
1

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

 Guide

Amazon Redshift
to Databricks
Migration Guide

https://www.databricks.com

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Table of Contents

Preface 3

Migration Strategy 3

Overview of the Migration Process 5

Phase 1: Migration Discovery and Assessment 6

Phase 2: Architecture and Feature Mapping Workshop 7

Phase 3: Data Migration 9

Recommended Approach 10

Schema Migration 10

Data Modeling in the Lakehouse 10

Data Migration 1 1

Key Considerations: Schema Migration and Data Migration 12

Phase 4: Data Pipeline Migration 13

Compute Model Migration 13

Orchestration Migration 15

Source/Sink Migration 15

Query Migration and Refactoring 16

Migration Validation 18

Key Considerations: Data Pipeline Migration 19

Data Pipeline Refactoring and Optimization 19

Data Pipeline Cutover 20

Phase 5: Downstream Tools Integration 20

Best Practices 22

Databricks Platform 22

Compute 22

Delta Lake and Performance Optimization 23

File Sizing 23

Partitioning 23

Data Skipping 23

Z-Ordering (Clustering) 23

Merge/Upsert 24

Generated Columns 24

Query Profile 24

Analyze Table 24

Governance and Security 25

Identity Management 25

Privileges and Securable Objects 25

Need Help Migrating? 26

Appendix 27

Appendix 1: Delta vs. Amazon Redshift — Storage Format Comparison 27

Appendix 2: Data Types 28

Appendix 3: Example SQL Differences 29

https://www.databricks.com

3

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Preface

The purpose of this document is to provide an overview of the process of

migrating workloads from Amazon Redshift to Databricks. The goal is to lay out

foundational differences, common patterns in migrating data and code, best

practices, tooling options, and more from Databricks’ collective experience.

Migration Strategy

When migrating from Amazon Redshift to Databricks, it is crucial to plan and execute the

process carefully to ensure a successful outcome. Adopting a structured approach minimizes

risks and increases the chances of success. The migration process can take different routes

depending on various factors such as the:

 ρ Current architecture state: dependency on other AWS services, use of third-party tools

and open source technologies

 ρ Workload types (ETL, BI, ML, etc.)

 ρ Business criticality of use cases

 ρ Current projects in flight and their delivery timelines

 ρ Migration goals (cost reduction, cutover deadlines, user change management, etc.)

Broadly there are two areas to consider when selecting the migration strategy:

 ρ Migration approach

 ρ Technical execution strategy

MIGRATION APPROACH

The choice of the migration approach typically revolves around two main options: a big-bang

migration or a phased migration.

 ρ A big-bang migration involves a faster implementation and cutover process, enabling

organizations to swiftly transition off their entire Amazon Redshift infrastructure

 ρ A phased migration involves executing the migration in stages such as a specific use

case, schema, data mart or data pipeline

It is recommended to adopt a phased migration approach to mitigate risks, show progress

and demonstrate value early in the process. This is the better-suited approach for a large

Amazon Redshift environment with several databases and business teams.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

4

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

While a phased migration is ideal for large Amazon Redshift environments, a big-bang

approach can be more suitable for smaller Amazon Redshift footprints or when the scope

of the migration is relatively limited. This approach is more beneficial because it allows for

a quicker and less complex migration process. However, it is crucial to carefully assess the

impact and potential risks associated with a big-bang migration, particularly in larger and

more complex environments.

TECHNICAL EXECUTION STRATEGY

Once you settle on the migration approach, the technical execution strategy employed in

the migration process is influenced by several workload-specific factors, such as:

 ρ Workload dependency (integrated vs. isolated pipelines)

 ρ Shared vs. isolated clusters

 ρ Current architectural limitations

 ρ Road map backlog and new business requirements

 ρ Access to migration tools and migration effort

From a high-level strategy perspective, there are two popular execution strategies for

migrations.

ETL-first approach: Lead with migrating data ingestion and transformation workloads by

landing all data in the cloud storage (Amazon S3, Azure Data Lake Storage Gen2, or Google

Cloud Storage), in an open, analytics-optimized format like Delta Lake, and performing ETL

on both batch and streaming based data.

Delta Live Tables and Databricks Workflows can help simplify the movement, cleansing and

aggregation of data assets for formal business consumption.

This approach allows Amazon Redshift use, in the interim, for serving downstream applications

and BI dashboards. This way you could minimize the disruption to end users and slowly migrate

downstream applications to the data consumption (Gold) layer on Databricks eventually.

BI-first approach: Lead with modernizing the reporting layer by replicating the Amazon Redshift

data warehouse Gold, or “presentation,” layer tables to Databricks. This quickly unlocks value

by breaking data silos and enabling cross-functional reporting capabilities and data science

projects. Subsequently, build and “replumb” the ETL data pipelines in Databricks and cut over

from those running in Amazon Redshift.

In the next few sections, we will dive into more detail on the migration process of the ETL first

execution strategy.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta-live-tables/index.html
https://docs.databricks.com/workflows/index.html

5

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Overview of the Migration Process

Enterprise data warehouse (EDW)/ETL migrations from legacy on-premises platforms to the

cloud are typically complex and lengthy engagements. However, migrations are relatively

simpler from Amazon Redshift to Databricks because the data is already in the cloud.

The migration process typically consists of the following steps, but can vary depending on

customer situation and needs:

In addition to migrating technical artifacts, a common activity that spans the entire migration

process is change management, which involves user enablement and adoption. This will

start with creating a few champions at the beginning and scale out to more developers and

consumers. Databricks Academy is a good place to get started with some self-learning.

As migrating from one platform to another platform can be complex, it is recommended to

consider using experts — at least for the initial pipelines. The Databricks Professional Services

team has the experience, skills, automation and access to expert partners to help customers

reduce risk and successfully migrate from Amazon Redshift to Databricks. The Databricks

Brickbuilder Solution for migrations has preferred partners who have demonstrated a unique

ability in migrating Amazon Redshift workloads to the lakehouse successfully.

Migration
Discovery and
Assessment

Data MigrationArchitecture and
Feature Mapping
Workshop

Data Pipeline
Migration

Downstream Tools
Integration

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://www.databricks.com/learn/training/home
https://www.databricks.com/blog/2022/08/11/announcing-brickbuilder-solutions-for-migrations.html
https://www.databricks.com/blog/2022/08/11/announcing-brickbuilder-solutions-for-migrations.html

6

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Phase 1: Migration Discovery and Assessment

Before migrating any data or workloads, migration assessments should be conducted in order

to better understand:

 ρ The types of workloads (ETL, BI, ingress/egress, etc.) and their size by warehouses and

databases

 ρ The scope of data and queries/workloads to be migrated

 ρ The upstream and downstream technologies and applications involved in the architecture

 ρ The current security setup and protocols

 ρ Estimates for infrastructure costs

Using the insights from migration assessments positions you better for success as it provides

an understanding of the level of complexity and the effort required to migrate to Databricks.

Furthermore, it enables you to make informed, data-driven decisions in prioritizing use cases/

workloads to maximize business value. Databricks strongly recommends using automation

tools, such as the Databricks Amazon Redshift Profiler and/or the BladeBridge Code

Analyzer, to expedite the process of gathering migration-related information.

AMAZON REDSHIFT PROFILER

The Amazon Redshift Profiler reads system views and catalog tables (e.g., PG_TABLE_DEF) and

returns insights such as workload types, long-running ETL queries and user access patterns.

The profiler classifies queries into T-shirt sizes for complexity, evaluates function calls for

compatibility, and extracts other metadata information to aid with the data migration. This

analysis provides guidance on identifying databases and pipelines that contribute to high

costs and complexity. The results assist in workload prioritization and migration execution

planning. Work with your Databricks representative to get access to the Profiler.

Figure 1:
Sample output
from example
profiler result

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

7

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

BLADEBRIDGE CODE ANALYZER

The BladeBridge Code Analyzer collects deeper insights on data types, DDL (data definition

language), DML (data manipulation language) code complexity and data dependencies. The

tool parses Amazon Redshift SQL code artifacts to generate:

 ρ An inventory of the code base: Table DDLs, Views, Stored Procedures, Functions, etc.

 ρ Complexity of each script categorized from low to very complex based on number and

variety of statements

 ρ List of data types and functions

 ρ List of code and table cross-references that can provide support in understanding a

table popularity

The complexity counts are used to size the software costs for using the BladeBridge Code

Converter and help you estimate the number of hours you should forecast for the migration

project. This is available free of cost — a Databricks solutions architect can assist you in

running the tool.

Phase 2: Architecture and Feature Mapping Workshop

When planning your Amazon Redshift migration, it is important to correctly map Amazon

Redshift capabilities to Databricks Lakehouse capabilities. In a typical Amazon Redshift–based

architecture, it’s common to see Amazon Redshift intertwined with various AWS offerings and

third-party utilities. Thus, it becomes crucial to assess the integrations that will persist in the

final architecture versus the ones that will be substituted with lakehouse capabilities.

In this phase, we design and map the path for each component of the current architecture

that needs to be modernized to the target lakehouse architecture that aims to serve the data

and AI use cases.

Additionally, we will need to compare/contrast current- and future-state architecture diagrams

to align on any intermediate phases of the architecture. As an example, the intermediate

architecture may require running data transformation pipelines in both Amazon Redshift and

Databricks in parallel. This will therefore involve a design solution to ensure data remains in

sync so that external systems/tooling can continue to function without impact to the rest of

the organization.

Following architectural alignment, we will conduct a deep dive into all features currently used

in Amazon Redshift. The initial discovery (phase 1) will help surface this information, but

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://bladebridge.com/analyzer/

8

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

O B J ECT S/ WO R K LOA D A M A ZO N R E D S H I F T DATA B R I C KS

Compute Amazon Redshift Clusters Databricks Clusters optimized for
workload types with a runtime:

 All-purpose for interactive/developer use
 Jobs for scheduled pipelines
 SQL warehouse for BI workloads and ad
hoc SQL queries

Storage Amazon Redshift Managed
Storage and S3

Cloud storage
(Amazon S3, Azure Blob Storage, Azure
Data Lake Storage Gen2, Google Cloud
Storage)

Tables Amazon Redshift Tables Delta Tables

Format Amazon Redshift proprietary Delta Lake (Parquet)

Interface Amazon Redshift Query Editor
v2.0
Redshift Data API

Databricks collaborative notebooks
Databricks SQL workspace
Databricks CLI

Database Objects Tables, Temporary Tables, Views,
Materialized Views, Stored
Procedures, UDFs

Tables, Views, Temporary Views,
Materialized Views, UDFs

Metadata Catalog Built-in catalog, Glue Catalog Unity Catalog

Data Sharing Amazon Redshift Data Sharing
AWS Data Exchange

Delta Sharing
Delta Sharing Marketplace

Data Ingestion AWS Glue, Amazon EMR, custom
pipelines using connectors,
COPY (S3), AWS Kinesis, third-
party tools

COPY INTO
CONVERT TO DELTA
Auto Loader
DataFrame Reader
Structured Streaming APIs for Kafka and
Kinesis
Integrations via Partner Connect
Add data UI

Data Types Data Types in Amazon Redshift Data Types in Databricks

Workload Management Available through WLM Intelligent Workload Management (IWM),
cluster configuration (policies), cluster
metrics

Access Control IAM, Glue Catalog IAM, role-based access, Unity Catalog

Sorting Multipart Sort Keys Z-Ordering

this phase will dive deeper into how they are used to ensure each existing Amazon Redshift

feature/functionality is mapped accordingly in Databricks.

AMAZON REDSHIFT VS. DATABRICKS FEATURE MAPPING EXAMPLEPreface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html
https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html

9

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

F E AT U R E S A M A ZO N R E D S H I F T DATA B R I C KS

Distribution Styles Auto/Even/Key/All Not applicable in Databricks

Programming Language SQL, Python (for UDFs) SQL, Python, R, Scala, Java

Data Integration EMR, Glue, External tools (dbt, Matillion,
Talend, Pentaho, Informatica, etc.)

Delta Live Tables, External tools (dbt, Matillion,
Prophecy, Informatica, Talend, Fivetran, etc.)

Orchestration Glue, data pipeline, Airflow Databricks Workflows, Airflow, Azure Data
Factory, Dagster, Python SDK, Terraform
Provider

Machine Learning AWS SageMaker, Amazon Redshift ML Databricks ML (Runtime with OSS ML
packages, MLflow, Feature Store, AutoML)

The table above is an example of mapping key features between Amazon Redshift and

Databricks. A similar exercise comparing all relevant features for your environment should be

performed in this step.

Typically, by the end of this phase we have a good handle on the scope and complexity of the

migration, and can formulate a more accurate migration plan and migration cost estimate.

Phase 3: Data Migration

Before you start the migration process, one or more Databricks workspaces will need to

be provisioned if not available. Refer to Databricks documentation for instructions on

workspace setup.

The decision to create one or more workspaces typically revolves around the following

considerations:

 ρ Separation of environments: Requiring different workspaces for development, staging,

production and other environments

 ρ Separation of business units: Requiring different workspaces for marketing, finance,

risk management and other departments

 ρ Implementation of modern data architectures: Requiring different workspaces to

support modern data architectures, such as Data Mesh architecture, to decentralize data

ownership for different domains

Once the workspace is set up, the first step is migrating the data. The data migration involves

both metadata (table DDLs, views, etc.) and actual table data. Databricks is optimized for cloud

object storage: Amazon S3, ADLS Gen2 and Google Cloud Storage. The actual table data that

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/en/getting-started/index.html

10

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

is migrated is stored in open format (Delta) in the cloud object storage, unlike Amazon Redshift,

where the data is stored in a proprietary format.

When migrating data out of Amazon Redshift, there are key questions that need to be

answered. Some of these could include:

 ρ What is the target design for the tables being migrated?

 ρ Should the destination retain the same hierarchy of catalogs, databases, schemas, tables?

 ρ Should there be any cleanup of duplicated data sets or organization of the existing data

footprint in Amazon Redshift?

Once these are determined, the data migration can proceed. Generally speaking, we do not

recommend introducing many changes in the schema structure during migration. Given the

Schema Evolution capability in Delta, it is a common practice to evolve the schema after it is

put into Delta. This approach also allows us to easily compare the data in Amazon Redshift

and Databricks during parallel runs.

RECOMMENDED APPROACH

It is important to note that not every data migration will follow the same pattern, but Databricks

recommends the following flow:

1 | Migrate EDW (enterprise data warehouse) tables into Delta Lake medallion

(Bronze/Silver/Gold) data architecture

2 | Migrate/build data pipelines that incrementally populate Bronze/Silver/Gold

in Delta Lake

3 | Backfill Bronze/Silver/Gold tables as needed

SCHEMA MIGRATION

Before the tables are offloaded to Databricks, the schema of the tables must be created in

Databricks. If you have DDL scripts, you could leverage them with some tweaks to data types

used in the DDLs. Once the scripts are extracted, automation tools (e.g., BladeBridge code

converter) can handle converting Amazon Redshift DDLs to Databricks DDLs. Refer to guidance

around matching data types in both Databricks and Amazon Redshift in Appendix 1.

DATA MODELING IN THE LAKEHOUSE

Typically, data for Amazon Redshift can be coming from several sources such as Amazon S3,

Amazon EMR, Amazon DynamoDB, or data sources on remote hosts, and ends up in a data

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

11

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

model that represents the EDW tables. Whatever data model (dimensional model, data vault,

etc.) is implemented in Amazon Redshift can be implemented in the Databricks Lakehouse

in a more performant manner using Delta Lake. Data architecture in Databricks Lakehouse

follows the medallion architecture — Bronze, Silver, Gold paradigm — and the data model

belongs in the Gold layer.

DATA MIGRATION

In terms of implementation, several approaches have been validated by Databricks for

migrating the data and are already in production use by various customers. For the initial

Gold table migration, options include:

 1 | Leveraging Amazon Redshift’s UNLOAD command to push data out of Amazon

Redshift and into cloud storage in Parquet format, then using one of these

options to load into Databricks to write to Delta Lake format tables using one

of the following options:

 Auto Loader

 Databricks COPY INTO command

 Spark batch/streaming APIs

2 | Leveraging the Spark Amazon Redshift connector to read data from Amazon

Redshift into a Spark DataFrame. The DataFrame is then saved as a Delta Lake

format table.

3 | Leveraging data ingestion partners such as Hevo from Databricks Partner

Connect for quick data migration using no-code and automation with built-in

schema management, high availability (HA) and autoscaling.

After the initial Gold table offload, recurring jobs should be set up to continuously sync data

from Amazon Redshift to Databricks for those Gold tables until data pipelines have cut over

and solely feed data to those Gold tables in Databricks. For continuous replication and real-

time sync, leverage real-time change data capture tools from Databricks Partner Connect

with partners like Hevo Data. Databricks and any partners involved will work with your team

to align on the best approach(es) for your team’s requirements.

As you go through the migration, the current architecture slowly changes as you start

offloading data and workloads in a phased manner. Figure 2 shows the architecture during

the data migration phase.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://www.databricks.com/blog/2022/06/24/data-warehousing-modeling-techniques-and-their-implementation-on-the-databricks-lakehouse-platform.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/sql/language-manual/delta-copy-into.html
https://docs.databricks.com/external-data/amazon-redshift.html
https://www.databricks.com/partnerconnect
https://hevodata.com/integrations/destination/databricks/

12

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Figure 2:
Transient state
architecture:
post-data
migration

KEY CONSIDERATIONS: SCHEMA MIGRATION AND DATA MIGRATION

 ρ Distribution styles and sort keys: Distribution keys and sort keys are commonly found in

table DDLs in Amazon Redshift. This detail is used by the Amazon Redshift query planner

and engine to efficiently run the query. Databricks uses different query execution

planning and optimization strategies. While distribution styles are not applicable as is in

Databricks, the sort keys are very similar to the Z-Ordering strategy. Refer to the best

practices section in this document for more details on these strategies.

 ρ Data modeling: As part of the migration, there might be a need to refactor the data model

or reproduce a similar data model in an automated and scalable manner. Visual data

modeling tools such as Quest ERWIN or SqlDBM, from Databricks Partner Connect, can

accelerate this development and deployment of the data model in a few clicks. Both of

these tools can reverse engineer an Amazon Redshift data model (table structures) and

implement them in Databricks easily.

 ρ When migrating DDLs of a table, it is important to check the schema of the source data.

For example, let’s say one of the data sources is in Parquet format. Some numeric column

types in DDL generated from the Amazon Redshift table will be different from the type

in the source Parquet files. If we don’t use the source column types during DDL creation,

we will be forced to have unnecessary casting on our ingestion pipeline after the data is

migrated from Amazon Redshift.

 ρ In Amazon Redshift and Databricks, keeping schemas in sync during the transient stage

can become critical if there are changes introduced to table schemas during migration.

Making a change in a central MDM (master data model) first — leveraging tools like SqlDBM

— and then implementing it in both Amazon Redshift and Databricks is a popular approach.

After validation and testing, the Bronze and Gold layer data is available for immediate use in

Databricks by end users for ad hoc analysis and machine learning while data pipelines are being

offloaded to Databricks in parallel. This is the advantage of the lakehouse architecture, to

make the data available for different use cases instantly without having to move data around.Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/partners/data-governance/erwin.html#partner-connect
https://sqldbm.com/SqlDbm-Plus-Databricks/
https://sqldbm.com/SqlDbm-Plus-Databricks/

13

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

 ρ Amazon Redshift users may be used to Automatic Analyze and Automatic Vacuum

features for table maintenance in addition to manually performing these commands.

While you can run different table optimizations such as Optimize, Analyze, ZORDER and

Vacuum today in Databricks manually, the Auto Maintenance capabilities for Optimize,

Vacuum, Analyze and Clustering are being introduced in Databricks with the latest DBR

versions. Refer to the latest product version and supported functionality for details on

availability of these features.

Phase 4: Data Pipeline Migration

Data pipeline migrations from Amazon Redshift to Databricks consist of several key components:

compute model migration, orchestration, source/sink migration, query migration and refactoring.

Understanding the end-to-end view of the pipelines from data sources to the consumption

layer, including the governance aspects, is critical to effectively migrate the workloads.

COMPUTE MODEL MIGRATION

As compared to Amazon Redshift, Databricks offers much more flexibility of compute options

for the entire end-to-end pipeline needs: from core ETL, BI, ML, streaming, etc. In addition

to simple engineering performance, this degree of flexibility is a large part of what enables

customers to save on their infrastructure costs by allowing users to “form fit” their computing

needs to their exact problem.

Consider a scale of 1 to 10, where 1 is a completely monolithic model that runs all workloads

for your entire data platform on a single cluster, and 10 is a completely serverless model

where all workloads run on a totally serverless ephemeral compute model. In Databricks,

you can choose ANY number on that scale in a way that solves your problems best. This is

amazing for savings, resource efficiency and cluster management simplicity, but does require

some thinking as you migrate from a more monolithic data-warehousing environment to the

Databricks Lakehouse.

In Databricks you have the following compute types: All-purpose, Jobs, DBSQL, DLT, and

Serverless. For each of these, you can elect to use Databricks Spark or the Databricks Photon

runtime, which is often orders of magnitude faster, but more expensive on a per-unit basis.

For data warehousing style workloads (SQL queries with lots of filters, joins, aggregations),

Photon is well worth the extra price, as this is precisely what it was built for, but if there are

parts of your architecture where performance is not as key or they are not very complex,

then you can still elect to simply use the normal DBR Spark runtime at the cheaper price.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

14

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

All-purpose: This is compute that users and applications can share and run code in different

languages. It can be “always-on” or have any auto-termination rules for non-use to ensure

clusters are on while unutilized for long periods of time (like the weekend). This compute type

is generally best for longer-standing workloads that are less predictable and not automated

in jobs (ML experiment, ad hoc Python/SQL analytics, development). This cluster can also

autoscale and be any size required for your needs. In addition, you can create as many of

these as you want with different rules.

Jobs: This compute type allows you to tell a job how many resources it can use while running

a task and will create an ephemeral cluster (active only for the time that the job is running,

then automatically turns off and is NOT reused) for that specific job run. Within a job, you

have a great deal of flexibility. You can share clusters for many tasks, each task can have their

own cluster, and everything in between. This is the primary consideration when thinking about

designing warehousing jobs on a lakehouse. Usually in classical data warehousing workloads,

ETL, analytics and BI are all required to share compute resources, resulting in lots of queuing

and slowing down of queries. Now you can share resources where it makes sense and isolate

resources where it makes sense. In general, here are some best practices for designing the

computing model for your workloads:

1 | Share a cluster when tasks share the same data: If different tasks in a job

read from the same data, or if that data is used over and over and/or is large,

then the shared caching of the cluster will greatly reduce the runtimes for

the job as a whole. So when tasks share data sources, it usually makes sense

to share clusters.

2 | Isolate clusters where bottleneck occurs: If there are particular tasks

that are especially greedy and bottleneck the whole cluster, then you

can often get a great deal of performance improvement by provisioning

a separate cluster for those tasks. Not only will the task finish faster, but

other tasks will not need to fight as hard for scarce resources. At first, this

seems more expensive (since you are creating more clusters), but since

the clusters disappear as soon as they are done, it can often result in very

significant performance and cost gains for the pipeline as a whole. This is

indeed the idea of “form-fitting” your compute model to your specific data

processing needs.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

15

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

ORCHESTRATION MIGRATION

An ETL orchestration can refer to orchestrating and scheduling end-to-end pipelines covering

data ingestion, data integration, result generation or orchestrating DAGs of a specific workload

type like data integration. There are several ways to orchestrate Amazon Redshift–based

ETL tasks. Some of them include using AWS services such as AWS Glue, AWS Data Pipeline,

AWS Step Functions and AWS Lambda. The other common ways are using Apache Airflow or

custom Python-based scripting or using third-party tools such as Matillion.

There are generally two options when migrating these workflows.

1 | Use Databricks Workflows to orchestrate the migrated pipelines. In addition,

Delta Live Tables can be used for building reliable and efficient data processing

pipelines. Using Delta Live Tables provides a standard framework for building

both batch and streaming use cases along with critical data engineering

features such as automatic data testing, deep pipeline monitoring and

recovery. It also has out-of-the-box functionality to SCD Type 1 and Type 2

tables. In this method you are reengineering the orchestration layer.

2 | It is also possible to use the external tools such as Airflow for orchestration

and repoint these tools from Amazon Redshift compute to Databricks

compute. You would be just translating Amazon Redshift SQL queries to

Spark SQL queries in the orchestration job while retaining most of the

orchestration elements.

 However, it is recommended to use Databricks Workflows for better

integration, simplicity and lineage.

SOURCE/SINK MIGRATION

The most popular pattern data ingested to Amazon Redshift is using S3 as an intermediary

state for staging and then loading to Amazon Redshift. Similar to orchestration, in most cases

an external ETL tool is seen in Amazon Redshift architecture to extract data from source

systems, transform it (optional) and load it into the Amazon Redshift warehouse.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/workflows/index.html
https://docs.databricks.com/delta-live-tables/index.html
https://airflow.apache.org/docs/apache-airflow-providers-databricks/stable/_api/airflow/providers/databricks/operators/databricks/index.html#airflow.providers.databricks.operators.databricks.DatabricksRunNowOperator

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

 1 | Source data connections

 Ingestion pipelines using tools such as Fivetran and Qlik Replicate can

be duplicated and configured to point to Databricks Delta Lake instead

of Amazon Redshift. Delta is an open source format and widely supported

as the target data format for popular data ingestion tools.

 Ingestion pipelines using S3 as an intermediary stage with a COPY command

or a Amazon Redshift Job that reads from S3 are replaced with Databricks

Auto Loader or Spark DataFrame APIs that read directly from S3. Delta

Live Tables supports Auto Loader and Spark DataFrame APIs.

 Native Spark integrations (e.g., Kafka) are leveraged to refactor the

ingestion pipelines reading stream data from Amazon Kinesis Data

Streams or Amazon MSK

2 | Sink data connections

 Ingestion tools and framework will now generate data in Delta Lake

format instead of Amazon Redshift native format

QUERY MIGRATION AND REFACTORING

Queries here refer to any DML query that transforms the data or the ad hoc data analysis

queries run by the user for data analysis. The interface from where queries are initiated could

be directly in Amazon Redshift or coming from an external ETL tool such as dbt or Matillion.

In situations where SQL queries are triggered from an external ETL platform such as Matillion,

the refactoring is straightforward, especially for user-written SQL queries. Any Amazon

Redshift-specific integration features should be refactored, which in most cases is equivalent

to tweaking the underlying Amazon Redshift SQL query. Migrating from Amazon Redshift SQL

to Spark SQL requires identifying and replacing any incompatible/proprietary Amazon Redshift

SQL functions or syntax. A few options for tackling this are:

 1 | (Recommended) Use BladeBridge Converter to automate lift-and-shift

portion of query migration

2 | (Not recommended) Develop custom script in-house to convert Amazon

Redshift SQL to Spark SQL

3 | (Not recommended) Manually convert Amazon Redshift SQL to Spark SQL

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

16

https://www.databricks.com

17

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

A common question we run into is how Stored Procedures are migrated since Databricks does

not have a database object called “Stored Procedures.” This is addressed easily given that

Databricks supports different programming frameworks and tools between notebooks, JARs,

scripts and jobs and all the power of SQL, Python, R, Scala and Java. Stored Procedures in most

cases are executable code that can be triggered or executed on a cadence. The recommended

approach is using Databricks Workflows with the stored procedure (one or more) defined as

tasks within a Databricks Job. The tasks could be the Amazon Redshift SQL code patterns

converted into Databricks SQL, or PySpark code that covers code patterns such as conditional

statements, loops, functions and exception handling statements. Check out this blog that

describes in detail how different code patterns that go into a Stored Procedure are converted to

Databricks. Here is guidance around commonly used database objects and SQL query patterns:

 ρ Python-based UDFs can largely be a lift-and-shift while Java-based UDFs need to be

converted to SQL based or Python based

 ρ Recursive CTEs are not natively supported in Spark SQL, but using PySpark, it can be easily

achieved. Example 1, Example 2.

 ρ Amazon Redshift Data API supports multi-statement transactions. While this is not

natively supported currently in Delta, the functionality can be implemented using custom

development using PySpark and Delta.

 ρ Materialized Views in Databricks SQL is in private preview and can be used in regular SQL

or Delta Live Tables with governance handled by Unity Catalog

Given that both Amazon Redshift and Databricks support industry-standard SQL, a large

portion of the Amazon Redshift SQL queries can be automatically converted to Databricks

syntax to accelerate the migration. The BladeBridge conversion tool supports schema

conversion (tables and views), SQL queries (select statements, expressions, functions, user-

defined functions, etc.), stored procedures and data loading utilities such as the COPY command.

The conversion configuration is externalized, meaning conversion rules can be extended by

users during migration projects to handle new code pattern sets to achieve a greater percentage

of automation. Check out this short demonstration of the conversion tool.

Refer to Appendix 3 for some examples of SQL translation differences between Amazon

Redshift SQL and Databricks. Check out this handy cheat sheet packed with essential tips

and tricks to help you get started on Databricks using SQL programming in no time!

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://medium.com/@24chynoweth/converting-stored-procedures-to-databricks-73fe4ab64ed0
https://medium.com/@24chynoweth/recursive-cte-on-databricks-2ac0dff8ca06#:~:text=A%20recursive%20CTE%20is%20the,until%20the%20recursive%20process%20completes.&text=%2D%2D%20The%20CheckDate%20eliminates%20any,the%20product%20on%20this%20date.&text=Recursive%20CTEs%20are%20most%20commonly%20used%20to%20model%20hierarchical%20data.
https://medium.com/globant/how-to-implement-recursive-queries-in-spark-3d26f7ed3bc9
https://www.youtube.com/watch?v=I9AZ-t0n6Lk
https://www.databricks.com/sites/default/files/2023-09/databricks-sql-cheatsheet.pdf

18

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Figure 3:
Transient state
architecture
during pipeline
migration

Figure 4:
Transient state
architecture —
post-data and
ETL pipeline
migration

MIGRATION VALIDATION

Validation is mostly done for the data in both the platforms. As there might be thousands of

tables migrated, it is manually impossible to compare the data values in Amazon Redshift and

Databricks. Generally a testing framework with a script to compare values automatically in

both the platforms is used. Some example data points to compare include:

 Check if the table exists

 Check the counts of rows and columns across the tables

 Calculate the sum of numeric columns and compare

 Calculate the distinct count of values in string columns and compare

Run the pipelines in parallel for a week or two and review the comparison results to ensure

the data is flowing correctly. For more advanced table data and schema comparison, tools

like Datacompy can be used.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://github.com/capitalone/datacompy

19

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

KEY CONSIDERATIONS: DATA PIPELINE MIGRATION

Data Pipeline Refactoring and Optimization

 During the migration, there is a high probability for some portion of data pipeline queries

to be refactored and/or optimized. This includes but is not limited to:

 1 | Rewriting queries to avoid nonperformant join strategies

2 | Changing JOIN and GROUP BY columns due to changes in dist keys

3 | Changing query filters due to changes in sort keys

4 | Adjusting queries to account for function syntax changes

Here are some strategies to overcome inefficiencies and improve query performance:

A | Join strategies

a. Avoid Cartesian products if at all possible (these are heavy in any query engine)

b. Avoid self, exploding joins that result in Cartesian products (self-join with

sliding window calculations as keys); instead, shift logic into a CTE or view so

that the sliding window calculations are materialized pre-join

c. Preferred join strategies (in descending order):

i. Broadcast Hash Join

ii. Shuffle Hash Join

iii. Sort Merge Join

iv. Shuffle Nested Loop Join (Cartesian Product)

B | Data Partitioning

a. Select high cardinality columns for Z-ordering

b. Z-order is effective for up to 3-5 columns

c. For tables > 1TB — we recommend partitioning by low cardinality columns

and Z-Ordering by high cardinality columns

C | See Delta Lake & Performance Optimization section for other recommendations.

 ρ Consider reengineering some ETL pipelines to leverage new capabilities in Delta Live Tables

such as SCD Type 2, which are not straightforward to implement in Amazon Redshift, and

are handled using views, temporary tables and row functions. One popular use case where

reengineering is almost always considered is modernizing CDC ingestion and streaming

workloads using the power of Spark Structured Streaming and Delta Live Tables. Although

this results in additional migration effort, this is critical for long-term cost reduction and

any value-add your team would like to realize.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta-live-tables/cdc.html

20

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

 ρ Consider creating a Git repository of the queries being migrated, and refresh this

repository frequently if the queries/pipelines are allowed to change during the migration

so that there are fewer conflicts to resolve during the final migration. It is recommended

to impose code freeze during migration if possible.

Data Pipeline Cutover

During data pipeline migration, there will be a period over which data pipelines will be running

in Databricks and Amazon Redshift concurrently. This is expected, but in order to minimize the

costs associated with this, we recommend defining the following:

 1 | Cutover schedule

2 | Criteria for approving/disapproving production readiness in Databricks

3 | Criteria for approving/disapproving data pipeline deprecation in

Amazon Redshift

4 | Upstream/downstream integration validation

5 | Communication strategy for all applicable stakeholders

The approach described until now ensures the ETL pipelines are fully migrated and running

in Databricks and the Gold layer data in Amazon Redshift is kept in sync with the Gold layer

of Databricks. While it is possible to incur data movement costs between the platforms, the

significant savings gained from ETL costs would easily offset these costs. In the next phase

of migration, the architecture is evolved to support business intelligence and other serving

use cases.

Phase 5: Downstream Tools Integration

To further consolidate data platform infrastructure and maintain a single source of truth of

data, organizations have adopted Databricks SQL, a data warehousing product in Databricks

Lakehouse, to meet their data warehousing needs and support downstream applications and

business intelligence dashboards.

Databricks SQL offers world-class price/performance for analytics workloads as well as

support for high-concurrency use cases with autoscaling SQL warehouses. Databricks SQL

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com

21

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

includes Photon, which is a query engine built from scratch in C++ and is vectorized to exploit

both data-level and instruction-level parallelism.

Once data and transformation pipelines are migrated to the Databricks Lakehouse, it is critical

to ensure business continuity of downstream applications and data consumers. Databricks

Lakehouse has validated large-scale BI integrations with many popular BI tools in the market

such as Tableau, Power BI, Qlik, ThoughtSpot, Sigma, Looker and more. The expectation for a

given set of dashboards or reports to work is to ensure all the upstream tables and views are

migrated along with the associated pipelines and dependencies.

As described in this blog (see section 3.5 Repointing BI workloads), one of the common ways

to repoint BI workloads after a data migration is by testing sample reports and working by

renaming the data source/tables names of existing tables and pointing to the new ones.

Typically, if the schema of the tables and views post-migration hasn’t changed, the repointing

is a straightforward exercise of how you handle switching databases on the BI dashboard

tool. If the schema of the tables has changed, you will need to modify the tables/views in the

lakehouse to match the expected schema of the report/dashboard and publish it as a new

data source for the reports.

We recommend testing the approach with a small set of dashboards or reports and iterating

through the remainder of the reporting layer throughout the migration. During the reports

migration, a potential situation you may run into is the need to expand the permission of BI

tool access to cloud storage buckets. This is because Databricks uses “Cloud Fetch” to support

high-bandwidth data exchange. With this architecture, for a given BI query, the BI tool gets

back pre-signed URLs, so that the BI tool downloads data in parallel directly from cloud storage.

This might require enabling new access permissions if not already configured.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix Figure 5:
Future-state
architecture

https://www.databricks.com
https://www.databricks.com/blog/2023/02/22/3ds-migrating-teradata-workloads-databricks-lakehouse-platform.html

22

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Best Practices

DATABRICKS PLATFORM

It’s important to understand some basic concepts used in Databricks before you get started.

 Databricks Interface

 Cluster Configuration

 Cluster Policies

 Data Governance

 GDPR & CCPA Compliance

 Delta Lake

 Structured Streaming

 CI/CD

COMPUTE

One of the great advantages of migrating from Amazon Redshift to Databricks is the availability

of a spectrum of compute options for different types of workloads. You would be using

ephemeral shared nothing clusters vs. a monolithic cluster design in Amazon Redshift. For

example, you would use Jobs Clusters for scheduled ETL jobs and use all-purpose clusters

and SQL warehouses for interactive workloads when choosing compute types by workload

types. The same capability comes in handy to isolate/combine jobs and pipelines based on

their nature of work. As a general rule of thumb you could follow this guidance:

 ρ Isolate jobs/pipelines to separate compute where they compete heavily for compute

resources. For example, jobs with heavy writes and heavy reads on the same cluster can

be separated.

 ρ Share compute resources (use the same cluster) with jobs/queries when they read a lot

of the same data or reuse results from the previous task

We recommend using DBR 12.2LTS+ for data warehouse migrations. The newer Databricks

Runtime support features such as deletion vectors will greatly fit data warehousing workloads.

See the documentation for details on different compute options and how they work.

 Clusters & SQL Warehouses with Unity Catalog

https://www.databricks.com
https://docs.databricks.com/getting-started/concepts.html
https://docs.databricks.com/clusters/cluster-config-best-practices.html
https://docs.databricks.com/administration-guide/clusters/policies-best-practices.html
https://docs.databricks.com/security/data-governance.html
https://docs.databricks.com/security/privacy/gdpr-delta.html
https://docs.databricks.com/delta/best-practices.html
https://docs.databricks.com/structured-streaming/production.html
https://docs.databricks.com/dev-tools/index-ci-cd.html#dev-tools-ci-cd
https://docs.databricks.com/delta/deletion-vectors.html
https://docs.databricks.com/data-governance/unity-catalog/compute.html#create-clusters--sql-warehouses-with-unity-catalog-access

23

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

DELTA LAKE AND PERFORMANCE OPTIMIZATION

Optimize the performance of the migrated workload by tweaking the configuration of the

Databricks environment and the workload itself. This includes identifying and eliminating

any bottlenecks and improving the overall performance. Below are a few best practices to

consider during performance tuning.

File Sizing

 Databricks Runtime automatically tunes file sizes based on table size and also based on

workload — for example, to accelerate write-intensive operations

 File sizes can be manually adjusted by setting delta.targetFileSize as a table property or

Spark configuration

Partitioning

 Avoid partitioning tables < 1TB

 Ideal size of partitions is > 1GB

 Use generated columns to avoid over-partitioning

 Partition on lower cardinality columns

Data Skipping

 Statistics will be automatically computed for you to facilitate data skipping

 Tracks file-level statistics like min, max, etc.

 Helps avoid scanning irrelevant files/data

 By default, Databricks Delta collects statistics on the first 32 columns defined in

the table schema. This default value can be updated using the table property,

delta.dataSkippingNumIndexedCols

 A best practice to keep in mind is to move numerical columns and high cardinality query

predicates to the left of the 32nd ordinal position, and move strings and complex data

types after the 32nd ordinal position of the table

Z-Ordering (Clustering)

 Effective on up to 3-5 columns

 Z-order on higher cardinality columns, columns for Z-ordering must be in the first 32

columns

https://www.databricks.com
https://docs.databricks.com/delta/tune-file-size.html#autotune-file-size-based-on-table-size
https://docs.databricks.com/delta/tune-file-size.html#autotune-workload
https://docs.databricks.com/delta/tune-file-size.html#set-a-target-file-size

24

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Merge/Upsert

 Ensure you are using DBR 10.4+ to take advantage of Low Shuffle Merge

 Avoids write amplification due to merge’s use of fullOuterJoin

 With Low Shuffle Merge, fullOuterJoin is broken into an inner and leftOuterJoin followed

by read > filter > write using file + rowId map

 This helps optimize merge performance significantly

 Generated Columns

 ρ Special column type that gets defined based on a user-specified function over other

columns in a Delta table

 ρ Values for generated columns are computed at runtime

 ρ Generated columns allow users to avoid over-/under-partitioning

Query Profile

 ρ In the case of data warehouse usage, the SQL warehouse query profile is a powerful

tool located inside the Databricks SQL workspace. Its objective is to troubleshoot slow-

running queries, optimize query execution plans, and analyze granular metrics to see

where compute resources are being spent.

 ρ The query profile provides value in these three capability areas:

 Detailed information about the three main components of query execution, which are

time spent in tasks, number of rows processed and memory consumption

 Two types of graphical representations. A tree view to easily spot slow operations at

a glance, and a graph view that breaks down how data is transformed across tasks.

 Ability to understand mistakes and performance bottlenecks in queries

 ρ Three common performance bottleneck problems surfaced by query profile are listed below:

 Inefficient file pruning

 Full table scans

 Exploding joins (Cartesian product)

Analyze Table

 The ANALYZE TABLE command collects statistics on tables in Databricks and ensures that

the query optimizer finds the most optimal query execution plan. SQL syntax is as follows:

 ANALYZE TABLE my_table COMPUTE STATISTICS for COLUMNS col1, col2, col3

 One important point to remember is that you will want to prioritize statistics for columns

that are frequently used in joins and other query predicates

 Best practice is to run ANALYZE TABLE as a separately scheduled job on a regular

cadence (e.g., weekly or monthly)

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/delta/generated-columns.html

25

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

GOVERNANCE AND SECURITY

Reference Materials:

 Data Governance Guide

 Unity Catalog

Identity Management

 Identities exist at the Databricks account level. Identity federation allows for these

account-level identities to be federated downward to workspaces

 Single sign-on (SSO) can be set up to manage account-level identities

 Identity Types

 Users

 Groups

 Service Principals

Privileges and Securable Objects

 Securable Objects

 Inheritance Model

 Privileges Types

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://docs.databricks.com/data-governance/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/administration-guide/users-groups/single-sign-on/index.html
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#securable-objects-in-unity-catalog
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#inheritance-model
https://docs.databricks.com/data-governance/unity-catalog/manage-privileges/privileges.html#privilege-types-in-unity-catalog

26

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Need Help Migrating?

Regardless of size and complexity, the Databricks Professional Services team, along with an

ecosystem of services partners and ISV partners, offers different levels of support (advisory,

staff augmentation, scoped implementation) to accelerate your migration and ensure

successful implementation. Aside from steps outlined in this migration guide, the services

offered can include architecture design workshops, Databricks foundation setup, change

management, cutover operations, and more.

Working with BladeBridge, Databricks has developed automated tooling for code complexity

assessment and code migration (DDLs, DMLs) that produces outcomes tuned to best practices

on Databricks Lakehouse. The conversion tool is available for use either with your preferred

services vendor or a services vendor recommended by Databricks. Additionally, Databricks

partners have developed several other automation tools to accelerate your migration.

Contact your Databricks representative or reach out to us using this form for more

information. Rest assured that we can work with you and make your migration successful.

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

https://www.databricks.com
https://bladebridge.com/
https://www.databricks.com/company/contact

27

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

Appendix

APPENDIX 1: DELTA VS. AMAZON REDSHIFT — STORAGE FORMAT COMPARISON

A M A ZO N R E D S H I F T D E LTA

Default Format Type Columnar (proprietary) Columnar (OSS Parquet)

IO Unit Database block File

Size of IO Unit Amazon Redshift uses a block size of 1MB 16MB–1GB (depending on table size,
also configurable)

Sort Order Between
IO Units

Uses distribution styles and sort keys Ingestion Time Clustering + Z-order

Column Statistics
collected on...

All columns Default on first 32 columns,
configurable to more (unlimited)

Stats
updated by...

Continuously monitoring and
automatically performing analyze
operations

Write operations

Caching Caching based on the number of entries
in the cache and the instance type of
your Amazon Redshift cluster

FIFO data and result sets on local
memory/SSD

Tricks to Reduce IO Pruning via stats, compression, proper
distributions

Pruning via stats, partitioning,
bloom filters, compression

https://www.databricks.com
https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Analyzing_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c_challenges_achieving_high_performance_queries.html#result-caching

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

APPENDIX 2: DATA TYPES

SQL data type conversions are relevant primarily within the DDL conversion. But DML

statements can also have explicit data type conversions (using CAST or short format like

colName::datatype). Data types supported in Amazon Redshift can be easily mapped to

the data types supported in Databricks.

Below is the summary of data types conversion rules.

DATA T Y P E
CAT EG O RY

A M A ZO N R E D S H I F T
DATA T Y P E

C O N V E R T E D
DATA T Y P E N OT E S

Character 1 | CHAR
 2 | CHARACTER
 3 | NCHAR
 4 | VARCHAR
 5 | NVARCHAR
 6 | VARBYTE

 1 | CHAR STRING
 2 | CHARACTER STRING
 3 | NCHAR STRING
 4 | VARCHAR STRING
 5 | NVARCHAR STRING
 6 | VARBYTE BINARY

Numeric 7 | SMALLINT
 8 | INT2
 9 | INTEGER
10 | INT
11 | INT4
12 | BIGINT
13 | INT8
14 | DECIMAL
15 | NUMERIC
16 | REAL
17 | FLOAT4
18 | DOUBLE PRECISION

 7 | SMALLINT SMALLINT
 8 | INT2 SMALLINT
 9 | INTEGER INTEGER
10 | INT INT
11 | INT4 INT
12 | BIGINT BIGINT
13 | INT4 BIGINT
14 | DECIMAL DECIMAL *

15 | NUMERIC NUMERIC
16 | REAL DOUBLE
17 | FLOAT4 DOUBLE
18 | DOUBLE PRECISION DOUBLE

* Note that there is a difference in
the default value of precision for
DECIMAL and NUMERIC. Amazon
Redshift SQL defaults to 38, whereas
Databricks SQL defaults to 10.

Boolean 19 | BOOLEAN 20 | BOOLEAN BOOLEAN

DateTime 21 | DATE
22 | TIME
23 | TIMETZ

24 | TIMESTAMP
25 | TIMESTAMPTZ
26 | INTERVAL

21 | DATE DATE
22 | TIME NOT SUPPORTED
 (use STRING or TIMESTAMP)
23 | TIMETZ NOT SUPPORTED
 (use STRING or TIMESTAMP)
24 | TIMESTAMP TIMESTAMP
25 | TIMESTAMPTZ TIMESTAMP *

26 | INTERVAL INTERVAL

* The usual practice is to create a
new column to store an indicator
for Timezone while the Timestamp is
used for storing the actual value.

Semi-
structured
Data Types

27 | ARRAY (Amazon
 Redshift Spectrum)
28 | STRUCT (Amazon
 Redshift Spectrum)
29 | MAP (Amazon

Redshift Spectrum)
30 | HLLSKETCH
31 | SUPER

27 | ARRAY ARRAY
28 | STRUCT STRUCT
29 | MAP MAP
30 | HLLSKETCH **
31 | SUPER ***

** While there is no built-in data type,
the spark-alchemy package supports
advanced HLL processing

→ Advanced Analytics with HyperLogLog
Functions in Apache Spark

*** Can be mapped to STRING and
values processed using built-in
unstructured data parsing functions

Geospatial 32 | GEOGRAPHY
33 | GEOMETRY

32 | GEOGRAPHY *
33 | GEOMETRY *

* While there are no built-in geospatial
data types in Delta Lake tables, there
are a plethora of options to process
geospatial data at scale with the
Databricks platform by leveraging the
open source community-developed
libraries. Refer to the following blogs:

→Processing Geospatial Data at Scale
With Databricks

→Building a Geospatial Lakehouse, Part 1

→Building a Geospatial Lakehouse, Part 2

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

28

https://www.databricks.com
https://www.databricks.com/blog/2019/05/08/advanced-analytics-with-apache-spark.html
https://www.databricks.com/blog/2019/05/08/advanced-analytics-with-apache-spark.html
https://www.databricks.com/blog/2019/12/05/processing-geospatial-data-at-scale-with-databricks.html
https://www.databricks.com/blog/2019/12/05/processing-geospatial-data-at-scale-with-databricks.html
https://www.databricks.com/blog/2021/12/17/building-a-geospatial-lakehouse-part-1.html
https://www.databricks.com/blog/2022/03/28/building-a-geospatial-lakehouse-part-2.html

29

AMAZON REDSHIFT
TO DATABRICKS

MIGRATION GUIDE

APPENDIX 3: EXAMPLE SQL DIFFERENCES

A M A ZO N R E D S H I F T DATA B R I C KS

Object
Naming

Naming convention used to refer to
tables: <database>.<schema >.<table>

Naming convention used to refer to
tables: <catalog>.<schema>.<table>
or <catalog>.<database>.<table>

Unquoted
Identifiers

Amazon Redshift unquoted identifiers
start with an alphabetic character or
an underscore and can contain ASCII
alphanumeric characters, underscores
and dollar sign

Mostly compatible with identifiers on
Amazon Redshift except they cannot
contain a dollar sign

Quoted
Identifiers

Amazon Redshift quoted identifiers are
enclosed with double quotes(“)

Databricks SQL quoted identifiers are
enclosed using backtick characters (`)

SQL Variables Variables are defined at BLOCK level
and accessed using DECLARE and :=
statements

For batch workloads Spark session
parameters can be set and variable
substitution in SQL is enabled by default
using syntax ${varName}.

Additionally, Widgets in Notebooks
and Query Parameters in Databricks
SQL can be used for passing arguments

Delete
Records

1) DELETE FROM TABLE_A;
If using a USING clause in DELETE
2) DELETE FROM TABLE_A USING (SELECT

X FROM TABLE_B) as TABLE_B WHERE
TABLE_A.X = TABLE_B.X;

1) DELETE FROM TABLE_A;
Use the MERGE operation:
2) MERGE INTO TABLE_A USING (SELECT
X FROM TABLE_B) as TABLE_B ON
TABLE_A.X = TABLE_B.X WHEN MATCHED
THEN DELETE;

Update
Records

1) UPDATE TABLE_A SET COL_A=’A’
 WHERE COL_B=’B’;
If using a FROM clause in UPDATE
2) UPDATE TABLE_A SET COL_A= TABLE_B.
COL_A FROM TABLE_B WHERE TABLE_A.X
= TABLE_B.X;

1) UPDATE TABLE_A SET COL_A=’A’
 WHERE COL_B=’B’;
Use the MERGE operation:
2) MERGE INTO TABLE_A USING (SELECT

COL_A FROM TABLE_B) as TABLE_B
ON TABLE_A.X = TABLE_B.X WHEN
MATCHED THEN UPDATE;

Merging
Records

MERGE INTO target_table USING source_
table ON match_condition
WHEN MATCHED THEN { UPDATE SET
col_name = { expr } [,...] | DELETE }
WHEN NOT MATCHED THEN INSERT
VALUES ({ expr } [, ...])

Unlike Amazon Redshift, Databricks
supports both NOT MATCHED BY SOURCE
and NOT MATCHED BY TARGET.
MERGE INTO target_table_name USING
source_table_reference ON merge_
condition WHEN MATCHED THEN
matched_action WHEN NOT MATCHED
[BY TARGET] THEN not_matched_action
WHEN NOT MATCHED BY SOURCE THEN
not_matched_by_source_action

Loading Data
to Tables

COPY command is used to load data from
stage files into an existing table

The COPY INTO command is comparable
in functionality

Unloading
Data from
Tables

UNLOAD command is used to unload from
a table to stage location (S3 bucket)

Databricks doesn’t offer UNLOAD to unload.
Instead use:

• INSERT OVERWRITE DIRECTORY (only on
Databricks Runtime)

• Use EXTERNAL TABLE definition pointing
to required relocation

• Use one of the Spark DataFrame API

Preface

Migration Strategy

Overview of the
Migration Process

Phase 1:
Migration Discovery

and Assessment

Phase 2:
Architecture and
Feature Mapping

Workshop

Phase 3:
Data Migration

Phase 4:
Data Pipeline

Migration

Phase 5:
Downstream

Tools Integration

Best Practices

Need Help
Migrating?

Appendix

29

https://www.databricks.com

30

Databricks is the data and AI company. More than 9,000

organizations worldwide — including Comcast, Condé

Nast, and over 50% of the Fortune 500 — rely on the

Databricks Lakehouse Platform to unify their data,

analytics and AI. Databricks is headquartered in San

Francisco, with offices around the globe. Founded by

the original creators of Apache Spark™, Delta Lake and

MLflow, Databricks is on a mission to help data teams

solve the world’s toughest problems. To learn more,

follow Databricks on Twitter, LinkedIn and Facebook.

© Databricks 2023. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the
Apache Software Foundation. Privacy Policy | Terms of Use

https://twitter.com/databricks
https://www.linkedin.com/company/databricks
https://www.facebook.com/databricksinc
https://apache.org
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use

