare the data values in Snowflake and Databricks. Generally a testing

framework with a script to compare values automatically in both the platforms is used.

Some example data points to compare include:

 �Check if the table exists

 �Check the counts of rows and columns across the tables

 �Calculate the sum of numeric columns and compare

 �Calculate the distinct count of values in string columns and compare

Run the pipelines in parallel for a week or two and review the comparison results to ensure

the data is flowing correctly. For more advanced table data and schema comparison, tools

like Datacompy can be used.

 1 | �Data ingestion and transformation in Snowflake are retired and the EDW

tables are hydrated from Databricks

2 | � �Extract change data feed from Gold tables into Parquet or flat file format

and load into Snowflake EDW tables via Snowpipe

Propagate schema changes to Snowflake tables

Figure 5:
Transient state
architecture —
post-data and
ETL pipeline
migration

EDW

BI-ready tables

Applications and

Dashboards

DatP

Sources

Bronze

Raw tables from

sources

Silver

Refine tablesx

apply ETL logic

Gold

BI-ready tables

Change data feed

Self-Ser&ice

Analytics

AI and +4

Use Cases

2

1

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://github.com/capitalone/datacompy

22

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

KEY CONSIDERATIONS: DATA PIPELINE MIGRATION

DATA PIPELINE REFACTORING AND OPTIMIZATION

 �During the migration, there is a high probability for some portion of data pipeline queries

to be refactored and/or optimized. This includes but is not limited to:

 1 | �Rewriting queries to avoid nonperformant join strategies

2 | � �Changing query filters due to changes in clustering keys

3 | � �Adjusting queries to account for function syntax changes

Here are some strategies to overcome inefficiencies and improve query performance:

A | � ��Join strategies

a. �Avoid Cartesian products if at all possible (these are heavy in any query engine)

b. �Avoid self, exploding joins that result in Cartesian products (self-join with

sliding window calculations as keys); instead, shift logic into a CTE or view so

that the sliding window calculations are materialized pre-join

c. �Preferred join strategies (in descending order):

 i. Broadcast Hash Join

 ii. Shuffle Hash Join

iii. Sort Merge Join

iv. Shuffle Nested Loop Join (Cartesian Product)

B | � ��Clustering keys

a. �Select high cardinality columns for Z-ordering

b. �Z-order is effective for up to 3-5 columns

c. �Clustering keys in Snowflake can generally be used as Z-order columns

with Delta Lake; the exception is for tables > 1TB — we recommend

partitioning by low cardinality columns and Z-ordering by high

cardinality columns

C | � ��See Delta Lake & Performance Optimization section for other recommendations

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

23

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

 �Consider reengineering some ETL pipelines to leverage new capabilities in Delta Live

Tables such as SCD Type 2 which are not straightforward to implement in Snowflake

using Snowflake Streams and Tasks. One popular use case where reengineering is

almost always considered is modernizing CDC ingestion and streaming workloads

using the power of Spark Structured Streaming and Delta Live Tables. Although this

results in additional migration effort, this is critical for long-term cost reduction and

any value-add your team would like to realize.

 �Consider creating a Git repository of the queries being migrated and refresh this

repository frequently if the queries/pipelines are allowed to change during the

migration so that there are fewer conflicts to resolve during the final migration.

It is recommended to impose code freeze during migration if possible.

DATA PIPELINE CUTOVER

During data pipeline migration, there will be a period over which data pipelines will be running

in Databricks and Snowflake concurrently. This is expected, but in order to minimize the costs

associated with this, we recommend defining the following:

 1 | � �Cutover schedule

2 | � �Criteria for approving/disapproving production readiness in Databricks

3 | � �Criteria for approving/disapproving data pipeline deprecation in Snowflake

4 | � �Upstream/downstream integration validation

5 | � �Communication strategy for all applicable stakeholders

The approach described until now ensures the ETL pipelines are fully migrated and running in

Databricks and the Gold layer data in Snowflake is kept in sync with the Gold layer of Databricks.

While it is possible to incur data movement costs between the platforms, the significant

savings gained from ETL costs would easily offset these costs. In the next phase of migration,

the architecture is evolved to support business intelligence and other serving use cases.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta-live-tables/cdc.html

24

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Phase 5: Downstream Tools Integration

To further consolidate data platform infrastructure and maintain a single source of truth of

data, organizations have adopted Databricks SQL, a data warehousing product in Databricks

Lakehouse, to meet their data warehousing needs and support downstream applications and

business intelligence dashboards.

Databricks SQL offers world-class price/performance for analytics workloads as well as

support for high-concurrency use cases with auto-scaling SQL warehouses. Databricks SQL

includes Photon, which is a query engine built from scratch in C++ and is vectorized to exploit

both data-level and instruction-level parallelism.

Once data and transformation pipelines are migrated to the Databricks Lakehouse, it is

critical to ensure business continuity of downstream applications and data consumers.

Databricks Lakehouse has validated large-scale BI integrations with many popular BI tools

in the market such as Tableau, Power BI, Qlik, ThoughtSpot, Sigma, Looker, and more. The

expectation for a given set of dashboards or reports to work is to ensure all the upstream

tables and views are migrated along with the associated pipelines and dependencies.

As described in the blog (see section 3.5 Repointing BI workloads), one of the common ways

to repoint BI workloads after a data migration is by testing sample reports and working by

renaming the data source/tables names of existing tables and pointing to the new ones.

Typically, if the schema of the tables and views post-migration hasn’t changed, the repointing

is a straightforward exercise of how you handle switching databases on the BI dashboard

tool. If the schema of the tables has changed, you will need to modify the tables/views in the

lakehouse to match to the expected schema of the report/dashboard and publish it as a new

data source for the reports.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://www.databricks.com/blog/2023/02/22/3ds-migrating-teradata-workloads-databricks-lakehouse-platform.html

25

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

We recommend testing the approach with a small set of dashboards or reports and iterating

through the remainder of the reporting layer throughout the migration.

During the reports migration, a potential situation you may run into is the need to expand

the permission of BI tool access to cloud storage buckets. This is because Databricks uses

“Cloud Fetch” to support high bandwidth data exchange. With this architecture, for a given

BI query, the BI tool gets back pre-signed URLs, so that the BI tool downloads data in parallel

directly from cloud storage. This might require enabling new access permissions if not

already configured.

Figure 6:
Future-state
architecture

Applications and

Dashboards

Dat#

Sources

Bronze

Raw tables from

sources

Silver

Refine tablesJ

apply ETL logic

Gold

BI-ready tables

Self-Ser	ice

Analytics

AI and ��

Use Cases

https://www.databricks.com

26

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Best Practices

The Databricks Lakehouse Platform provides a number of ways to evolve and optimize the

platform to achieve best performance at the lowest cost when using and administering

Databricks. Here are some best practices to implement in Databricks pertaining to different

areas of ETL workloads.

DATABRICKS PLATFORM

It’s important to understand some basic concepts used in Databricks before you get started.

 �Databricks Interface

 �Cluster Configuration

 �Cluster Policies

 �Data Governance

 �GDPR & CCPA Compliance

 �Delta Lake

 �Structured Streaming

 �CI/CD

DELTA LAKE AND PERFORMANCE OPTIMIZATION

Optimize the performance of the migrated workload by tweaking the configuration of the

Databricks environment and the workload itself. This includes identifying and eliminating

any bottlenecks and improving the overall performance. Below are a few best practices to

consider during performance tuning.

File Sizing

 �Databricks Runtime automatically tunes file sizes based on table size and also based on

workload — for example, to accelerate write-intensive operations

 �File sizes can be manually adjusted by setting delta.targetFileSize as a table property or

Spark configuration

Partitioning

 �Avoid partitioning tables < 1TB

 �Ideal size of partitions is > 1GB

 �Use generated columns to avoid over-partitioning

 �Partition on lower cardinality columns

https://www.databricks.com
https://docs.databricks.com/getting-started/concepts.html
https://docs.databricks.com/clusters/cluster-config-best-practices.html
https://docs.databricks.com/administration-guide/clusters/policies-best-practices.html
https://docs.databricks.com/security/data-governance.html
https://docs.databricks.com/security/privacy/gdpr-delta.html
https://docs.databricks.com/delta/best-practices.html
https://docs.databricks.com/structured-streaming/production.html
https://docs.databricks.com/dev-tools/index-ci-cd.html#dev-tools-ci-cd
https://docs.databricks.com/delta/tune-file-size.html#autotune-file-size-based-on-table-size
https://docs.databricks.com/delta/tune-file-size.html#autotune-workload
https://docs.databricks.com/delta/tune-file-size.html#set-a-target-file-size

27

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Data Skipping

 �Statistics will be automatically computed for you to facilitate data skipping

 �Tracks file-level statistics like min, max, etc.

 �Helps avoid scanning irrelevant files/data

 �By default, Databricks Delta collects statistics on the first 32 columns defined in the

table schema. This default value can be updated using the table property, delta.

dataSkippingNumIndexedCols

 �A best practice to keep in mind is to move numerical columns and high cardinality query

predicates to the left of the 32nd ordinal position, and move strings and complex data

types after the 32nd ordinal position of the table

Z-Ordering (Clustering)

 �Effective on up to 3-5 columns

 �Z-order on higher cardinality columns, columns for Z-ordering must be in the first 32

columns

Merge/Upsert

 �Ensure you are using DBR 10.4+ to take advantage of Low Shuffle Merge

 �Avoids write amplification due to merge’s use of fullOuterJoin

 �With Low Shuffle Merge, fullOuterJoin is broken into an inner and leftOuterJoin followed

by read > filter > write using file + rowId map

 �This helps optimize merge performance significantly

 Generated Columns

 �Special column type that gets defined based on a user-specified function over other

columns in a Delta table

 �Values for generated columns are computed at runtime

 �Generated columns allow users to avoid over-/under-partitioning

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta/generated-columns.html

28

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Join Strategies

 �Broadcast Hash Join / Broadcast Nested Loop Join

 �Requires one side of the join to be small

 No shuffle, no sort, very fast

 �Shuffle Hash Join by read > filter > write using file + rowId map

 �Needs to shuffle data, but avoids sort

 Handles large tables, but will result in an out-of-memory error if data is skewed

 �Sort Merge Join

 �Handles any data size

 �Requires shuffle and sort

 �Slower in most cases when table size is small due to excessive shuffle

 �Shuffle Nested Loop Join/Cartesian Product

 �Does not require join keys

 �Extremely heavy operation; avoid at all costs if possible

Query Profile

 �In the case of data warehouse usage, the SQL warehouse query profile is a powerful

tool located inside the Databricks SQL workspace. Its objective is to troubleshoot slow-

running queries, optimize query execution plans, and analyze granular metrics to see

where compute resources are being spent.

 �The query profile provides value in these three capability areas:

 �Detailed information about the three main components of query execution, which

are time spent in tasks, number of rows processed and memory consumption

 �Two types of graphical representations. A tree view to easily spot slow operations at

a glance, and a graph view that breaks down how data is transformed across tasks.

 �Ability to understand mistakes and performance bottlenecks in queries

 �Three common performance bottleneck problems surfaced by query profile are

listed below:

 �Inefficient file pruning

 �Full table scans

 �Exploding joins (Cartesian product)

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

29

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Analyze Table

 �The ANALYZE TABLE command collects statistics on tables in Databricks and ensures

that the query optimizer finds the most optimal query execution plan. SQL syntax

is as follows:

 �One important point to remember is that you will want to prioritize statistics for columns

that are frequently used in joins and other query predicates

 �Best practice is to run ANALYZE TABLE as a separately scheduled job on a regular

cadence (e.g., weekly or monthly)

GOVERNANCE AND SECURITY

Reference Materials:

 �Data Governance Guide

 Unity Catalog

Identity Management

 �Identities exist at the Databricks account level. Identity federation allows for these

account-level identities to be federated downward to workspaces

 �Single sign-on (SSO) can be set up to manage account-level identities

 �Identity Types

 �Users

 �Groups

 �Service Principals

01 ANALYZE TABLE my_table COMPUTE STATISTICS for COLUMNS col1, col2, col3

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/data-governance/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/administration-guide/users-groups/single-sign-on/index.html

30

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Privileges and Securable Objects

 �Securable Objects

 �Inheritance Model

 �Privileges Types

Compute

 �Clusters & SQL Warehouses with Unity Catalog

Need Help Migrating?

Regardless of size and complexity, the Databricks Professional Services team, along with an

ecosystem of services partners and ISV partners, offers different levels of support (advisory,

staff augmentation, scoped implementation) to accelerate your migration and ensure

successful implementation. Aside from steps outlined in this migration guide, the services

offered can include architecture design workshops, Databricks foundation setup, change

management, cutover operations, and more.

Working with BladeBridge, Databricks has developed automated tooling for code complexity

assessment and code migration (DDLs, DMLs) that produces outcomes tuned to best practices

on Databricks Lakehouse. The conversion tool is available for use either with your preferred

services vendor or a services vendor recommended by Databricks. Additionally, Databricks

partners have developed several other automation tools to accelerate your migration.

Contact your Databricks representative or reach out to us using this form for more

information. Rest assured that we can work with you and make your migration successful.

https://www.databricks.com
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#securable-objects-in-unity-catalog
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#inheritance-model
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#privilege-types-in-unity-catalog
https://docs.databricks.com/data-governance/unity-catalog/compute.html#create-clusters--sql-warehouses-with-unity-catalog-access
https://bladebridge.com/
https://www.databricks.com/company/contact

31

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Appendix

APPENDIX 1: DELTA VS. SNOWFLAKE - STORAGE FORMAT COMPARISON

D E LTA S N OW FL A K E

Default Format
Type

Columnar (OSS Parquet) Columnar (proprietary FDN format)

IO Unit File Micro-partition

Size of IO Unit 16MB – 1GB (depending on table size,
also configurable)

16MB

Sort Order
Within IO Unit

None None

Sort Order
Between
IO Units

Ingestion Time Clustering + Z-order Clustering (default on ingest, optionally
based on keys)

Column
Statistics
collected on...

Default on first 32 columns, configurable
to more (unlimited)

All columns

Stats
updated by...

Write operations Write operations

Caching FIFO data and result sets on local
memory/SSD

FIFO data and result sets on local
memory/SSD

Tricks to
Reduce IO

Pruning via stats, partitioning,
bloom filters, compression

Pruning via stats, compression

https://www.databricks.com

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

APPENDIX 2: DATA TYPES

SQL data type conversions are relevant primarily within the DDL conversion. But DML

statements can also have explicit data type conversions (using CAST or short format like

colName::datatype). Data types supported in Snowflake can be easily mapped to the data

types supported in Databricks. Data types not directly supported, such as VARIANT type, can

be easily implemented using STRING types and processed using JSON processing function.

In certain instances, the process of type promotion may happen, which pertains to the

process of casting a type into another type within the same type family which contains all

possible values of the original type. As a concrete illustration, TINYINT has a range from -128

to 127, and all its possible values can be safely promoted to the INTEGER type. Refer to the

link here and Databricks’ official release notes for the full list of supported SQL data types.

Below is the summary of data types conversion rules.

DATA T Y P E
CAT EG O RY

S N OW F L A K E
DATA T Y P E

C O N V E R T E D
DATA T Y P E N OT E S

Character 1 | VARCHAR
 2 | CHAR
 3 | CHARACTER
 4 | STRING
 5 | TEXT
 6 | BINARY
 7 | VARBINARY

 1 | VARCHAR STRING
 2 | CHAR STRING
 3 | CHARACTER STRING
 4 | STRING STRING
 5 | TEXT STRING
 6 | BINARY STRING
 7 | VARBINARY STRING

Numeric 8 | NUMBER
 9 | DECIMAL
10 | NUMERIC
11 | INT
12 | INTEGER
13 | BIGINT
14 | SMALLINT
15 | TINYINT
16 | BYTEINT
17 | FLOAT
18 | FLOAT4
19 | FLOAT8
20 | DOUBLE
21 | DOUBLE PRECISION

22 | REAL

 8 | NUMBER NUMERIC
 9 | DECIMAL DECIMAL
10 | NUMERIC STRING*

11 | INT STRING
12 | INTEGER INTEGER
13 | BIGINT BIGINT
14 | SMALLINT SMALLINT
15 | TINYINT TINYINT
16 | BYTEINT BYTE
17 | FLOAT DOUBLE**

18 | FLOAT4 DOUBLE**

19 | FLOAT8 DOUBLE**

20 | DOUBLE DOUBLE
21 | �DOUBLE PRECISION

DOUBLE
22 | REAL DOUBLE

* Important Note about differences in
supported values ranges for Integer type
columns. In Snowflake all Integer types are
Synonymous with NUMBER, and defaults
to NUMBER(38, 0). This means different
types like TINYINT and BIGINT columns can
have the same value range. Where as on
Databricks, supported column value range
depends on the actual integer types

* Note that there is a difference in default
value of precision for DECIMAL and NUMERIC.
Snowflake SQL defaults to 38 where as
Databricks SQL default to 10

** Note on float data types from Snowflake
docs “The names FLOAT, FLOAT4, and FLOAT8
are for compatibility with other systems;
Snowflake treats all three as 64-bit floating-
point numbers”

Boolean 23 | BOOLEAN 23 | BOOLEAN  DOUBLE

DateTime 24 | DATE
25 | DATETIME
26 | TIME

27 | TIMESTAMP
28 | TIMESTAMP_LTZ
29 | TIMESTAMP_NTZ
30 | TIMESTAMP_TZ

24 | DATE DATE
25 | DATETIME*

26 | �TIME NOT SUPPORTED
(use STRING or TIMESTAMP)

27 | TIMESTAMP TIMESTAMP
28 | TIMESTAMP_LTZ**

29 | TIMESTAMP_NTZ**

30 | TIMESTAMP_TZ**

* DATETIME is an alias for TIMESTAMP_NTZ in
Snowflake

** The usual practice is to create a new
column to store an indicator for Timezone
while the Timestamp is used for storing the
actual value.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/sql/language-manual/sql-ref-datatype-rules.html
https://docs.databricks.com/sql/release-notes/index.html?

33

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

APPENDIX 3: EXAMPLE SQL DIFFERENCES

Databricks SQL supports ANSI standard SQL dialect by default. This supports seamless

migration on hundreds or thousands of queries from data warehouses. Most of the SQL

you have in Snowflake can be dropped in and will just work on Databricks SQL. To make this

process simpler for customers, we continue to add SQL features that remove the need to

rewrite queries. There are, however, certain query patterns that need to be adjusted.

Here are some SQL differences:

DATA T Y P E
CAT EG O RY

S N OW F L A K E
DATA T Y P E

C O N V E R T E D
DATA T Y P E N OT E S

Semi-
structured
Data Types

31 | VARIANT
32 | OBJECT
33 | ARRAY

31 | VARIANT STRING*

32 | OBJECT STRUCT
33 | ARRAY ARRAY**

* Can be mapped to STRING and values
processed using built-in JSON parsing
functions

** Note that Array type in Snowflake can
support values with heterogeneous data
types by using variant type whereas Array
type values in Databricks need to be
homogenous

Geospatial 33 | GEOGRAPHY
34 | GEOMETRY

33 | GEOGRAPHY*
34 | GEOMETRY*

* While there are no built-in geospatial data
types in DeltaLake tables, there are a plethora
of options to process geospatial data at scale
with Databricks platform by leveraging the
open source community developed libraries.
Refer to the following blogs:

 �Processing Geospatial Data at Scale With
Databricks

 �Building a Geospatial Lakehouse, Part 1

 �Building a Geospatial Lakehouse, Part 2

S N OW FL A K E DATA B R I C KS

Convention Naming convention used to refer to tables:
<schema>.<database>.<table>

Naming convention used to refer to tables:
<catalog>.<database>.<table>

Unquoted
Identifiers

Snowflake SQL unquoted identifiers start
with a letter or an underscore and can
contain letters, digits and dollar sign

Mostly compatible with identifiers on
Databricks except they cannot contain a
dollar sign

Quoted
Identifiers

Snowflake SQL quoted identifiers are
enclosed with double quotes(“)

Databrick SQL quoted identifiers are
enclosed using backtick characters (`)

SQL Variables Session variables are defined and
accessed using SET, UNSET, and SHOW
VARIABLES statements

For Batch workloads Spark session
parameters can be set and variable
substitution in SQL is enabled by default
using syntax ${varName}

Additionally, Widgets in Notebooks and
Query Parameters in Databricks SQL can
be used for passing arguments

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://www.databricks.com/blog/2019/12/05/processing-geospatial-data-at-scale-with-databricks.html
https://www.databricks.com/blog/2019/12/05/processing-geospatial-data-at-scale-with-databricks.html
https://www.databricks.com/blog/2021/12/17/building-a-geospatial-lakehouse-part-1.html
https://www.databricks.com/blog/2022/03/28/building-a-geospatial-lakehouse-part-2.html

34

SNOWFLAKE TO
DATABRICKS

MIGRATION GUIDE

S N OW FL A K E DATA B R I C KS

Time Travel AT or BEFORE clauses are used for time
travel in Snowflake

Example:

SELECT * FROM table_x AT(TIMESTAMP =>
‘2019-01-29 00:37:58’::timestamp)

Databricks supports time travel using
temporal specification along with Delta
Lake table name. Databricks Syntax (with
timestamp) maps to the AT clause in
Snowflake Syntax as it is inclusive.

Example:

SELECT * FROM table_x TIMESTAMP AS OF
‘2019-01-29 00:37:58’

Change
Tracking

CHANGE_TRACKING = TRUE | FALSE
table attribute is used in Snowflake to
enable change tracking

In Databricks the change tracking can be
enabled using the table property:

TBLPROPERTIES (delta.
enableChangeDataFeed = true)

Delete
Records

 1) �DELETE FROM TABLE_A;

If using a USING clause in DELETE

 2) DELETE FROM TABLE_A
 �USING (SELECT X FROM TABLE_B)

as TABLE_B
 WHERE TABLE_A.X = TABLE_B.X;

 1) �DELETE FROM TABLE_A;

Use the MERGE operation:

 2) MERGE INTO TABLE_A
 �USING (SELECT X FROM TABLE_B)

as TABLE_B
 ON TABLE_A.X = TABLE_B.X
 WHEN MATCHED THEN DELETE;

Update
Records

 1) �UPDATE TABLE_A
 SET COL_A=’A’
 WHERE COL_B=’B’;

If using a FROM clause in UPDATE

 2) UPDATE TABLE_A
 SET COL_A= TABLE_B.COL_A
 FROM TABLE_B
 WHERE TABLE_A.X = TABLE_B.X;

 1) �UPDATE TABLE_A
 SET COL_A=’A’
 WHERE COL_B=’B’;

Use the MERGE operation:

 2) MERGE INTO TABLE_A
 �USING (SELECT COL_A FROM

TABLE_B) as TABLE_B
 ON TABLE_A.X = TABLE_B.X
 WHEN MATCHED THEN UPDATE;

Loading Data
to Tables

COPY INTO command is used to load files
in Stage to an existing table

The COPY INTO command is comparable in
functionality

Unloading
Data from
Tables

COPY INTO command is used to unload
from a table to Stage location

Databricks doesn’t use COPY INTO to
unload. Instead use

a. �INSERT OVERWRITE DIRECTORY (only
on Databricks Runtime)

b. �Use EXTERNAL TABLE definition
pointing to required relocation

c. �Use one of the Spark DataFrame API

© Databricks 2023. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the
Apache Software Foundation. Privacy Policy | Terms of Use

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://apache.org
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use

