
Dynamic Masking Rate Schedules for MLM Pretraining

Zachary Ankner 1,2 Naomi Saphra1,3,4 Davis Blalock1 Jonathan Frankle1 Matthew Leavitt5
1MosaicML 2Massachusetts Institute of Technology 3 New York University 4Harvard University

5DatologyAI; work performed while at MosaicML

Abstract

Most works on transformers trained with the
Masked Language Modeling (MLM) objective
use the original BERT model’s fixed masking
rate of 15%. We propose to instead dynamically
schedule the masking rate throughout training.
We find that linearly decreasing the masking
rate over the course of pretraining improves
average GLUE accuracy by up to 0.46% and
0.25% in BERT-base and BERT-large, respec-
tively, compared to fixed rate baselines. These
gains come from exposure to both high and
low masking rate regimes, providing benefits
from both settings. Our results demonstrate that
masking rate scheduling is a simple way to im-
prove the quality of masked language models,
achieving up to a 1.89x speedup in pretraining
for BERT-base as well as a Pareto improvement
for BERT-large.

1 Introduction

BERT (Devlin et al., 2019) is a popular encoder-
only Transformer (Vaswani et al., 2017) architec-
ture that is pretrained using a Cloze-inspired (Tay-
lor, 1953) masked language modeling (MLM) ob-
jective. During MLM training, we mask out a sub-
set of the input tokens and train the model to recon-
struct the missing tokens. The proportion of tokens
to be masked out is determined by the masking rate
hyperparameter.

Most practitioners use a fixed masking rate of
0.15 (Devlin et al., 2019), but Wettig et al. (2022)
found that the standard 15% masking rate is sub-
optimal for a variety of model settings and rec-
ommended a higher rate. We build on their work
by studying the impact of dynamically scheduled
masking rates.

Hyperparameter scheduling—i.e., changing the
learning rate, dropout rate, batch size, sequence

Our code will be released soon

length, etc., during training—is a common prac-
tice in deep learning (Loshchilov and Hutter, 2017;
Smith, 2017; Howard and Ruder, 2018; Morerio
et al., 2017; Smith et al., 2018; Li et al., 2022).
Masking rate is a good candidate for hyperparam-
eter scheduling for a number of reasons. First, a
high masking rate, like a high dropout rate, directly
reduces the amount of feature information available
during a training step. This information removal
may smooth the loss landscape, which permits sim-
ulated annealing if performed earlier in training.
Furthermore, a higher masking rate adds training
signal, as loss is computed for a larger portion of
tokens, similar to a larger sequence length or batch
size. We therefore study the natural question of
whether scheduling the masking rate during train-
ing could lead to model quality improvements, as
scheduling these other hyperparameters does.

We present a series of experiments to assess the
effects of masking rate scheduling on the quality of
BERT-base (Devlin et al., 2019). We evaluate our
masking rate scheduled models on MLM loss and
downstream tasks. Our contributions are:

• We introduce masking rate scheduling as a
novel technique for improving MLM pretrain-
ing (Section 3.1), and find that performance
improves only when starting at a higher ratio
and decaying it (Section 3.3).

• We show that the improvement from schedul-
ing the masking rate is a Pareto improvement
over fixed masking rates for all examined pre-
training durations (Section 3.2, Appendix E),
and that our method transfers to other pretrain-
ing objectives (Appendix H).

• We find that dynamic scheduling attains both
the improved linguistic performance of a
lower masking rate (Section 3.5) and im-
proved language modeling of a higher mask-
ing rate (Section 3.6).

ar
X

iv
:2

30
5.

15
09

6v
2

 [
cs

.C
L

]
 1

4
Se

p
20

23

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

BERT-base
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12
LINEAR-0.3-0.15 (OURS) 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29

BERT-large
CONSTANT-0.4 87.43/87.68 93.03 88.84 83.25 94.48 93.64 63.53 90.82 86.97
LINEAR-0.4-0.25 87.69/87.9 93.33 89.23 83.14 94.59 93.86 64.07 91.21 87.22

Table 1: Downstream performance for different masking rate schedules. For each model we report the average
accuracy for each task in GLUE. Bold indicates no significant difference from best-performing schedule, P > 0.05,
t-test.

2 Methods

We perform typical MLM pretraining, with the key
difference that a scheduler sets the masking rate
dynamically.

2.1 Masked language modeling
An MLM objective trains a language model to re-
construct tokens that have been masked out from an
input sequence. Let x ∼ X be the input sequence,
and pmask be the probability with which tokens are
masked from the model, i.e., the masking rate. A
mask M = {m1, ...,mk} is defined as the indices
of the tokens to be masked, where the probability
of a given token index being included in the mask is
a Bernoulli random variable with parameter pmask.
Following Devlin et al. (2019), we replace 80% of
the masked tokens with a [MASK] token, substitute
10% with another random token, and leave 10%
unchanged. The training objective is defined as:

L(x) = 1

|M|
∑
i∈M

log p(xmi |x−M) (1)

2.2 Schedulers
Let Ttotal be the total number of steps the model
takes during training and t be the current step. Let
pi and pf be the initial and final masking rate re-
spectively. For each step, we set the masking rate
pmask,t according to the following schedules. We
test several nonlinear schedules as well, but find no
consistent advantage over the simpler linear sched-
ule (Appendix G).

Constant scheduling. Constant scheduling,
which we call constant-{pmask}, is the standard
approach to setting the masking rate for MLM
pretraining (typically pmask = 0.15) where the
same masking rate is used throughout all of
training. The masking rate is set as:

pmask,t = pi = pf

Linear scheduling. In the linear schedule
linear-{pi}-{pf}, the masking rate is set to a
linear interpolation between the initial and final
masking rate:

pmask,t = pi +
t

Ttotal
∗ (pf − pi)

3 Experiments and Results

In this section, we evaluate the performance of
masking rate scheduling on a collection of down-
stream tasks and determine why our schedule is
successful.

We pretrain all models on the Colossal Cleaned
Common Crawl (C4) dataset (Raffel et al., 2019),
and then fine-tune and evaluate on the GLUE
benchmark (Wang et al., 2018). We use BERT-base
and BERT-large models as implemented in Hug-
gingFace (Wolf et al., 2020), and train models with
the Composer library (Tang et al., 2022). We list
further details of our experimental setup in Ap-
pendix A.

3.1 Improvement in downstream tasks
We first examine the effects of the best linear
schedule on downstream performance on GLUE
(Table 1). We focus on comparing between
linear-0.3-0.15 and constant-0.3-0.3 for
BERT-base, and between linear-0.4-0.25 and
constant-0.4-0.4 for BERT-large. These set-
tings provide the best-performing linear and con-
stant schedules, respectively. (Results for other
schedule hyperparameters are in Appendix C.) For
BERT-base, we find that linear-0.3-0.15 im-
proves performance over the baseline on 3 of the
8 GLUE tasks and achieves parity on all other
tasks, leading to an average GLUE accuracy of
84.29%, a statistically significant improvement
over the constant-0.3-0.3 baseline of 84.12%.
For BERT-large we find that linear-0.4-0.25
improves performance over the baseline on 4 of

the 8 GLUE tasks and achieves parity on all other
tasks, leading to an average GLUE accuracy of
87.22%, a statistically significant improvement
over the constant-0.4-0.4 baseline of 86.97%.
These results show that scheduling the masking rate
during pretraining produces higher-quality models
for downstream tasks.

3.2 Improvement in training efficiency

10K 20K 30K 40K 50K 60K 70K
Pretraining Step

80

81

82

83

84

A
cc

ur
ac

y

Average GLUE Accuracy

Constant-0.3

Linear-0.3-0.15

Constant-0.15

1.65x1.89x

Figure 1: Average GLUE accuracy evaluated over the
course of pretraining for BERT-base. The horizontal
lines correspond to the difference in steps required for
linear-0.3-0.15 to achieve the best constant schedule
performance.

In addition to improving final model quality, pre-
training with masking rate scheduling is more ef-
ficient in wall clock time. For BERT-base, lin-
ear scheduling matches the mean GLUE score
of the best constant-0.15 checkpoint in 37K
steps and matches the best constant-0.3 check-
point in 42K steps, which correspond to speedups
of 1.89x and 1.65x, respectively. Furthermore,
linear-0.3-0.15 is a Pareto improvement over
both constant baselines; for each pretraining step
evaluated, linear-0.3-0.15 matches or exceeds
the baseline with no increase in training time (Fig-
ure 1). For BERT-large, linear-0.4-0.25 is also
a Pareto improvement over constant-0.4 (Ap-
pendix E). Appendix F contains further details on
evaluating model speedups.

3.3 High to low, not low to high

In order to better understand how masking rate
scheduling affects training dynamics, we investi-
gate whether the scheduler must always gradually
decrease rather than increase the masking rate, in
line with an interpretation based on simulated an-
nealing (Kirkpatrick et al., 1983). If we find that

either decreasing or increasing lead to similar im-
provements, then we instead would attribute the
success of our method to just the range of masking
rates covered. We find that the reversed schedule
linear-0.15-0.3 performs significantly worse
than the decreasing schedule linear-0.3-0.15
on GLUE for BERT-base, and in fact has perfor-
mance comparable to the constant-0.15 baseline
(Table 2).

SCHEDULE AVG GLUE ACCURACY

CONSTANT-0.15 83.83
LINEAR-0.15-0.3 83.71
LINEAR-0.3-0.15 84.29

Table 2: Average GLUE accuracy for increas-
ing/decreasing schedules with the same range of mask-
ing rates. Bold indicates no significant difference from
the highest-performing schedule, P > 0.05, t-test.

3.4 Masking and loss are both necessary for
improved performance

Is the added signal from a dynamic masking rate
necessary, or does the removal of information from
the inputs determine the majority of the gain? Here,
we distinguish two possible sources of benefit from
our schedule: benefits from smoothing the loss sur-
face; and benefits from adding training examples by
increasing the number of masked words to predict.
To test whether the latter is necessary, we pretrain a
BERT-base model linearly scheduling the masking
rate from 30% to 15%, but we only compute the
loss on a subset of the masked tokens such that the
loss is defined over 15% of the input tokens (refer-
enced as subset-linear-0.3-0.15). We find that
subset-linear-0.3-0.15 under-performs both
linear-0.3-0.15 and constant-0.15 (Table 3).
This result suggests that obfuscating the input se-
quence according to a dynamic masking rate does
not by itself improve modeling performance, and
thus the increased signal is also necessary.

SCHEDULE AVG GLUE ACCURACY

CONSTANT-0.15 83.83
SUBSET-LINEAR-0.3-0.15 83.71
LINEAR-0.3-0.15 84.29

Table 3: Average GLUE score for scheduling masking
rate while holding constant the number of tokens used in
training. Bold results show no significant difference (t-
tested p < 0.05) from the highest-performing schedule.

3.5 Improvement in grammar capabilities
In order to better understand scheduling’s effects on
the linguistic capabilities of MLMs, we evaluated
our models on the BLiMP benchmark (Warstadt
et al., 2020); this benchmark tests understanding of
syntax, morphology, and semantics.

We find the average BLiMP accuracy of
linear-0.3-0.15 significantly improves over
constant-0.3 and matches constant-0.15 (Ta-
ble 4). These results suggest that a dynamic sched-
ule enables the linguistic capabilities of a lower
masking rate.

SCHEDULE AVG BLIMP ACCURACY

LINEAR-0.3-0.15 82.70
CONSTANT-0.15 82.44
CONSTANT-0.3 82.13

Table 4: Average accuracy across BLiMP tasks. Bold
indicates mean + standard error matches best average.

3.6 Improvement in the pretraining objective
How does a decreasing schedule affect a model’s
language modeling ability? When evaluating
models at a 15% masking rate, we find that
linear-0.3-0.15 and constant-0.3 have the
same average MLM loss of 1.56. However,
constant-0.15 performs significantly worse, with
a best MLM loss of 1.59.

Although scheduling only temporarily sets the
masking ratio close to 30%, scheduled models
match the superior language modeling capabilities
of 30% masking throughout the entire pretraining
duration.

4 Related work

Masked Language Modeling Since ELMo (Pe-
ters et al., 2018), self-supervised pretraining has be-
come the dominant paradigm for many NLP tasks,
and BERT has been established as a basic standard
for transfer learning. Many works have changed
the BERT model architecture while retaining the
original MLM objective, including the 15% con-
stant masking rate (Liu et al., 2019; Lan et al.,
2020; Zaheer et al., 2020; He et al., 2021). Other
encoder-only models have modified the MLM ob-
jective itself to mask out spans of tokens instead of
individual tokens (Joshi et al., 2020; Zhang et al.,
2019; Levine et al., 2021). We note that both archi-
tectural changes and span masking are compatible
with our masking rate scheduling.

ELECTRA (Clark et al., 2020) proposes an al-
ternate denoising objective to masking; using a
separate “generator” encoder language model, they
replace a subset of tokens in the input sequence.
While the gradual improvement of the generator
may implicitly parallel a masking rate schedule,
explicit scheduling may still be beneficial since
accuracy can be sensitive to masking rate (Ap-
pendix G). Additionally, the generator is trained
using an MLM objective, and as such could benefit
from masking rate scheduling.

Closest to our work is that of Wettig et al. (2022),
which investigates the optimal masking rate. How-
ever, their work still uses constant masking rates.

Hyperparameter scheduling Although learning
rate is the most commonly-scheduled hyperparam-
eter (Loshchilov and Hutter, 2017; Smith, 2017;
Howard and Ruder, 2018), other hyperparameter
schedules are common. Our approach is also not
the first to schedule a hyperparameter that removes
information content from the model; existing work
has scheduled dropout (Morerio et al., 2017; Zhou
et al., 2020) and input resolution (Howard and Gug-
ger, 2020). Scheduling has also been applied to
hyperparameters that control the training signal to
the model such as batch size (Smith et al., 2018)
and sequence length (Li et al., 2022). Masking
rate combines both of these properties, making it a
particularly good candidate for scheduling.

5 Discussion and Conclusions

In addition to our method’s improvement on the av-
erage final downstream performance, we find that
scheduling is a Pareto improvement for all exam-
ined pretraining durations over the typical constant
masking rate baselines on GLUE. Our analysis sug-
gests that this benefit comes from the combined
advantages of higher and lower masking rates. We
also demonstrate that our approach generalizes to
other pretraining objectives (Appendix H).

Our method of beginning with a larger masking
ratio and decaying, which we found necessary (Sec-
tion 3.3), parallels the motivation behind simulated
annealing (Kirkpatrick et al., 1983). Simulated
annealing is a general method for avoiding local
minima by smoothing the loss surface early in train-
ing through the addition of noise early in training.
However, we found that the increasing noise early
in training is not the only source of advantage. We
also benefit from increasing the signal by predict-
ing more masked tokens (Section 3.4).

Limitations

In this work, we restrict ourselves to English-only
pretraining and finetuning. For other languages
with free word order, there may be less information
about the overall sentence structure when masking
at a higher rate because the position of a word
provides less information.

Additionally, we only investigate masking rate
scheduling in the encoder setting. Further applying
our method to encoder-decoder settings where the
model is partially trained with a reconstruction loss,
such as T5, is a direction for future research.

Finally, we only evaluate models on the GLUE
benchmark. While our evaluation is in line with
previous work, a more comprehensive set of tasks
could provide a better evaluation.

Acknowledgments

This work was supported by Hyundai Motor Com-
pany (under the project Uncertainty in Neural Se-
quence Modeling) and the Samsung Advanced In-
stitute of Technology (under the project Next Gen-
eration Deep Learning: From Pattern Recognition
to AI).

References
Kevin Clark, Minh-Thang Luong, Quoc V. Le, and

Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Luca Di Liello, Matteo Gabburo, and Alessandro Mos-
chitti. 2022. Effective pretraining objectives for
transformer-based autoencoders. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 5533–5547, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Yosef Hochberg. 1988. A sharper Bonferroni proce-
dure for multiple tests of significance. Biometrika,
75(4):800–802.

J. Howard and S. Gugger. 2020. Deep Learning for
Coders with Fastai and Pytorch: AI Applications
Without a PhD. O’Reilly Media, Incorporated.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association
for Computational Linguistics, 8:64–77.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vec-
chi. 1983. Optimization by simulated annealing. sci-
ence, 220(4598):671–680.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Karim Lasri, Alessandro Lenci, and Thierry Poibeau.
2022. Word order matters when you increase mask-
ing.

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend,
Kevin Leyton-Brown, Moshe Tennenholtz, and Yoav
Shoham. 2021. Pmi-masking: Principled masking
of correlated spans. In International Conference on
Learning Representations.

Conglong Li, Minjia Zhang, and Yuxiong He. 2022.
The stability-efficiency dilemma: Investigating se-
quence length warmup for training GPT models. In
Advances in Neural Information Processing Systems.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene
Vidal, and Vittorio Murino. 2017. Curriculum
dropout. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.405
https://doi.org/10.18653/v1/2022.findings-emnlp.405
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1093/biomet/75.4.800
https://doi.org/10.1093/biomet/75.4.800
https://books.google.no/books?id=xd6LxgEACAAJ
https://books.google.no/books?id=xd6LxgEACAAJ
https://books.google.no/books?id=xd6LxgEACAAJ
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.48550/ARXIV.2211.04427
https://doi.org/10.48550/ARXIV.2211.04427
https://openreview.net/forum?id=3Aoft6NWFej
https://openreview.net/forum?id=3Aoft6NWFej
https://openreview.net/forum?id=JpZ5du_Kdh
https://openreview.net/forum?id=JpZ5du_Kdh
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2018. Don’t decay the learning rate, increase the
batch size. In International Conference on Learning
Representations.

Hanlin Tang, Ravi Rahman, Mihir Patel, Moin Nadeem,
Abhinav Venigalla, Landan Seguin, Daya S. Khu-
dia, Davis Blalock, Matthew L Leavitt, Bandish
Shah, Jamie Bloxham, Evan Racah, Austin Jacobson,
Cory Stephenson, Ajay Saini, Daniel King, James
Knighton, Anis Ehsani, Karan Jariwala, Nielsen
Niklas, Avery Lamp, Ishana Shastri, Alex Trott,
Milo Cress, Tyler Lee, Brandon Cui, Jacob Portes,
Laura Florescu, Linden Li, Jessica Zosa-Forde, Vlad
Ivanchuk, Nikhil Sardana, Cody Blakeney, Michael
Carbin, Hagay Lupesko, Jonathan Frankle, and
Naveen Rao. 2022. Composer: A PyTorch Library
for Efficient Neural Network Training.

Wilson L. Taylor. 1953. "Cloze procedure": a new
tool for measuring readability. Journalism Quarterly,
30:415–433. Place: US Publisher: Association for
Education in Journalism & Mass Communication.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the

Association for Computational Linguistics, 8:377–
392.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and
Danqi Chen. 2022. Should you mask 15% in masked
language modeling?

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pages
17283–17297. Curran Associates, Inc.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451, Florence, Italy. Association for Computational
Linguistics.

Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou,
and Ke Xu. 2020. Scheduled DropHead: A regu-
larization method for transformer models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1971–1980, Online. Association
for Computational Linguistics.

A Training Details

Modeling details. We use a BERT-base and
BERT-large model as implemented in Hugging-
Face (Wolf et al., 2020). To manage the training of
models we use the Composer library (Tang et al.,
2022). All training is conducted on 8 NVIDIA
A100 GPUs.

Pretraining. For our BERT-base experiments,
we perform 3 trials of MLM pretraining on a 275
million document subset of the Colossal Cleaned
Common Crawl (C4) dataset (Raffel et al., 2019).
For BERT-large experiments, we perform 2 trials
of MLM pretraining for 2 epochs of the C4 dataset.
For all models, following a learning rate warm-up
period of 6% of the total training duration, we lin-
early schedule the learning rate from 5e-4 to 1e-5.

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://github.com/mosaicml/composer
https://github.com/mosaicml/composer
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.48550/ARXIV.2202.08005
https://doi.org/10.48550/ARXIV.2202.08005
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/2020.findings-emnlp.178
https://doi.org/10.18653/v1/2020.findings-emnlp.178

We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with parameters β1 = 0.9, β2 = 0.98,
ϵ = 1e-6, and a decoupled weight decay of 1e-5.
All models are trained using a sequence length
of 128 and a batch size of 4096.

Downstream evaluation. We fine-tune and eval-
uate all models on the GLUE benchmark (Wang
et al., 2018) which is composed of a variety of
tasks evaluating different natural language tasks.
All fine-tuning results are repeated for 5 trials for
each pretraining trial.

B Significance testing

For a given task, to determine whether a masking
rate schedule has performance comparable to the
masking rate schedule with the best mean perfor-
mance across seeds, we compute a one-sided t-test
of the hypothesis "Schedule X performs worse
than schedule Y ", where X is the schedule being
compared and Y is the schedule with the best mean
performance. Since we are computing multiple
pair-wise t-tests, we correct the pairwise t-tests us-
ing the Hochberg step-up procedure (Hochberg,
1988). If the corrected P-value is less than 0.05
we reject the null hypothesis and conclude that the
schedule with the greater mean performance signif-
icantly outperforms the alternative schedule.

C Sweeping Schedule Hyperparameters

In scheduling the masking rate, we introduce two
new parameters: the initial masking rate and the
final masking rate. To determine the optimal con-
figuration of these parameters for the BERT-base
experiments, we performed the following search
over parameter configurations. For all experiments,
we used the same training setup as presented in
Appendix A and selected the best hyperparameters
based on the model’s performance on the GLUE
benchmark. We first determined the optimal con-
stant rate, by pretraining with constant masking
rates in {15%, 20%, 25%, 30%, 35%}. After de-
termining that 30% was the optimal masking rate
for constant masking schedules (Table 5), we fixed
30% to be the starting masking rate for our lin-
ear schedules and swept over final masking rates
of {15%, 20%, 25%, 35%, 40%, 45%}. From this
sweep, we determined that linear-0.3-0.15 was
the optimal linear schedule. Furthermore, decreas-
ing masking rate schedules consistently outperform
constant masking rate schedules (Table 6).

For computational reasons, we did not perform
the corresponding sweep over scheduling rates for
BERT-large. Instead, we follow the recommenda-
tion of Wettig et al. (2022) and use a 40% masking
rate as the best constant masking rate. We then pro-
pose linear-0.4-0.15 as our dynamic schedule
following the optimal setting of a 15% decreasing
dynamic schedule observed from our sweep over
hyperparameters for BERT-base.

D Grammatical Understanding

In this section, we further detail the
BLiMP (Warstadt et al., 2020) benchmark.

BLiMP sub-tasks are organized into collections
of super-tasks that categorize a given linguistic phe-
nomenon. Each sub-task is composed of minimal
pairs of correct (positive) sentences and incorrect
(negative) examples. The model correctly evaluates
an example pair if it assigns a higher probability to
the positive sentence in the pair than the negative
sentence. However, we note that BERT is not a true
language model as it does not produce a probabil-
ity score over a sequence of tokens. Accordingly,
following Salazar et al. (2020), we use the pseudo-
log-likelihood (PLL) to score each sentence. The
PLL is computed by iteratively masking each po-
sition in the input sequence and then summing the
log likelihood of each masked token.

We present and discuss the average model per-
formance for BERT-base across all tasks in Sec-
tion 3.5, finding that linear-0.3-0.15 outper-
forms constant-0.3 and has similar performance
to constant-0.15. In table 7, we present the
performance on each individual super-task. We
find that linear-0.3-0.15 and constant-0.15
have accuracies within one standard error of each
other across all super-tasks in BLiMP. Additionally,
linear-0.3-0.15 outperforms constant-0.3 on
5 out of the 12 BLiMP super-tasks and achieves
parity on all other tasks.

Lasri et al. (2022) found that in a synthetic set-
ting, higher masking rates increase model depen-
dence on positional information and thus improve
syntactic understanding. Interestingly, we find the
opposite effect: constant-0.15 significantly out-
performs constant-0.3 on BLiMP. This observa-
tion, combined with the improved overall perfor-
mance of scheduling, suggests that the improve-
ment in grammar from scheduling is not simply
due to being exposed to a higher masking rate.

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Constant
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.2 84.46/84.95 90.64 88.24 76.73 92.59 91.63 56.45 89.6 83.92
CONSTANT-0.25 84.28/84.79 90.61 88.3 76.27 92.54 92.06 56.74 89.84 83.94
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12
CONSTANT-0.35 84.4/84.99 90.84 88.31 77.81 92.86 91.67 55.62 89.88 84.04

Table 5: Downstream performance for different constant schedule configurations. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from the highest-performing
schedule, P > 0.05, t-test.

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Decreasing
LINEAR-0.3-0.15 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29
LINEAR-0.3-0.2 84.57/84.89 90.87 88.33 77.04 92.84 91.38 57.29 89.78 84.11
LINEAR-0.3-0.25 84.63/84.93 90.84 88.33 76.1 92.84 92.02 57.33 89.19 84.02

Increasing
LINEAR-0.3-0.35 84.31/84.85 90.73 88.28 76.9 92.91 91.68 55.85 89.7 83.91
LINEAR-0.3-0.4 84.19/84.71 90.74 88.31 76.82 92.49 91.79 55.67 87.83 83.62
LINEAR-0.3-0.45 84.07/84.68 90.85 88.29 77.02 92.43 91.98 55.84 89.92 83.9

Table 6: Downstream performance for different linear schedule configurations. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from the highest-performing
schedule, P > 0.05, t-test.

E BERT-Large Downstream Performance
Throughout Pretraining

18K 54K 90K 126K 162K
Pretraining Step

82

83

84

85

86

87

A
cc

ur
ac

y

Average GLUE Accuracy

Linear-0.4-0.25

Constant-0.4

Figure 2: Average GLUE accuracy evaluated over the
course of pretraining for BERT-large.

In this section we report the average GLUE
performance from different pretraining check-
points of linear-0.4-0.25 and constant-0.4
for BERT-large (Figure 2). We find that
linear-0.4-0.25 is a Pareto improvement over
constant-0.4 for each pretraining step evalu-
ated. This means that linear-0.4-0.25 exceeds

or matches baseline performance for no increase in
training time.

F Computing Scheduling Speedup

10K 20K 30K 40K 50K 60K 70K
Pretraining Step

80

81

82

83

84

A
cc

ur
ac

y

Average GLUE Accuracy

Constant-0.3

Linear-0.3-0.15

Constant-0.15

Figure 3: Pretraining step vs interpolated average GLUE
accuracy for BERT-base.

To compute the efficiency gain of linear schedul-
ing, we evaluate all models on GLUE after every
10K pretraining steps. We then perform a regres-
sion on the number of model steps and the cor-
responding average GLUE performance using a

SCHEDULE

TASK LINEAR-0.3-0.15 CONSTANT-0.15 CONSTANT-0.3

ANAPHOR AGREEMENT 98.72 98.77 98.63
ARGUMENT STRUCTURE 76.13 76.59 75.36
BINDING 76.13 75.76 74.91
CONTROL RAISING 78.31 79.17 77.13
DETERMINER 95.51 95.72 95.43
ELLIPSIS 85.38 84.63 85.88
FILLER GAP 79.71 78.37 77.38
IRREGULAR FORMS 91.02 90.0 90.87
ISLAND EFFECTS 78.11 76.17 78.34
NPI LICENSING 80.62 80.26 81.63
QUANTIFIERS 81.08 81.79 79.93
SUBJECT VERB AGREEMENT 90.17 90.37 89.47
OVERALL 82.7 82.44 82.13

Table 7: Average accuracy for each super-task in BLiMP. Bold indicates mean + standard error matches best average.

model of the form:

c1 − c2exp{(−(c3t)
c4}

where ci are the regression variables and t is the
pretraining step. After fitting a model to each sched-
ule’s step vs. GLUE performance, we compute the
expected speedup by solving for the step in which
one schedule achieves the best GLUE performance
of the schedule being compared. We show the
regressed pretraining step vs GLUE performance
curves in Figure 3. We evaluate speedup as a func-
tion of pretraining step instead of wall-clock time
because dynamic schedules and constant schedules
have identical throughput.

G Nonlinear Schedules

Let Ttotal be the total number of steps the model
takes during training and ti be the current model
step. Let pi and pf be the initial and final masking
rate respectively. For each step, we set the masking
rate pmask according to the following schedules. In
Figure 4 we provide a graphical representation of
the different schedules experimented with which
we detail below.

Cosine scheduling. We directly adopt cosine
scheduling as proposed in (Loshchilov and Hutter,
2017). We perform cosine scheduling by annealing
the masking rate following half a cycle of a cosine
curve. The masking rate is then defined as:

pmask,t = pi+
1

2
∗(pf−pi)∗(1+cos ((1− t

Ttotal
)π))

We refer to cosine schedules as
cosine-{pi}-{pf}.

Training duration

M
as

ki
ng

 R
at

e

Masking Rate Schedules

Constant

Decreasing Linear

Increasing Linear

Decreasing Cosine

Increasing Cosine

Decreasing Step

Increasing Step

Figure 4: Various masking rate schedules we considered.
Schedules can be constant, increasing or decreasing, and
change following a linear, cosine, or step function.

Step-wise scheduling. Step wise scheduling is
defined by a decay rate, γ, and a set of timesteps,
Γ = {t1, ..., tm}, for when the masking rate is
decayed. The schedule is then defined as:

pmask,t =

{
γ ∗ pmask,t−1, t ∈ Γ

pmask,t−1

Our experiments are restricted to step-wise sched-
ules that apply the decay to the masking rate only
once, halfway through the training duration. As
such, for ease of notation, we ignore the decay
rate when talking about step-wise schedules and
instead describe our step-wise schedules in terms

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Constant
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12

Dynamic
LINEAR-0.3-0.15 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29
COSINE-0.3-0.15 84.55/84.97 90.94 88.39 77.67 92.91 91.94 57.45 89.64 84.27
STEP-0.3-0.15 84.65/85.09 90.85 88.37 77.71 92.76 91.56 57.47 89.59 84.23

Table 8: Downstream performance for different scheduler functions. For each model we report the average accuracy
for each task in GLUE.

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

RTS-CONSTANT-0.15 83.06/83.46 90.64 88.22 75.38 92.06 91.21 56.87 89.92 83.42
RTS-CONSTANT-0.3 83.09/83.72 90.64 88.27 75.74 91.9 91.15 55.41 90.02 83.33
RTS-LINEAR-0.3-0.15 83.54/83.91 90.83 88.37 74.15 92.06 91.76 57.53 90.21 83.60

Table 9: Downstream performance for different random substitution rate schedules. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from best-performing schedule, P
> 0.05, t-test.

of their initial and final masking rates. We refer to
step-wise schedules as step-{pi}-{pf}.

G.1 Results

Following the same pretraining and evalua-
tion setup (Section A), we evaluate the perfor-
mance of cosine-0.3-0.15 and step-0.3-0.15.
We find that for linear, cosine, and step-wise
scheduling there is no statistically significant
difference in average GLUE performance (Ta-
ble 8). We find that linear-0.3-0.15 outper-
forms cosine-0.3-0.15 on 3 tasks, underper-
forms on 1 task, and achieves parity on the rest of
the tasks in GLUE. Similarly, linear-0.3-0.15
outperforms step-0.3-0.15 on 2 tasks, underper-
forms on 1 task, and achieves parity on the rest of
the tasks in GLUE. In the context of these results,
we conclude that the scheduler type is less signif-
icant than the schedule parameters, and as such
conduct the primary experiments in our paper with
respect to the simple linear scheduler.

H Generalization to Other Objectives

H.1 Set-Up

In order to further demonstrate the success of dy-
namically scheduling the pretraining objective for
encoder transformers, we evaluate dynamically
scheduling the token substitution in the Random
Token Substitution (RTS) objective (Di Liello et al.,
2022). In the RTS objective a subset of tokens, de-
fined by the random token substitution rate, are
randomly substituted with another token in the vo-

cabulary. The model is then trained to classify
whether a token was randomly substituted or is the
original token. The random token substitution rate
was originally set to be a constant 15%. In our
work, we experiment both with a constant 30% and
linearly decreased from 30% to 15% random token
substitution rate.

All other hyperparameters and data choices are
the same as the ones we used for MLM training of
BERT-base (Appendix A).

H.2 Results

Improvement in final performance We
examine the effect of scheduling the random
token substitution rate on downstream GLUE
performance (Table 9). As rts-constant-0.15
is the better-performing constant schedule for
RTS, we focus our comparison on this baseline.
We find that rts-linear-0.3-0.15 outperforms
rts-constant-0.15 on 6 out of the 8 tasks in
GLUE, and only performs worse on 1 task, leading
to an average improvement on GLUE of 0.18%.
This result demonstrates that the improved gains
from dynamically scheduling the pretraining
objective for BERT style models also generalize to
the RTS task.

Performance throughout pretraining We ex-
amine the effect at different points of pre-
training of scheduling the random token substi-
tution rate. Specifically, we compute the down-
stream GLUE accuracy for the different sched-

50K 60K 70K
Pretraining Step

83.00

83.25

83.50

83.75

A
cc

ur
ac

y

Average GLUE Accuracy

Rts-constant-0.15
Rts-linear-0.3-0.15
Rts-constant-0.3

Figure 5: Pretraining step vs interpolated average GLUE
accuracy for RTS with BERT-base.

ules at 50K, 60K, and 70K of training. We
find that rts-linear-0.3-0.15 is a Pareto im-
provement over both rts-constant-0.3 and
rts-constant-0.15, meaning linear scheduling
performs better for each intermediate checkpoint
evaluated (Figure 5).

	Introduction
	Methods
	Masked language modeling
	Schedulers

	Experiments and Results
	Improvement in downstream tasks
	Improvement in training efficiency
	High to low, not low to high
	Masking and loss are both necessary for improved performance
	Improvement in grammar capabilities
	Improvement in the pretraining objective

	Related work
	Discussion and Conclusions
	Training Details
	Significance testing
	Sweeping Schedule Hyperparameters
	Grammatical Understanding
	BERT-Large Downstream Performance Throughout Pretraining
	Computing Scheduling Speedup
	Nonlinear Schedules
	Results

	Generalization to Other Objectives
	Set-Up
	Results

