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ABSTRACT
“Next generation” data acquisition technologies are allowing
scientists to collect exponentially more data at a lower cost.
These trends are broadly impacting many scientific fields,
including genomics, astronomy, and neuroscience. We can
attack the problem caused by exponential data growth by
applying horizontally scalable techniques from current ana-
lytics systems to accelerate scientific processing pipelines.

In this paper, we describe ADAM, an example genomics
pipeline that leverages the open-source Apache Spark and
Parquet systems to achieve a 28× speedup over current ge-
nomics pipelines, while reducing cost by 63%. From building
this system, we were able to distill a set of techniques for
implementing scientific analyses efficiently using commodity
“big data” systems. To demonstrate the generality of our ar-
chitecture, we then implement a scalable astronomy image
processing system which achieves a 2.8–8.9× improvement
over the state-of-the-art MPI-based system.

Categories and Subject Descriptors
L.4.1 [Applied Computing]: Life and medical sciences—
Computational biology ; H.1.3.2 [Information Systems]:
Data management systems—Database management system
engines, parallel and distributed DBMSs; E.3.2 [Software
and its Engineering]: Software creation and management—
Software Development Process Management
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1. INTRODUCTION
Major improvements in scientific data acquisition tech-

niques are driving increased scientific data storage and pro-
cessing needs [11, 43]. In fields like neuroscience [18] and
genomics [48], particle physics, and astronomy, scientists
routinely perform analyses that process terabytes (TB) to
petabytes (PB) of data. While traditional scientific com-
puting and storage platforms are optimized for fast linear
algebra, many emerging domains make heavy use of statis-
tical learning techniques and user defined functions (UDFs)
on top of semistructured data. This move towards statistical
techniques has been driven by the increase in the amount of
data available to scientists. At the same time, commercial
needs have led to the development of horizontally-scalable
analytics systems like MapReduce [12, 13] and Spark [59], as
well as statistical systems that are accessible to non-experts,
such as Scikit-learn [40] and MLI [47].

Since the amount of scientific data being generated is
growing so quickly, there is a good opportunity to apply
modern, horizontally scalable analytics systems to science.
New scientific projects such as the 100K for UK, which aims
to sequence the genomes of 100,000 individuals in the United
Kingdom [20] will generate three to four orders of magni-
tude more data than prior projects like the 1000 Genomes
Project [46]. These projects use the current “best practice”
genomic variant calling pipeline [6], which takes approxi-
mately 120 hours to process a single, high-quality human
genome using a single, beefy node [49]. To address these
challenges, scientists have started to implement computer
systems techniques such as map-reduce [34] and columnar
storage [19] in custom scientific compute/storage systems.
While these systems have improved analysis cost and perfor-
mance, current implementations incur significant overheads
imposed by the legacy formats and codebases that they use.

In this paper, we demonstrate ADAM [33], a genomic data
processing system built using Apache Avro, Parquet, and
Spark [3, 4, 59], that achieves a 28× increase in read prepro-
cessing throughput over the current best practice pipeline,
while reducing analysis cost by 63%. In the process of cre-



ating this system, we developed a “narrow waisted” layering
model for building similar scientific analysis systems. This
narrow waisted stack is inspired by the OSI model for net-
worked systems [61]. Our model uses the data schema as the
narrow waist that separates data processing from data stor-
age. ADAM additionally demonstrates that it is possible to
achieve very high performance on scientific applications us-
ing free open source software (OSS). By shifting scientific
data processing away from proprietary high performance
computing (HPC) environment and into a commodity/OSS
world, we can democratize scientific analysis.

To researchers and practitioners unfamiliar with current
practice in computational science, the layering-based ap-
proach we propose may appear sufficiently straightforward
as to be uncontroversial. In practice however—as discussed
in the seminal “end-to-end” paper [42]—there is a common
tendency to engage in “stack smashing” when building a
large system to improve performance or to simplify imple-
mentation. Scientific applications are no different; in ge-
nomics, processing pipelines impose invariants on the layout
of data on disk to improve performance, such as requiring
data to be stored in a coordinate-sorted order. These invari-
ants are rarely made explicit, which can lead to functional
errors when composing multiple tools into a pipeline and ne-
cessitate slow sorting stages. In both genomics and astron-
omy, data is stored in flat file that centralize file/experiment
metadata in order to improve the size of data on disk. This
increases the cost of parallel metadata access and limits the
scalability of current parallel astronomy pipelines (see §6.2).
In this paper, we demonstrate that scientific pipelines can be
decomposed without sacrificing computational cost through
the use of the following techniques:

1. We make the schema the “narrow waist” of our stack
and enforce data independence. We then devise algo-
rithms for making common scientific processing pat-
terns fast (e.g., coordinate-space joins, see §5.1).

2. To improve horizontal scalability, we push computa-
tion to the data. To support this, we use Parquet, a
modern parallel columnar store based off of Dremel [35].

3. We use a denormalized schema to achieve O(1) parallel
access to metadata.

We introduce the stack model in Figure 1 as a way to
decompose scientific systems. In addition to the genomics
application described above, we demonstrate the generality
of this model by using it to implement a system for process-
ing astronomy images and achieve a 2.8–8.9× performance
improvement over a state-of-the-art Message Passing Inter-
face (MPI) based pipeline.

While the stack smashing used in genomics to accelerate
common access patterns is undesirable because it violates
data independence and can lead to errors when compos-
ing multiple tools into a pipeline, we also find that it can
lead to correctness errors inside of a single tool. As noted
above, tools built using the current Sequence/Binary Align-
ment and Map (SAM/BAM [31]) formats for storing genomic
alignments apply constraints about record ordering to enable
specific computing patterns. Our implementation (described
in §4.1) identifies errors in two current genomics processing
stages that occur because of the sorted data layout invariant.
Our implementations of these stages do not make use of sort
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Figure 1: A stack model for scientific computing

order, and achieve high performance while eliminating these
errors.

We have made all of the software (source code and exe-
cutables) described in this paper available free of charge un-
der the permissive Apache 2 open-source license. Addition-
ally, the setup for implementing the genomics experiments
described in this paper has been made publicly available to
enable reproducing our results. Access instructions are given
in Appendices D and E.

2. BACKGROUND
Our work is at the intersection of computational science,

data management, and processing systems. Our architec-
tural approach is informed by recent trends in both areas.
The design of large scale data management has changed dra-
matically since the papers by Dean and Ghemawat [12, 13]
that described Google’s MapReduce system. Over a similar
timeframe, scientific fields have taken advantage of improve-
ments in data acquisition technologies. Since the Human
Genome Project finished in 2001 [28], the price of genomic
sequencing has dropped by 10,000× [38]. This drop in cost
has enabled the capture of petabytes of sequence data and
enabled significant population genomics experiments like the
1000 Genomes project [46] and The Cancer Genome At-
las (TCGA, [53]). These changes are not unique to genomics;
indeed, fields such as neuroscience [11] and astronomy [23,
52, 56] are experiencing similar trends.

Although there has been significant progress in the devel-
opment of systems for processing large datasets—the devel-
opment of first generation map-reduce systems [12], followed
by iterative map-reduce systems like Spark [59], as well as
parallel and columnar DBMS [1, 27]—the uptake of these
systems in the scientific world has been slow. Most imple-
mentations have either used map-reduce as an inspiration
for API design [34], or have been systems that have used



map-reduce to parallelize existing toolkits [29, 44]. These
approaches are perilous for several reasons:

• A strong criticism of the map-reduce model is that the
API is insufficiently expressive for describing complex
tasks. As a consequence of this, tools like the GATK [34]
that adopt map-reduce as a programming model force
significant restrictions on algorithm implementors. For
example, a GATK walker is provided with a single view
over the data (a sorted iterator) with limited reduce
functionality.

• A major contribution of systems like MapReduce [13]
and Spark [59, 58] is the ability to reliably distribute
parallel tasks across a cluster in an automated fashion.
While the GATK uses map-reduce as a programming ab-
straction, it does not use map-reduce as an execution
strategy. To run tools like the GATK across a cluster,
organizations use workflow management systems for
sharding and persisting intermediate data, and man-
aging failures and retries. This ad hoc approach is a
source of inefficiency during execution: since the exe-
cution system cannot pipeline jobs together, iterative
stages in the GATK must spill to disk and become bot-
tlenecked by I/O performance.

• The Hadoop-based implementations in Crossbow [29]
and Cloudburst [44] run unmodified legacy tools on
top of Hadoop. This approach does achieve speedups,
but does not attack overhead. High overhead occurs
due to duplicated loading of indices and poor broadcast
performance.

Recent work by Diao et al [15] has looked at optimiz-
ing map-reduce systems for processing genomic data. They
adapt strategies from the query optimization literature to
reorder computation to minimize data shuffling. While this
approach does improve shuffle traffic, several preprocess-
ing stages cannot be transposed. For instance, reversing
the order of realignment and base quality score recalibra-
tion (see §4.1) will change the inferred quality score dis-
tribution. Additionally, we believe that the shuffle traffic
that Diao et al observe is an artifact caused by the abstrac-
tion inversion discussed in §1. As we demonstrate in §4.1,
these penalties can be eliminated by restructuring the pre-
processing algorithms.

One notable area where modern data management tech-
niques have been leveraged by scientists is in the data stor-
age layer. Due to the storage costs of large genomic datasets,
scientists have introduced the CRAM format that uses colum-
nar storage techniques and special compression algorithms
to achieve a > 30% reduction in size over the compressed BAM

format [19]. While CRAM achieves high (� 50%) compres-
sion, it imposes restrictions on the ordering and structure of
the data, and does not provide support for predicates or pro-
jection. Additionally, to achieve compression ratios greater
than 30%, CRAM uses lossy compression codecs. We perform
a more comprehensive comparison against CRAM in §6.3.

One interesting trend of note is the development of
databases specifically for scientific applications. The exem-
plar is SciDB, which provides an array-driven storage model
with efficient linear algebra routines [8]. While arrays ac-
celerate many linear algebra based routines, they are not a
universally great fit. Due to the semistructured nature of

genomics datasets, complex UDFs are needed to import ge-
nomic data into array databases. Other systems like the
Genome Query Language (GQL, [26]) have extended SQL
to provide efficient query semantics across genomic coordi-
nates. While GQL achieves 10× performance improvements
for certain algorithms, SQL is not an attractive language for
scientific analyses that make heavy use of UDFs.

3. CHARACTERISTICS OF SCIENTIFIC
ANALYSIS SYSTEMS

Most prior work on scientific computing has been focused
on linear algebra and other problems that can be structured
as a matrix or network. However, in several of the emerg-
ing data-driven scientific disciplines, data is less rigorously
structured. As discussed in §2, scientists have developed cus-
tom solutions to process this data. In this section, we discuss
the common characteristics of workloads in these emerging
scientific areas. Given these characteristics, we describe a
way to decompose data processing and storage systems so
that we can efficiently implement important processing pat-
terns while providing a wide range of data access methods.

3.1 Layering
The processing patterns being applied to scientific data

shift widely as the data itself ages. Because of this change,
we want to design a scientific data processing system that is
flexible enough to accommodate our different use cases. At
the same time, we want to ensure that the components in the
system are well isolated so that we do not bleed functionality
across the stack. If we did bleed functionality across layers
in the stack, this violation of the end-to-end principle would
make it more difficult to implement different applications
using our stack [42]. Additionally, as we discuss in §4.1,
improper separation of concerns can lead to errors in our
application.

These concerns are very similar to the factors that led to
the development of the Open Systems Interconnection (OSI)
model and Internet Protocol (IP) stack for networking ser-
vices [61]. The networking stack models were designed to
allow the mixing and matching of different protocols, all of
which existed at different functional levels. The success of
the networking stack model can largely be attributed to the
“narrow waist” of the stack, which simplified the integra-
tion of a new protocol or technology by ensuring that the
protocol only needed to implement a single interface to be
compatible with the rest of the stack.

Unlike conventional scientific systems that leverage cus-
tom data formats like BAM, SAM, or CRAM [19, 31], we believe
that the use of an explicit schema for data interchange is
critical. In our stack model shown in Figure 1, the schema
becomes the “narrow waist” of the stack. Most importantly,
placing the schema as the narrow waist enforces a strict
separation between data storage/access and data process-
ing. The seven layers of our stack model are decomposed as
follows, and are numbered in ascending order from bottom
to top:

1. Physical Storage coordinates data writes to physical
media.

2. Data Distribution manages access, replication, and
distribution of the files that have been written to stor-
age media.



3. Materialized Data encodes the patterns for how data
is encoded and stored. This layer determines I/O band-
width and compression.

4. Data Schema specifies the representation of data,
and forms the narrow waist of the stack that separates
access from execution.

5. Evidence Access provides primitives for processing
data, and enables the transformation of data into dif-
ferent views and traversals.

6. Presentation enhances the data schema with conve-
nience methods for performing common tasks and ac-
cessing common derived fields from a single element.

7. Applications use the evidence access and presenta-
tion layers to compose algorithms for performing an
analysis.

A well defined software stack has several other significant
advantages. By limiting application interactions with layers
lower than the presentation layer, application developers are
given a clear and consistent view of the data they are pro-
cessing, and this view of the data is independent of whether
the data is local or distributed across a cluster or cloud.
With careful design in the data format and data access lay-
ers, we can seamlessly support conventional whole file ac-
cess patterns, while also allowing easy access to small slices
of files. By treating the compute substrate and storage as
separate layers, we also drastically increase the portability
of the APIs that we implement.

As we discuss in more detail in §4.1, current scientific
systems bleed functionality between stack layers. The BAM,
SAM and CRAM formats are exemplars, as they expect data to
be sorted by genomic coordinate. This modifies the layout
of data on disk (level 3, Materialized Data) and constrains
how applications traverse datasets (level 5, Evidence Ac-
cess). Beyond constraining applications, this leads to bugs
in applications that are difficult to detect.1 To resolve this
conflict, we demonstrate several ways to efficiently imple-
ment conventional scientific traversals without imposing a
sort order invariant in §5. These traversals are implemented
above the evidence access layer, and are independent of any-
thing below the schema.

The idea of decomposing scientific applications into a stack
model is not new; Bafna et al [7] made a similar suggestion
in 2013. We borrow some vocabulary from Bafna et al, but
our approach is differentiated in several critical ways:

• Bafna et al consider the stack model specifically in
the context of data management systems for genomics;
as a result, they bake current technologies and design
patterns into the stack. Instead, a stack design should
serve to abstract layers from methodologies/implemen-
tations, lest technology trends render the stack obso-
lete.

• Bafna et al define a binary data format as the nar-
row waist in their stack, instead of a schema. While
these two seem interchangeable, they are not in prac-
tice. A schema provides a view of the logical content

1Current BQSR and Duplicate Marking implementations
fail in certain corner-case alignments, due to an improper
sort order invariant.

of data, while a binary data format provides a view of
the physical layout of data.

• Notably, Bafna et al use this stack model to motivate
GQL [26]. While a query system should provide a way to
process and transform data, Bafna et al instead move
this system down to the data materialization layer.
We feel that this approach inverts the semantics that
a user of GQL would expect.

Our stack enables us to serve the use cases we outline
in §3.2. By using Parquet as a storage format, we are able
to process the data in many Hadoop-based systems. We im-
plement high performance batch and interactive processing
with Spark, and can delegate to systems like Impala [25] and
Spark SQL [5] for data warehousing.

3.2 Workloads
There are several common threads that unify the diverse

set of applications that make up scientific computing. When
looking at the data that is used in different fields, several
trends pop out:

1. Scientific data tends to be rigorously associated with
coordinates in some domain. These coordinate systems
vary, but can include:

• Time (e.g., fMRI data, particle simulations)

• Chromosomal position (e.g., genomic read align-
ments and variants)

• Position in space (imaging data, some
sensor datasets, see Hadoop-GIS [2] and Spatial-

Hadoop [16])

2. For aggregated data, we frequently want to slice data
into many different views. For example, for time do-
main data aggregated from many sensors, scientists
may want to perform analyses by slicing across a sin-
gle point in time, or by slicing across a single sensor.
In genomics, we frequently aggregate data across many
people from a given population. Once we have done
this first aggregation, we may want to then slice the
data by subsets of the population, or by regions of the
genome (e.g., specific genes of interest).

There are two important consequences of the character-
istics above. First, since data is attached to a coordinate
system, the coordinate system itself may impose logical pro-
cessing patterns. For example, for time domain data, we
may frequently need to run functions that pass a sliding
window across the dataset (e.g., for convolution). Second,
the slicing of aggregated data is frequently used to perform
analyses across subsets of a larger dataset. This slicing is
common if we want to study a specific phenomenon, like
the role of a gene in a disease (a common analysis in the
TCGA [53]), or the measured activity in a single lobe of the
brain while performing a task. Since the datasets we are
processing are large,2 it may be uneconomical to colocate
data with processing nodes, because of either the number of
nodes that would need to be provisioned, or the amount of
storage that would need to be provisioned per node.

2For example, the Acute Myeloid Leukemia subset of the
TCGA alone is over 4 TB in size, and is only one of 20
cancers in the TCGA.



For scientific fields that process very large datasets, the
exact processing techniques and algorithms vary consider-
ably, but common processing trends do exist:

1. There is increasing reliance on statistical methods. The
Thunder pipeline makes heavy use of the MLI/MLLib
statistical libraries [18, 47], and tools like the GATK

perform multiple rounds of statistical refinement [14].

2. Many scientific applications are data parallel. This
parallelism varies across applications; in some appli-
cations (like genomics), we may leverage the indepen-
dence of sites across a coordinate system and process
individual coordinate regions in parallel. For other sys-
tems, we may have matrix calculations that can be
parallelized [47], or we may be able to run processing
in parallel across samples or traces.

Additionally, there are several different emerging use cases
for scientific data processing and storage systems. These
different use cases largely correspond to different points in
the lifecycle of the data:

• Batch processing: After the initial acquisition of
raw sensor data (e.g., raw DNA reads, brain electrode
traces, telescope images), a batch processing pipeline
(e.g., Thunder or the GATK) performs dimensionality re-
duction or statistical summarization of the data. This
processing is generally used to extract notable features
from the data, such as turning raw genomic reads into
variant alleles, or identifying areas of activity in neu-
roscience traces. These tasks are unlikely to have any
interactive component, and are likely to be long run-
ning compute jobs.

• Ad hoc exploration: Batch processing is often fol-
lowed by exploratory processing of the results. For
example, when studying disease genetics, a geneticist
may use the variant/genotype statistics to identify ge-
nomic sites with statistically significant links to the
disease phenotype. Data exploration tasks have a sig-
nificant user facing/interactive nature, and are gener-
ally performed by scientists who may be programming
laypeople.

• Data warehousing: In large scientific projects, it is
common to make data available to the members of the
scientific community through some form of warehouse
service (e.g., the Cancer Genomics Hub, CGHub, for
the TCGA). As is the case for all data warehousing,
this implies that point queries must be made reason-
ably efficient, even though the data is expected to be
cold. To reduce the cost of storing data, we may pri-
oritize compression here; this has led to the creation
of compressed storage formats like CRAM [19].

In this paper, we design a system that can achieve all
of the above goals. The genomics and astronomy pipelines
we demonstrate achieve improvements in batch processing
performance, and allow for interactive/exploratory analysis
through both Scala and Python. Through the layering prin-
ciples we lay out in the next section and the performance op-
timizations we introduce in §5.2, we make our system useful
for warehousing scientific data.

4. CASE STUDIES
To validate our architectural choices, we have implemented

pipelines for processing short read genomic data and astron-
omy image processing. Both of these pipelines are imple-
mented using Spark [59], Avro [3], and Parquet [4]. We
have chosen these two applications as they fit in different ar-
eas in the design space. Specifically, the genomics pipeline
makes heavy use of statistical processing techniques over
semistructured data, while the astronomy application has a
traditional matrix structure.

Corresponding to the stack model that was introduced in
Figure 1, we use the following technologies to implement
both of our applications:

1. Physical Storage: We have designed our system to
run on top of local or distributed drives, as well as
block stores.

2. Data Distribution: Our system is designed to oper-
ate on top of the Hadoop Distributed File
System (HDFS), or to coordinate data distribution
backed by an Amazon S3 bucket. We describe these
optimizations in §5.2.

3. Materialized Data: We store data using the open
source Parquet columnar store [4].

4. Schema: We manage our schemas (and data serial-
ization) via the Avro serialization framework [3]. Our
schemas are described in Appendix B.

5. Evidence Access: We use Spark’s Resilient
Distributed Dataset (RDD, [58]) abstraction to pro-
vide parallel processing over the data. We enhance
this with the join patterns we describe in §5.1.

6. Presentation: In our genomics application, we pro-
vide several rich datatypes that implicitly wrap our
schemas to provide convenience methods for metadata
access. This is not as crucial in the astronomy appli-
cation.

In the remainder of this section, we describe the appli-
cations that we have implemented, and the optimizations
we have made to improve the horizontal scalability of these
algorithms.

4.1 Genomics Pipeline
Contemporary genomics has been revolutionized by “next

generation” sequencing technologies (NGS), which have
driven a precipitous drop in the cost of genomic assays [38].
Although there are a variety of sequencing technologies in
use, the majority of sequence data comes from the Illumina
sequencing platform, which uses a “sequencing-by-synthesis”
technique to generate short read data [36]. Short reads are
genomic subsequences that are between 50 and 250 bases
in length. In addition to adjusting the length of the reads,
we can control the amount of the data that is generated by
changing the amount of the genome that we sequence, or
the amount of redundant sequencing that we perform (the
average number of reads that covers each base, or cover-
age). A single human genome sequenced at 65× coverage
will produce approximately 1.4 billion reads of 150 base
length. This is approximately 600 GB of raw data, or 225
GB of compressed data. For each read, we also are provided



quality scores, which represent the likelihood that the base
at a given position was observed. Most sequencing assays se-
quence“read pairs”where two reads are known to have come
from a single fragment of DNA, with a known approximate
distance between each read.

One of the most common genomic analyses is variant call-
ing, which is a statistical process to infer the sites where a
single individual varies from the reference genome.3 To call
variants, we perform the following steps:

1. Alignment: For each read, we find the position in
the genome that the read is most likely to have come
from. As an exact search is too expensive, there has
been an extensive amount of research that has focused
on indexing strategies for improving alignment perfor-
mance [30, 32, 57]. This process is parallel per se-
quenced read.

2. Pre-processing: After reads have been aligned to
the genome, we perform several preprocessing steps to
eliminate systemic errors in the reads. These adjust-
ments may involve recalibrating the observed quality
scores for the bases or locally optimizing the read align-
ments. We will present a description of several of these
algorithms in §4.1; for a more detailed discussion, we
refer readers to DePristo et al [14].

3. Variant calling: Variant calling is a statistical pro-
cess that uses the read alignments and the observed
quality scores to compute whether a given sample
matches or diverges from the reference genome. This
process is typically parallel per position or region in
the genome.

4. Filtration: After variants have been called, we want
to filter out false positive variant calls. We may per-
form queries to look for variants with borderline like-
lihoods, or we may look for clusters of variants, which
may indicate that a local error has occurred. This pro-
cess may be parallel per position, may involve complex
traversals of the genomic coordinate space, or may re-
quire us to fit a statistical model to all or part of the
dataset. While we do not present work on variant fil-
tration in this paper, variant filtration has motivated
the coordinate space joins presented in §5.1.

This process is very expensive in time to run; the current
best practice pipeline uses the BWA tool [30] for alignment
and the GATK [14, 34] for pre-processing, variant calling, and
filtration. Current benchmark suites have measured this
pipeline as taking between 90 and 130 hours to run end-
to-end [49]. Recent projects have achieved 5–10× improve-
ments in alignment and variant calling performance [41, 57],
which makes the pre-processing stages the performance bot-
tleneck. Our experimental results have corroborated this, as
the four pre-processing stages take approximately 35 hours
to run on a clinical quality human genome when run on
an Amazon EC2 i2.8xlarge machine. We have focused on
implementing the four most-commonly used pre-processing
stages, as well as Flagstat, a command used for validating
the quality of an aligned sample. Flagstat operates by per-
forming an aggregate over boolean fields attached to each

3The reference genome represents the “average” genome for
a species. The Human Genome Project [28] assembled the
first human reference genome.

read. In the remainder of this section, we describe the stages
that we have implemented, and the techniques we have used
to improve performance and accuracy.

1. Sorting: This phase sorts all reads by the position
of the start of their alignment. The implementation
of this algorithm is trivial, as Spark provides a sort
primitive [59]; we solely need to define an ordering for
genomic coordinates, which is well defined.

2. Duplicate Removal: During the process of prepar-
ing DNA for sequencing, errors during sample prepara-
tion and sequencing can lead to the duplication of some
reads. Detection of duplicate reads requires matching
all reads by their position and orientation after read
alignment. Reads with identical position and orien-
tation are assumed to be duplicates. When a group
of duplicate reads is found, all but the highest quality
read are marked as duplicates.

We have validated our duplicate removal code against
Picard [51], which is used by the GATK for marking du-
plicates. Our implementation is fully concordant with
the Picard/GATK duplicate removal engine, except we
are able to perform duplicate marking for chimeric
read pairs.4 Specifically, because Picard’s traversal
engine is restricted to processing linearly sorted align-
ments, Picard mishandles these alignments.

3. Local Realignment: In local realignment, we cor-
rect areas where variants cause reads to be locally mis-
aligned from the reference genome.5 In this algorithm,
we first identify regions as targets for realignment. In
the GATK, this is done by traversing sorted read align-
ments. In our implementation, we generate targets
from reads, and then compute the convex hull of over-
lapping targets. We introduce a parallel algorithm for
this in Appendix C.

After we have generated the targets, we associate reads
to the overlapping target, if one exists. After associ-
ating reads to realignment targets, we run a heuristic
realignment algorithm that works by minimizing the
quality-score weighted number of bases that mismatch
against the reference.

4. Base Quality Score Recalibration (BQSR): Dur-
ing the sequencing process, systemic errors occur that
lead to the incorrect assignment of base quality scores.
In this step, BQSR labels each sequenced base with an
error covariate, and counts the total number of bases
and the number of bases that mismatched against the
reference genome per covariate bin. The correction is
applied by estimating the error probability for each set
of covariates under a beta-binomial model with uni-
form prior:

E(Perr|cov) =
#errors(cov) + 1

#observations(cov) + 2
(1)

We have validated the concordance of our BQSR im-
plementation against the original implementation in

4In a chimeric read pair, the two reads in the read pairs
align to different chromosomes; see Li et al [30].
5This is typically caused by the presence of insertion/dele-
tion (INDEL) variants; see DePristo et al [14].



the GATK [14]. Across both tools, only 5000 of the
∼180B bases (< 0.0001%) in the high-coverage
NA12878 genome dataset differ (dataset information
in Appendix E). After investigating this discrepancy,
we have determined that this is an error in the GATK

caused by a sort order invariant. Specifically, paired-
end reads are mishandled if the two reads in the pair
overlap.

For current implementations of these read processing steps,
performance is limited by disk bandwidth [15]. This bottle-
neck exists because the operations read in a SAM/BAM file,
perform a small amount of processing, and write the data to
disk as a new SAM/BAM file. We achieve a performance bump
by performing our processing iteratively in memory. The
four read processing stages can then be chained together,
eliminating three long writes to disk and an additional three
long reads from disk. Additionally, by rethinking the design
of our algorithms, we are able to reduce overhead in several
other ways:

1. Current algorithms require the reference genome to be
present on all nodes. This assembly is then used to
look up the reference sequence that overlaps all reads.
The reference genome is several gigabytes in size, and
performing a lookup in the reference genome can be
costly due to its size. Instead, we leverage the mis-

matchingPositions field in our schema to embed in-
formation about the reference in each read. This opti-
mization allows us to avoid broadcasting the reference,
and provides O(1) lookup.

2. Shared-memory genomics applications tend to be im-
pacted significantly by false sharing of data
structures [57]. Instead of having data structures that
are modified in parallel, we restructure our algorithms
so that we only touch data structures from a single
thread, and then merge structures in a reduce phase.
The elimination of sharing improves the performance
of covariate calculation during BQSR and the target
generation phase of local realignment.

3. In a näıve implementation, the local realignment and
duplicate marking tasks can suffer from stragglers. The
stragglers occur due to a large amount of reads that
either do not associate to a realignment target, or that
are unaligned. We pay special attention to these cases
by manually randomizing the partitioning for these
reads. This randomization resolves load imbalance and
mitigates stragglers.

4. For the Flagstat command, we are able to project a
limited subset of fields. Flagstat touches fewer than
10 fields, which account for less than 10% of space on
disk. We discuss the performance implications of this
further in §6.3.

These techniques allow us to achieve a 28× performance
improvement over current tools, and scalability beyond 128
machines. We perform a detailed performance review in §6.1.

4.2 Astronomy Image Processing
The Montage [24] application is an astronomy image pro-

cessing pipeline that builds “mosaic” images by combining
small image tiles obtained from telescopes. Montage has

the requirement of preserving the energy quantity and po-
sition of each pixel between the input and output images.
The pipeline has the following four phases:

1. Tile Reprojection reprojects the raw images with
the scale and rotation required for the final mosaic.

2. Background Modeling smooths out the background
levels between each pair of overlapped images and fits
a plane to each of them. This phase can be further
divided into overlap calculation, difference image cre-
ation, and plane-fitting coefficient calculation.

3. Background Matching removes the backgrounds
from the reprojected images. The best solution from
the previous phase is used to smooth out the overlap
between tiled images.

4. Tile Mosaicing uses a smoothing function to merge
all corrected images into a aggregated mosaic file, after
applying background matching to the reprojected im-
ages. This phase also includes a metadata processing
stage prior to mosaicing.

The tile reprojection, background modeling, and back-
ground matching phases are embarrassingly parallel, and
each task (both computation and I/O) can run independent
of other tasks in the same phase. We care the most about
the tile mosaicing phase because the MPI implementation
requires a preceding stage to summarize the metadata of all
corrected images to produce a metadata table containing the
tile positioning information. This particular stage is ineffi-
cient because it has to read all input files into memory, but
only accesses a small portion of the file. In addition, the cur-
rent implementation parallelizes the computation with each
matrix row as the element, which results in an inefficient
replication of input images when executed in a distributed
environment. We address the metadata issue by explicitly
integrating the metadata into the denormalized image data
schema. We then store the images in a columnar store which
allows all input images to be loaded into memory a single
time. All subsequent computation proceeds in memory.

5. DATA ACCESS OPTIMIZATIONS FOR
SCIENTIFIC PROCESSING

In §3.2, we discussed several processing patterns that were
important for scientific data processing. In this section, we
introduce optimizations for two important use cases. First,
we present a join pattern that enables processing that tra-
verses a coordinate system. Region joins enable distributed
implementations of important genomics algorithms. Second,
we implement an efficient method for applying predicates
and projections into data that is stored in a remote block
store. Enabling predicates and projections on remote data
allows us to defer as much remote data movement as is possi-
ble and improves the efficiency of accessing remotely staged
data.

5.1 Coordinate System Joins
There are a wide array of experimental techniques and

platforms in genome informatics, but many of these methods
produce datapoints that are tied to locations in the genome
through the use of genomic coordinates. Each cell contains
a copy of the genome with one molecule per chromosome.



Each molecule is a collection of DNA polymers coated with
(and wrapped around) proteins and packed into the nucleus
in a complex 3-dimensional shape. In practice, computa-
tional biologists abstract this complexity by storing a single
long string that represents the nucleotides of the chromo-
some. We can then connect a datapoint or observation to
the genome by associating the data with the chromosome
name and a point or interval on a 1-dimensional space.

A platform for scientific data processing in genomics needs
to understand these 1-dimensional coordinate systems be-
cause these become the basis on which data processing is
parallelized. For example, when calling variants from se-
quencing data, the sequence data that is localized to a single
genomic region (or “locus”) can be processed independently
from the data localized to a different region, as long as the
regions are far enough apart.

Beyond parallelization, many of the core algorithms and
methods for data aggregation in genomics are phrased in
terms of geometric primitives on 1-D intervals and points
where we compute distance, overlap, and containment. An
algorithm for calculating quality control metrics may try to
calculate“coverage,”a count of how many reads overlap each
base in the genome. A method for filtering and annotating
potential variants might assess the validity of a variant us-
ing the quality characteristics of all reads that overlap the
putative variant.

To support these algorithms, we provide a“region”or“spa-
tial” join primitive. The algorithm used is described in algo-
rithm 1 and takes as input two sets (RDDs, see Zaharia et
al [58]) of ReferenceRegions, a data structure that repre-
sents intervals along the 1-D genomics coordinate space. It
produces the set of all overlapping ReferenceRegion pairs.
The hulls variable contains the set of convex hulls and is
broadcasted to all compute nodes during the join.

Algorithm 1 Partition And Join Regions via Broadcast

left← input dataset; left side of join
right← input dataset; right side of join
regions← left.map(data⇒generateRegion(data))
regions← regions.groupBy(region⇒ region.name)
hulls← regions.findConvexHull()
hulls.broadcast()
keyLeft← left.keyBy(data⇒getHullId(data, hulls))
keyRight← right.keyBy(data⇒getHullId(data, hulls))
joined← keyLeft.join(keyRight)
truePositives← joined.filter(r1, r2⇒ r1.overlaps(r2))
return truePositives

To find the maximal set of non-overlapping regions, we
must find the convex hull of all regions emitted. We present
a distributed algorithm for finding convex hulls in Appendix
C. The distributed convex hull computation problem is im-
portant because it is used both for computing regions for
partitioning during a region join and for performing INDEL
realignment.

While the join described above is a broadcast join, a region
join can also be implemented via a straightforward shuffle-
based approach, which is described in Algorithm 2. The
partitionJoinFn function maintains two iterators (one each
from both the left and right collections), along with a buffer.
This buffer is used to track all key-value pairs from the right
collection iterator that could match to a future key-value
pair from the left collection iterator. We prune this buffer

every time that we advance the left collection iterator. For
simplicity, the description of Algorithm 2 ignores the com-
plexity of processing keys that cross partition boundaries. In
our implementation, we replicate keys that cross partition
boundaries into both partitions.

Algorithm 2 Partition And Join Regions via Shuffle

left← input dataset; left side of join
right← input dataset; right side of join
partitions← left.getPartitions()
left← left.repartitionAndSort(partitions)
right← right.repartitionAndSort(partitions)
joined← left.zipPartitions(right, partitionJoinFn)
return joined

These joins serve as a core that we can use to build other
abstractions with. For example, self-region joins and multi-
region joins are common in genomics, and can be easily im-
plemented using the above implementations. We are cur-
rently working to implement further parallel spatial func-
tions such as sliding windows, using techniques similar to
the shuffle-based join. We are working to characterize the
performance differences between the two join strategies de-
scribed above. In the future, we hope to enable the use of
the region join in a SQL based system such as Spark SQL [5].

5.2 Loading Remote Data
Another challenge faced by scientific systems is where to

store the initial data files and how to load them efficiently.
Today, Spark is usually run in conjunction with the HDFS

portion of the Hadoop stack—HDFS provides data locality,
access to local disk on each node of the Spark cluster, and
robustness to node failure. However, HDFS imposes signif-
icant constraints on running a Spark system in virtualized
or commodity computing (e.g. “cloud”) environments. It is
easy to scale an HDFS-based system up to larger numbers of
nodes, but harder to remove nodes when the capacity is no
longer needed.

If we are willing to forgo the advantages of local disk
and data locality provided by HDFS, however, we may be
able to relax some of these other restrictions and build a
Spark-based cluster whose size is more easily adjusted to
the changing demands of the computation. By storing our
data in higher-latency, durable, cheaper block storage (e.g.,
S3) we can also exploit the varying requirements of data
availability—not all datasets need to be kept “hot” in HDFS

at all times, but can be accessed in a piecemeal or paral-
lelized manner through S3 interfaces.
Spark provides a particularly convenient abstraction for

writing these new data access methods. By implementing
our own data-loading RDD, we are able to allow a Spark

cluster to access Parquet files stored in S3 in parallel (each
partition in the RDD reflects a row group in the correspond-
ing Parquet file). For Parquet files containing records that
reflect known genomics datatypes (that are mapped to ge-
nomic locations, for example) we generate simple index files
for each Parquet file. Each index file lists the complete set
of row groups for the Parquet file, as well which genomic re-
gions contain data points within each row group. Our par-
allelized data loader reads this index file and restricts the
partitions in the data loading RDD it creates to only those
Parquet row groups that possibly contain data relevant to
the user’s query.



6. PERFORMANCE
Thus far, we have discussed ways to improve the perfor-

mance of scientific workloads that are being run on commod-
ity map-reduce systems by rethinking how we decompose
and build algorithms. In this section, we review the im-
provements in performance that we are able to unlock. We
achieve near-linear speedup across 128 nodes for a genomics
workload, and achieve a 3× performance improvement over
the current best MPI-based system for the Montage astron-
omy application. Additionally, both systems achieve 25-50%
compression over current file formats when storing to disk.

6.1 Genomics Workloads
Table 1 previews our performance versus current systems.

The tests in this table are run on the high coverage NA12878

full genome BAM file that is available from the 1000
Genomes project (access information in Appendix E). These
tests have been run on the EC2 cloud, using the instance
types listed in Table 3. We evaluated ADAM against the
GATK [14], SAMtools [32], Picard [51], and Sambamba [50].
We evaluated the performance of BQSR, INDEL realign-
ment (IR), duplicate marking (DM), sort, and Flagstat (FS).
Blank entries (—) indicate that a tool did not implement
that feature. For the ADAM runs, we present speedup relative
to the fastest legacy tool.

Table 1: Summary Performance on NA12878
Tool EC2 BQSR IR DM Sort FS Total

[14] 1† 1283m 658m — — —

2075m1
[32] 1† — — 509m 203m 54m41
[50] 1† — — 44m50 83m 6m11
[51] 1† — — 160m 562m —

ADAM 1† 1602m 366m 143m 108m 2m17 2221m17
1/1.25× 1.7× 1/3.8× 1/1.3× 2.7× 1/1.07×

ADAM 32? 74m 64m 34m56 39m23 0m43 223m2
17× 10× 1.2× 2.1× 8.6× 9.3×

ADAM 64? 41m52 35m39 21m35 18m56 0m49 118m51
30× 18× 2.0× 4.3× 7.5× 17×

ADAM 128? 25m59 20m27 15m27 10m31 1m20 73m44
49× 32× 2.9× 7.9× 4.3× 28×

We compute the cost of running each experiment by mul-
tiplying the number of instances used by the total wall time
for the run by the cost of running a single instance of that
type for an hour, which is the process Amazon uses to charge
customers. This data is shown in Table 2. Although ADAM

is more expensive than the best legacy tool (Sambamba [50])
for sorting and duplicate marking, ADAM is less expensive for
all other stages. In total, using ADAM reduces the end-to-end
analysis cost by 63% over a pipeline constructed out of solely
legacy tools.

Table 2: Cost on NA12878
Stage Legacy ADAM

Tool Cost EC2 Cost
BQSR [14] $132.57 32? $27.62
IR [14] $67.99 32? $23.89
DM [50] $4.63 32? $13.04
Sort [50] $8.57 64? $14.13
FS [50] $0.63 1† $0.24
Total $214.39 $78.92

Table 3 describes the instance types. Memory capacity
is reported in Gibibytes (GiB), and the cost reported is the
cost of one hour on one machine. Storage capacities are
not reported in this table because disk capacity does not

impact performance, but the number and type of storage
drives is reported because aggregate disk bandwidth does
impact performance. In our tests, the i2.8xlarge instance
is chosen to represent a workstation. Network bandwidth is
constant across all instances.

Table 3: AWS Machine Types
Machine Cost Description

† i2.8xlarge $6.20 32 proc, 244G RAM, 8 SDD
? r3.2xlarge $0.70 8 proc, 61G RAM, 1 SDD

As can be seen from these results, ADAM is within 7% of the
state of the art when running on a single machine. However,
ADAM achieves superlinear speedup when increasing the clus-
ter size by 8–16×, and near linear speedup when increasing
the cluster size by 32× to 128 nodes. This conclusion is not
necessarily clear from Table 1, as we change instance sizes
when scaling the cluster, but Figure 2 presents a per-core
speedup plot for the NA12878 high coverage genome.

Figure 2: Speedup on NA12878

When testing on NA12878, we achieve near-linear speedup
out through 1024 cores using 128 r3.2xlarge nodes. In this
test, our performance is limited by several factors:

• Although columnar stores have very high read perfor-
mance, they have poor write performance. Our tests
exaggerate the penalty of poor write performance since
we write the same amount of data as we read. In
a typical variant calling pipeline, the input will be a
large read file, but the pipeline’s output will be a vari-
ant call file that is approximately two orders of mag-
nitude smaller. Since the amount of data written is
much smaller, the penalty of the reduced write perfor-
mance is decreased. In practice, we also use in-memory
caching to chain stages together. This amortizes write
time across several stages of computation.

• Additionally, for large clusters, straggler elimination
is an issue. However, we have made optimizations



to both the duplicate marking and INDEL realign-
ment code to eliminate stragglers by randomly rebal-
ancing reads that are unmapped/do not map to a tar-
get across partitions.

We do note that the performance of Flagstat degrades go-
ing from 32 to 128 r3.2xlarge nodes. Flagstat executes in
two minutes on a single node. By increasing the number of
machines we use to execute this query, we increase schedul-
ing overhead, which leads to degraded performance. When
running on the 128 machine cluster, approximately 75% of
the runtime was spent scheduling and broadcasting the task
to be run.

6.2 Astronomy Workloads
To evaluate the mosaicing application, we use the 2MASS

data6 and the Montage test case of 3x3 degree mosaicing with
Galaxy m101 as the center. The tile mosaicing phase con-
verts 1.5 GB of input data into a 1.2 GB aggregated output
file. We compare the Spark-mAdd performance against the
HPC styled MPI-based parallel implementation from Mon-

tage v3.3 (MPI-mAdd). We performed the test on 1, 4, and
16 Amazon c3.8xlarge instances. We chose the c3.8xlarge
instances for this test because they provided HPC-optimized
networking, which is a prerequisite for good MPI perfor-
mance. We use OrangeFS v2.8.8—a successor of PVFS [9]—
as the shared file system when running MPI-mAdd. All 32
cores on each instance are used for both Spark-mAdd and
MPI-mAdd.

Figure 3: Speedup when running mAdd using MPI
and Spark

As shown in Figure 3, Spark-mAdd runs 2.8x, 5.7x, 8.9x
faster than MPImAdd on 1, 4, and 16 instances. In the single
machine case, MPI-mAdd achieves a cost of $0.17 per analysis.
Spark-mAdd costs $0.06 to run on a single instance, which
is a 2.8× improvement in cost. Spark-mAdd is still cheaper
than MPI-mAdd by a factor of 2.2× when running on four
nodes. Spark-mAdd is only more expensive than a single
node of MPI-mAdd when running on 16 nodes, and even then

6Available from http://irsa.ipac.caltech.edu/
applications/2MASS/IM/.

is only 40% more expensive than the lowest cost MPI-mAdd

run while providing a 8.9× performance improvement over
the fastest MPI-mAdd run.

The performance improvement is caused by multiple fac-
tors. We are able to reduce the amount of I/O performed,
while also reducing contention in the I/O system and im-
proving data locality. By denormalizing the metadata into
our data schema, we are able to combine the metadata pro-
cessing stage with the mAdd stage. This combination allows
us to only load the input dataset a single time. Parquet

also compresses the input and output data, which reduces
the volume of I/O performed. Additionally, the MPI imple-
mentation is bound by contention when trying to write all
output to a single file in a shared file system, while Parquet

writes output files into HDFS in a contention free manner.
Finally, Spark allows the computation to benefit from data
locality, while MPI distributes the computation across the
available resources without optimizing for data placement.

While the dataset used is a small dataset, larger datasets
are commonplace. For example, the Large Synoptic Sur-
vey Telescope (LSST, [23]) has been used to collect terabyte
sized datasets [37]. In future work, we plan to tackle these
very large astronomy datasets using our framework.

6.3 Column Store Performance
Earlier in this paper, we motivated the use of a column

store as it would allow us to better push processing to the
data. Specifically, we can use predicate pushdown and pro-
jections to minimize the amount of I/O that we perform.
Additionally, column stores provide compressed storage and
allow us to minimize both the required I/O bandwidth and
space on disk. In this section, we look at the read perfor-
mance and compression achieved by using a columnar store.
We will not look extensively at write performance; for ge-
nomic data, write performance is not a bottleneck because
our workflow computes a summarization of a large dataset.
As a result, our output dataset tends to be O(100 MB) while
our input dataset is in the range of O(10 GB)–O(100GB).

6.3.1 Compression
The Parquet columnar store [4] supports several compres-

sion features. Beyond block-level compression, Parquet sup-
ports run length encoding for repeated values, dictionary
encoding, and delta encoding. Currently, we make use of
run length encoding to compress highly repeated metadata
value, and dictionary encoding to compress fields that can
take a limited range of values. Dictionary encoding provides
substantial improvements for genomic data; specifically, the
majority of genomic sequence data can be represented with
three bits per base.7 Three bits are an improvement over
our in-memory string representation that allocates a byte
per base.

Table 4 shows the compression we achieve on the NA12878

and HG00096 human genome sequencing samples (datasets
are described in Appendix E). We compare against the
GZIP compressed BAM [31] format, and the CRAM format [19].
We achieve approximately a 1.25× improvement in storage.
This is not as impressive as the result achieved by the CRAM

project, but CRAM applies genome-specific compression tech-

7Although DNA only contains four bases (A, C, G, and T),
sequenced DNA uses disambiguation codes to indicate that
a base was read in error. As a result, we cannot achieve the
ideal two-bits per base.



niques that make use of the read alignment. Specifically,
CRAM only stores the read bases that do not appear in the
reference genome. As we only expect a genomic variant at
one in every 1000 bases, and a read error at one in every 50
bases, this allows them to achieve significant compression of
the sequenced bases. Additionally, CRAM applies lossy com-
pression to quality scores. This compression approach is
significant, as quality scores are 60% of the data stored on
disk in the ADAM/Parquet format.

Table 4: Genomic Data Compression
NA12878

Format Size Compression

GZIP BAM 234 GB —
CRAM 112 GB 2.08×
Parquet 185 GB 1.26×

HG00096

Format Size Compression

GZIP BAM 14.5 GB —
CRAM 3.6 GB 4.83×
Parquet 11.4 GB 1.27×

The astronomy datasets achieve higher compression ra-
tios. Table 5 compares our storage system against the legacy
FITS [54] format. We measured the aggregate compression
of the image files provided as input to our system, and the
compression of our pipeline output.

Table 5: Astronomy Data Compression
Input Dataset

Format Size Compression

FITS 1.5 GB —
Parquet 0.55 GB 2.75×

Output Dataset
Format Size Compression

FITS 1.2 GB —
Parquet 0.88 GB 1.35×

For genomic datasets, our compression is limited by the
sequence and base quality fields, which respectively account
for approximately 30% and 60% of the space spent on disk.
Quality scores are difficult to compress because they are
high entropy. We are currently looking into computational
strategies to address this problem; specifically, we are work-
ing to probabilistically estimate the quality scores without
having observed quality scores. This estimation would be
performed via a process that is similar to the base quality
score recalibration algorithm presented earlier in this paper.

6.3.2 Horizontal Scalability
The representation Parquet uses to store data to disk is

optimized for horizontal scalability in several ways. Specifi-
cally, Parquet is implemented as a hybrid row/column store
where the whole set of records in a dataset are partitioned
into row groups that are then serialized in a columnar layout.
This partitioning provides us with two additional benefits:

1. We are able to perform parallel access to Parquet row
groups without consulting metadata or checking for a
file split.

2. Parquet achieves very even balance across partitions.
On the HG00096 dataset, the average partition size was
105 MB with a standard deviation of 7.4 MB. Out of
the 116 partitions in the file, there is only one partition
whose size is not between 105–110MB.

Parquet’s approach is preferable when compared to
Hadoop-BAM [39], a project that supports the direct usage
of legacy BAM files in Hadoop. Hadoop-BAM must pick splits,
which adds non-trivial overhead. Additionally, once Hadoop-
BAM has picked a split, there is no guarantee that the split is
well placed. It is only guaranteed that the split position will
not cause a functional error. Finally, although BAM metadata
is centralized, Hadoop-BAM punts on metadata distribution,
and users must manually broadcast the metadata.

6.3.3 Projection and Predicate Performance
We use the Flagstat workload to evaluate the performance

of predicates and projections in Parquet. We define three
projections and four predicates, and test all of these com-
binations. In addition to projecting the full schema (see
Appendix B.1), we also use the following two projections:

1. We project the read sequence and all of the flags (40%
of data on disk).

2. We only project the flags (10% of data on disk).

Beyond the null predicate (which passes every record), we
evaluate the following three predicates:

1. We pass only uniquely mapped reads (99.06% of reads).

2. We pass only the first pair in a paired end read (50%
of reads, see §4.1 for definition of “paired end”).

3. We pass only unmapped reads (0.94% of reads).

Table 6: Predicate/Projection Speedups
0 1 2

0 — 1.7 1.9
1 1.0 1.7 1.7
2 1.3 2.2 2.6
3 1.8 3.3 4.4

Table 6 documents the speedup we achieve by combin-
ing predicate pushdown and projections. Projections are
arranged in the columns of the table while predicates are
assigned to rows. We achieve a 1.7× speedup by moving to
a projection that eliminates the deserialization of our most
complex field (the quality scores that consume 60% of space
on disk), while we only get a 1.3× performance improvement
when running a predicate that filters 50% of records. This
difference can be partially attributed to overhead from pred-
icate pushdown; we must first deserialize a column, process
the filter, and then read all records who passed the push-
down filter. If we did not perform this step, we would be
able to do a straight scan over all of the data in each parti-
tion.



7. DISCUSSION AND FUTURE WORK
Similar to what we propose, the Thunder system was de-

veloped as a novel map-reduce-based system for processing
terabytes of neuroscience imaging data [18]. Thunder per-
forms a largely statistical workload, and the significant tasks
in terms of execution time are clustering and regression. The
system is constructed using Spark and Python and is de-
signed to process datasets larger than 4 TB, and leverages
significant functionality from the MLI/MLLib libraries [47].
Thunder uses Spark’s filtering primitives to allow scientists
to cut problems into subproblems. This slicing and dicing
is a common trend across scientific analyses, and is one of
the reasons that we advocate for the use of a columnar store
with efficient predicate pushdown.

There has also been work to optimize map-reduce systems
for processing geospatial data. Significant projects include
SpatialHadoop [16] and Hadoop-GIS [2]. These projects
have focused on indexing strategies that can accelerate range
queries against spatial data and improve work balance for
map-reduce tasks run in Hadoop on spatial data. These
approaches are similar to the region join that we propose
in §5.1, but restricted to geospatial and imaging data.

Our genomics work leverages columnar storage to improve
performance and compression of data on disk, with special
emphasis on repetitive fields that can be run length en-
coded (RLE). While this improves disk performance, it has
the side effect of making data consume significantly more
space in memory than on disk. We are currently investigat-
ing techniques that leverage the immutability of data in our
applications to reduce memory consumption and have mod-
ified Parquet’s deserialization codec. For every value that is
RLE’d, we allocate the value once in memory and share the
value across all records which contained that value. This al-
location pattern enables denormalizing repeated metadata.

It is worth noting that there are many significant scien-
tific applications (such as genome assembly) that are ex-
pressed as traversal over graphs. Recent work by Simpson
et al (ABySS, [45]) and Georganas et al [21] has focused on
using MPI or Unified Parallel C (UPC) to implement their
own distributed graph traversal. Both systems find that
synchronization via message passing is a significant cost.
By building our system using Spark, we are able to lever-
age the GraphX processing library [22, 55]. We are in the
process of developing a genome assembler using this library
system, and believe that we can achieve improved perfor-
mance through careful graph partitioning. This partition-
ing involves algorithmic changes to the graph creation and
traversal phases to bypass “knotted” sections of the graph.

In this paper, we focus on the GATK [14] as an example of
a genome processing pipeline that needs to be distributed to
improve analysis latency and throughput. While the GATK is
widely used, there is significant debate as to whether the ex-
pensive methods employed by the GATK are necessary. Sev-
eral new “minimal preprocessing” based methods such as
SpeedSeq [10] have achieved achieved results that are compa-
rable to the GATK, while eliminating the computationally ex-
pensive BQSR and INDEL realignment stages. While these
approaches do improve throughput, they do not tackle par-
allelism beyond a single machine, which will be necessary
for analyzing very large cohorts. Additionally, the propo-
nents of “minimal” pipelines frequently validate accuracy on
high quality, whole genome sequencing datasets. Since whole
genome sequencing methods contain fewer sources of error

than targeted/whole exome sequencing panels, a more com-
prehensive evaluation is needed to validate the impact of
removing expensive stages.

8. CONCLUSION
In this paper, we have advocated for an architecture for

decomposing the implementation of a scientific system, and
then demonstrated how to efficiently implement genomic
and astronomy processing pipelines using the open source
Avro, Parquet, and Spark systems [3, 4, 59]. We have iden-
tified common characteristics across scientific systems, like
the need to run queries that touch slices of datasets and the
need for fast access to metadata. We then enforced data in-
dependence through a layering model that uses a schema as
the “narrow waist” of the stack, and used optimizations to
make common, coordinate-based processing fast. By using
Parquet, a modern columnar store, we use predicates and
projections to minimize I/O, and denormalize our schemas
to improve the performance of accessing metadata.

By rethinking the architecture of scientific data manage-
ment systems, we have been able to achieve parity on single
node systems, while providing linear strong scaling out to
128 nodes. By making it easy to scale scientific analyses
across multiple commodity machines, we enable the use of
smaller, less expensive computers, leading to a 63% cost im-
provement and a 28× improvement in read preprocessing
pipeline latency. On the astronomy workload, we achieve
speedup between 2.8–8.9× speedup over the current best
MPI-based solution at various scales. By applying our tech-
niques to both astronomy and genomics, we have demon-
strated that the techniques are applicable to both traditional
matrix-based scientific computing, as well as novel scientific
areas that have less structured data.
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B. SCHEMAS
Here, we present the schemas that we have used for these

two systems. To clarify the schemas, we have grouped our
fields into a simpler logical schema ordering, and we have
also removed the Avro syntactic sugar used to ensure that all
fields are nullable, which is required to enable arbitrary pro-
jections. These schemas are implemented using Avro [3], and
data is stored to disk via Parquet [4]. In-memory
(de-)serialization is provided via a custom wrapper around
Avro’s serialization framework.

B.1 Genomics Schema
The schema used for storing genomic short read data is

described below:

record AlignmentRecord {
/** Alignment position and quality */
Contig contig;
long start;
long oldPosition;
long end;

/** read ID, sequence, and quality */
string readName;
string sequence;
string qual;

/** alignment details */
string cigar;
string oldCigar;
int mapq;
int basesTrimmedFromStart;
int basesTrimmedFromEnd;
boolean readNegativeStrand;
boolean mateNegativeStrand;
boolean primaryAlignment;
boolean secondaryAlignment;
boolean supplementaryAlignment;
string mismatchingPositions;
string origQual;

/** Read status flags */
boolean readPaired;
boolean properPair;
boolean readMapped;
boolean mateMapped;
boolean firstOfPair;
boolean secondOfPair;
boolean failedVendorQualityChecks;

boolean duplicateRead;

/** optional attributes */
string attributes;

/** record group metadata */
string recordGroupName;
string recordGroupSequencingCenter;
string recordGroupDescription;
long recordGroupRunDateEpoch;
string recordGroupFlowOrder;
string recordGroupKeySequence;
string recordGroupLibrary;
int recordGroupPredictedMedianInsertSize;
string recordGroupPlatform;
string recordGroupPlatformUnit;
string recordGroupSample;

/** Mate pair alignment information */
long mateAlignmentStart;
long mateAlignmentEnd;
Contig mateContig;

}

All of the metadata from the sequencing run and prior
processing steps are packed into the record group metadata
fields. The program information describes the processing
lineage of the sample and is expected to be uniform across
all records, thus it compresses extremely well. The record
group information is not guaranteed to be uniform across all
records, but there are a limited number number of record
groups per sequencing dataset. This metadata is string
heavy, which makes proper deserialization from disk impor-
tant. Although the information consumes less than 5% of
space on disk, a poor deserializer implementation may repli-
cate a string per field per record.

We have defined common projections and predicates to
operate on these records. For example, tools that perform
quality control for sequenced data commonly only access the
read status flags. Additionally, it is common to run predi-
cates on the read position, or whether the read is mapped
or not. We have implemented code that allows us to apply
these predicates to legacy datasets that do not support di-
rect predicate pushdown. On legacy data, we only get the
functionality of the predicate, not the performance improve-
ment.

B.2 Astronomy Schema
We use the following schema for storing astronomy pixel

values:

record PixelValue {
/** pixel position */
int xPos;
int yPos;

/** pixel value */
float value;

/** file metadata */
int start;
int end;
int offset;
int height;

}

This schema is derived from the legacy Flexible Image
Transport System (FITS, [54]), which defines an interchange



Algorithm 3 Find Convex Hulls in Parallel

data← input dataset
regions← data.map(data⇒generateTarget(data))
regions← regions.sort()
hulls← regions.fold(r1, r2 ⇒ mergeTargetSets(r1, r2))
return hulls

format for astronomy images. During the mAdd processing
kernel described in §6.2, we access the file metadata from
each pixel. In current systems, metadata access becomes
a significant performance bottleneck as we are performing
metadata access across thousands of files [60].

C. CONVEX-HULL FINDING
A frequent pattern in our application is identifying the

maximal convex hulls across sets of regions. For a set R
of regions, we define a maximal convex hull as the largest
region r̂ that satisfies the following properties:

r̂ = ∪ri∈R̂ri (2)

r̂ ∩ ri 6= ∅, ∀ri ∈ R̂ (3)

R̂ ⊂ R (4)

In our problem, we seek to find all of the maximal convex
hulls, given a set of regions. For genomics, the convexity
constraint described by (2) is trivial to check: specifically,
the genome is assembled out of reference sequences that de-
fine disparate 1-D coordinate spaces. If two regions exist on
different sequences, they are known not to overlap. If two
regions are from a single single, we simply check to see if
they overlap in that 1-D coordinate plane. We define the
data-parallel Algorithm 3 to find the maximal convex hulls
that describe a genomic dataset.

The generateTarget function projects each datapoint into
a Red-Black tree which contains a single region. The per-
formance of the fold depends on the efficiency of the merge
function. We achieve efficient merges with the tail-call re-
cursive mergeTargetSets function which is described in al-
gorithm 4.

For a region join (see §5.1), we can use the maximal convex
hull set to define partitioning for the join. Alternatively, for
INDEL realignment (see §4.1), we use this set as an index
for mapping reads directly to targets.

D. AVAILABILITY
The source code of both ADAM and SparkMontage, and

our schemas are released under the Apache 2 license. ADAM

is available at https://www.github.com/bigdatagenomics/
adam, and SparkMontage is at https://www.github.com/

zhaozhang/SparkMontage. ADAM’s schemas are available at
https://www.github.com/bigdatagenomics/bdg-formats.
ADAM is released via the Apache Maven Central repository,
with the following dependencies:

<dependency>

<groupId>org.bdgenomics.bdg-formats</groupId>

<artifactId>bdg-formats</artifactId>

</dependency>
<dependency>

<groupId>org.bdgenomics.adam</groupId>

<artifactId>adam-distribution</artifactId>

</dependency>

As of the final submission of this paper, the latest releases
of ADAM and bdg-formats were 0.16.0 and 0.4.0.

E. EXPERIMENTAL SETUP
The datasets and scripts used in the genomics experiments

in this paper are all freely available online and can be used
to reproduce our analyses. We made use of the NA12878 and
HG00096 datasets from the 1000 Genome project when run-
ning our experiments [46]. These two datasets are available
from either of the 1000 Genome project anonymous FTP
servers (ftp.1000genomes.ebi.ac.uk/vol1/ftp/ or ftp://
ftp-trace.ncbi.nih.gov/1000genomes/ftp), and are also
hosted publicly on Amazon S3 (s3://1000genomes). These
datasets reside at the following locations on those servers:

• NA12878: data/NA12878/high_coverage_alignment/

• HG00096: data/HG00096/alignment/

Our experiments were run on Amazon EC2 using either
default or publicly available machine images. Scripts used
to run the experiments are available under the Apache 2
license from the bdg-recipes repository, at https://www.

github.com/bigdatagenomics/bdg-recipes. Our experi-
mental scripts assemble ADAM release 0.16.0, GATK release
3.3 [14], Sambamba’s docker image [50], SAMBLASTER 0.1.21 [17],
and Picard b2a94f7 [51]. These were the latest versions of
these tools at the time of final submission. These evaluation
scripts run and time the experiments listed in this paper.

Algorithm 4 Merge Hull Sets

first← first target set to merge
second← second target set to merge

Require: first and second are sorted
if first = ∅ ∧ second = ∅ then

return ∅
else if first = ∅ then

return second
else if second = ∅ then

return first
else

if last(first) ∩ head(second) = ∅ then
return first + second

else
mergeItem← (last(first) ∪ head(second))
mergeSet← allButLast(first) ∪mergeItem
trimSecond← allButFirst(second)
return mergeTargetSets(mergeSet, trimSecond)

end if
end if


