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Introduction

Whether your title is data engineer or another data-oriented profes‐
sion (we see you, analysts and scientists), you’ve likely heard the
term ETL. There’s a good chance ETL is a part of your life, even if
you don’t know it!

Short for extract, transform, load, ETL is used to describe the foun‐
dational workflow most data practitioners are tasked with—taking
data from a source system, changing it to suit their needs, and
loading it to a target.

Want to help product leaders make data-driven decisions? ETL
builds the critical tables for your reports. Want to train the next
iteration of your team’s machine learning model? ETL creates qual‐
ity datasets. Are you trying to bring more structure and rigor to
your company’s storage policies to meet compliance requirements?
ETL will bring process, lineage, and observability to your workflows.

If you want to do anything with data, you need a reliable process
or pipeline. This fundamental truth holds true from classic business
intelligence (BI) workloads to cutting-edge advancements, like large
language models (LLMs) and AI.

The Brave New World of AI
The data world has seen many trends come and go; some have
transformed the space, and some have turned out to be short-lived
fads. The most recent is, without a doubt, generative AI.

At every turn, there’s chatter about AI, LLMs, and chatbots. This
recent fascination with AI, largely brought by the release of Open‐
AI’s ChatGPT, extends beyond the media’s interest and among
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researchers—it is now seen by many as an essential strategic invest‐
ment…and who wants to be left behind?

The true value in LLMs comes from embeddings or fine-tuning
models on clean, curated datasets. These techniques allow for the
creation of models with domain-specific knowledge, avoiding com‐
mon errors, like hallucination.

Of course, meaningful embeddings are derived from, you guessed
it—clean datasets. In that sense, AI is built on data transformation.
Its success depends heavily on the ability to create consistent, high-
quality datasets at scale. Data needs to be moved, mutated, and
merged in a single location—one might say extracted, transformed,
and loaded.

That’s right—even the most cutting-edge tech has roots back to ETL.

A Changing Data Landscape
In addition to the recent surge in generative AI, other trends have
reshaped the data landscape over the past decade. One such trend
is the increasing prominence of streaming data. Companies are
now generating vast quantities of real-time data through sensors,
websites, mobile applications, and more. This shift necessitates the
real-time ingestion and processing of data for immediate decision
making. Data engineers are therefore challenged to extend beyond
traditional batch processing to construct and manage continuous
pipelines capable of handling large volumes of streaming data.

Another noteworthy development is the emergence of data lake‐
house architectures. The data lakehouse represents a novel concept,
seeking to merge the capabilities of data warehouses and data lakes.
Leveraging new storage technologies like Delta Lake, which enhance
the reliability and performance of data lakes, the lakehouse model
combines the cost-effective, scalable storage of data lakes with the
efficient transaction processing of data warehouses. This amalgama‐
tion enables the execution of both AI workloads (typically handled
in data lakes) and analytics workloads (usually conducted in data
warehouses) within a singular framework. This integration signifi‐
cantly reduces the complexities associated with maintaining parallel
architectures, ensuring consistent data governance, and managing
data duplication.

viii | Introduction

https://oreil.ly/8jqt8
https://oreil.ly/8jqt8
https://delta.io


While ETL is a long-standing concept in data management, its rele‐
vance remains undiminished in the modern data landscape. A criti‐
cal consideration now is how ETL processes can adapt to encompass
both batch and streaming data, and how they can be effectively
integrated within a data lakehouse architecture. This guide aims to
illuminate these aspects, helping you understand ETL in light of
these evolving trends.

What About ELT (and Other Flavors)?
As you delve into data engineering, you may come across terms like
ELT in addition to ETL. You might be thinking, “Wow, these guys
should hire a proofreader,” but rest assured, they’re actually different
terms.

The key difference in ELT lies in sequence: in ELT, everything is
loaded into a staging resource, then transformed downstream. ELT
has increasingly become the norm, supplanting ETL in many sce‐
narios—as many say “storage is cheap.” The term “ETL” has been
widely used for so long (since the creation of databases themselves)
that it’s still commonly referred to, even when ELT is more accurate.
We are now in an era of “store first, act later,” facilitated by decreas‐
ing costs of cloud storage and the ease of data generation.

For analysis, retaining all potentially useful data is prevalent. Tech‐
nological advancements like the medallion architecture and data
lakehouse support this approach with features like easy schema evo‐
lution and time travel. We’ll discuss those and more throughout this
guide.

Although we predominantly use the term “ETL,” it’s important to
note that the principles and considerations discussed are applicable
to both ETL and ELT, as well as other variations like reverse ETL—
the practice of ingesting cleaned data back into business tools from
the ware- or lakehouse. No, reverse ETL != LTE, and yes, this is
confusing, but we digress.

Whether the term “ETL” precisely describes your current process
or not, comprehending the fundamentals of data ingestion, transfor‐
mation, and orchestration remains crucial. This also extends to best
practices in areas like observability, troubleshooting, scaling, and
optimization. We hope that this guide will be a valuable resource,
regardless of the specific data processing methodology you employ.
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O’Reilly Online Learning
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CHAPTER 1

Data Ingestion

Data ingestion, in essence, involves transferring data from a source
to a designated target. Its primary aim is to usher data into an envi‐
ronment primed for staging, processing, analysis, and artificial intel‐
ligence/machine learning (AI/ML). While massive organizations
may focus on moving data internally (among teams), for most of
us, data ingestion emphasizes pulling data from external sources and
directing it to in-house targets.

In an era where data holds central importance in both business
and product development, the significance of accurate and timely
data cannot be overstated. This heightened reliance on data has
given rise to a multitude of “sources” from which teams extract
information to refine decision-making processes, craft outstanding
products, and conduct a multitude of other actions. For instance, a
marketing team would need to retrieve data from several advertising
and analytics platforms, such as Meta, Google (including Ads and
Analytics), Snapchat, LinkedIn, and Mailchimp.

However, as time marches on, APIs and data sources undergo modi‐
fications. Columns might be introduced or removed, fields could get
renamed, and new versions might replace outdated ones. Handling
changes from a single source might be feasible, but what about
juggling alterations from multiple sources—five, ten, or even a hun‐
dred? The pressing challenge is this: “How can a budding data team
efficiently handle these diverse sources in a consistent and expanda‐
ble way?” As data engineers, how do we ensure our reputation for

1



providing reliable and straightforward data access, especially when
every department’s demands are continuously escalating?

Data Ingestion—Now Versus Then
Though the principles of ingestion largely remain the same, much
has changed. As the volume, velocity, and variety of data evolve, so
too must our methods.

We’ve had multiple industry changes to accommodate this—move‐
ment to the cloud, the warehouse to the data lake to the lakehouse,
and the simplification of streaming technologies, to name a few.
This has been manifested as a shift from extract-transform-load
(ETL) workflows to extract-load-transform (ELT), the key difference
being that all data is now loaded into a target system. We’ll discuss
these environments in the context of transformation in Chapter 2.

We refrain from being too pedantic about the terms ETL and ELT;
however, we’d like to emphasize that almost every modern data engi‐
neering workflow will involve staging almost all data in the cloud.
The notable exception is cases where hundreds of trillions of rows
of highly granular data are processed daily (e.g., Internet of Things
[IoT] or sensor data), where it makes sense to aggregate or discard
data before staging.

Despite constant changes, the fundamental truth of extraction is
that data is pulled from a source and written to a target. Hence, the
discussion around extraction must be centered on precisely that.

Sources and Targets
While most associate ingestion with extraction, it’s also tightly cou‐
pled with loading; after all, every source requires a destination. In
this guide, we assume that you have an established warehouse or
data lake; therefore, storage will not be a primary topic in this
chapter. Instead, we’ll highlight both best practices for staging and
the hallmarks of ideal storage implementations.

2 | Chapter 1: Data Ingestion



It’s our mission to arm you with a toolkit for architecture design,
keeping in mind that a “perfect” solution might not exist. We’ll
navigate a framework for appraising sources and untangling the
unique knots of data ingestion. Our high-level approach is designed
to give you a bird’s-eye view of the landscape, enabling you to make
informed, appropriate decisions.

The Source
Our primary consideration for ingesting data is the source and
its characteristics. Unless you’re extremely lucky, there will be
many sources. Each must be separately assessed to ensure adequate
resources and set the criteria for your ingestion solution(s).

With the sheer volume of data sources and the nature of business
requirements (I’ve seldom been asked to remove sources, but adding
one is just another Thursday), it’s highly likely that you’ll encounter
one or many sources that do not fit into a single solution. While
building trust takes weeks, months, and years, it can be lost in a
day. Reliable, timely ingestion is paramount. So, what’s important in
choosing a source?

Examining sources
As a practical guide, we take the approach of presenting time-tested
questions that will guide you toward understanding the source data,
both its characteristics and how the business will get value.

We recommend taking a highly critical stance: it is always possible
that source data is not needed or a different source will better suit
the business. You are your organization’s data expert, and it’s your
job to check and double-check assumptions. It’s normal to bias for
action and complexity, but imperative we consider essentialism and
simplicity.

When examining sources, keep in mind that you’ll likely be working
with software engineers on upstream data, but downstream consid‐
erations are just as important. Neglecting these can be highly costly,
since your error may not manifest itself until weeks of work have
taken place.

Sources and Targets | 3



Questions to ask

Who will we work with?
In an age of artificial intelligence, we prioritize real intelligence.
The most important part of any data pipeline is the people it
will serve. Who are the stakeholders involved? What are their
primary motives—OKRs (objectives and key results) or organ‐
izational mandates can be useful for aligning incentives and
moving projects along quickly.

How will the data be used?
Closely tied to “who,” how the data will be used should largely
guide subsequent decisions. This is a way for us to check our
stakeholder requirements and learn the “problem behind the
problem” that our stakeholders are trying to solve. We highly
recommend a list of technical yes/no requirements to avoid
ambiguity.

What’s the frequency?
As we’ll discuss in detail later, most practitioners immediately
jump to batch versus streaming. Any data can be processed
as a batch or stream, but we are commonly referring to the
characteristics of data that we would like to stream. We advocate
first considering if the data is bounded or unbounded—i.e., does
it end (for example, the 2020 Census American Community
Survey dataset), or is it continuous (for example, log data from a
fiber cabinet).

After bounds are considered, the minimum frequency available
sets a hard limit for how often we can pull from the source. If
an API only updates daily, there’s a hard limit on the frequency
of your reporting. Bounds, velocity, and business requirements
will inform the frequency at which we choose to extract data.

What is the expected data volume?
Data volume is no longer a limiter for the ability to store data—
after all, “storage is cheap,'' and while compute can be costly,
it’s less expensive than ever (by a factor of millions; see Figures
1-1 and 1-2). However, volume closely informs how we choose
to write and process our data and the scalability of our desired
solution.
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Figure 1-1. Hard drive costs per GB, 1980 to 2015 (Source: Matt
Komorowski); the y-axis values are in log scale

Figure 1-2. Cost of compute, millions of instructions per second
(MIPS) (Source: Field Robotics Center); the y-axis values are in log
scale

What’s the format?
While we will eventually choose a format for storage, the input
format is an important consideration. How is the data being
delivered? Is it via a JavaScript Object Notation (JSON) pay‐
load over an API? Perhaps an FTP server? If you’re lucky, it
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already lives in a relational database somewhere. What does the
schema look like? Is there a schema? The endless number of
data formats keeps our livelihoods interesting, but also presents
a challenge.

What’s the quality?
The quality of the dataset will largely determine if any transfor‐
mation is necessary. As data engineers, it’s our job to ensure
consistent datasets for our users. Data might need to be heavily
processed or even enriched from external sources to supple‐
ment missing characteristics.

We’ll use these characteristics to answer our final question:

How will the data be stored?
As we mentioned, this book assumes some fixed destination for
your data. Even then, there are a few key considerations in data
storage: to stage or not to stage (is it really a question?), business
requirements, and stakeholder fit are the most important.

Source checklist
For every source you encounter, consider these guiding questions.
Though it might seem daunting as the number of sources piles up,
remember: this isn’t a writing task. It’s a framework to unpack the
challenges of each source, helping you sketch out apt solutions that
hit your targets.

While it might feel repetitive, this groundwork is a long-term time
and resource saver.

Question Example
Who will we collaborate with? Engineering (Payments)
How will the data be used? Financial reporting and quarterly strategizing
Are there multiple sources? Yes
What’s the format? Semi-structured APIs (Stripe and Internal)
What’s the frequency? Hourly
What’s the volume? Approximately 1K new rows/day, with an existing pool of ~100K
What processing is required? Data tidying, such as column renaming, and enrichment from

supplementary sources
How will the data be stored? Storing staged data in Delta tables via Databricks
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The Destination
While end-to-end systems require hypothetical considerations that
are just that, we assume most readers will be tasked with building
a pipeline into an existing system, where the storage technology is
already chosen.

Choosing data storage technology is beyond the scope of this guide’s
focus, but we will briefly consider destinations, as they are highly
important to the total value created by a data system. Thus, when
analyzing (or considering) a destination, we recommend using a
similar checklist to that of a source. Usually, there are far fewer
destinations than sources, so this should be a much simpler exercise.

Examining destinations
A key differentiator in destinations is that the stakeholder is priori‐
tized. Destinations have a unique trait: they pivot around stakehold‐
ers. These destinations either directly fuel BI, analytics, and AI/ML
applications or indirectly power them when dealing with staged
data, not to mention user-oriented apps. Though we recommend the
same checklist, we suggest framing it slightly toward the stakeholder
to be sure it meets their requirements, while working toward engi‐
neering goals.

We fully recognize this is not always possible. As an engineer, your
role is to craft the most fitting solution, even if it means settling on
a middle ground or admitting there’s no clear-cut answer. Despite
technology’s incredible strides, certain logical dilemmas do not have
straightforward solutions.

Staging ingested data
We advocate for a data lake approach to data ingestion. This entails
ingesting most data into cloud storage systems, such as S3, Google
Cloud Platform, or Azure, before loading it into a data warehouse
for analysis.

One step further is a lakehouse—leveraging data storage protocols,
like Delta Lake, which use metadata to add performance, reliability,
and expanded capability. Lakehouses can even replicate some ware‐
house functionality; this means avoiding the need to load data to
a separate warehouse system. Adding in a data governance layer,
like Databricks’ Unity Catalog, can provide better discoverability,
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access management, and collaboration for all data assets across an
organization.

A prevailing and effective practice for staging data is utilizing
metadata-centric Parquet-based file formats, including Delta Lake,
Apache Iceberg, or Apache Hudi. Grounded in Parquet—a com‐
pressed, columnar format designed for large datasets—these formats
incorporate a metadata layer, offering features such as time travel,
ACID (atomicity, consistency, isolation, and durability) compliance,
and more.

Integrating these formats with the medallion architecture, which
processes staged data in three distinct quality layers, ensures the
preservation of the entire data history. This facilitates adding new
columns, retrieving lost data, and backfilling historical data.

The nuances of the medallion architecture will be elaborated upon
in our chapter on data transformation (Chapter 2). For the current
discussion, it’s pertinent to consider the viability of directing all data
to a “staging layer” within your chosen cloud storage provider.

OLAP Versus OLTP Databases
The biggest choice in data warehousing is whether to use a
cloud native database or a cloud-hosted traditional database—the
main difference being the distributed nature and column-oriented
architecture of cloud native solutions. These are more commonly
referred to as OLAP (online analytical processing) and OLTP
(online transaction processing):

• OLAP systems are designed to process large amounts of•
data quickly. This is commonly accomplished via distributed
processing and a column-oriented architecture. Newer, cloud
native databases are OLAP systems; the big three OLAP solu‐
tions are Amazon Redshift, Google BigQuery, and Snowflake.

• OLTP systems are engineered to handle large amounts of•
transactional data originating from multiple users. This usually
takes the form of a row-oriented database. Many traditional
database systems are OLTP: Postgres, MySQL, etc.

OLAP systems are most commonly used by analytics and data
science teams for their speed, stability, and low maintenance cost.
Here are some considerations for data warehouse selection:
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Computing platform of choice
The integration of these technologies largely depends on the
rest of your tech stack. For example, if every tool in your
organization lives in the Amazon ecosystem, Redshift might
be more cost-effective and simple to implement than Google
BigQuery. Similarly, the Databricks ecosystem contains a broad
array of functionality—from storage (Lakehouse, Databricks
SQL) to governance (Unity Catalog) and compute (Apache
Spark).

Functionality
BigQuery has great support for semistructured data and ML
operations. Redshift Spectrum has proven to be a useful tool
for creating external tables from data in S3. Databricks sep‐
arates storage and compute through the use of Spark, Data‐
bricks SQL, and Delta Lake. Every warehouse has strengths
and weaknesses; these need to be evaluated according to your
team’s use case.

Cost
Pricing structures vary wildly across platforms. Unfortunately,
pricing can also be opaque—in most cases, you won’t truly
know how a database will be used until you’re on the platform.
The goal with pricing should be to understand how to use a
database to minimize cost and what the cost might be if that
route is taken. For example, in cases where cost is directly
tied to the amount of data scanned (BigQuery), intelligent
partitioning and query filtering can go a long way. Using a
lakehouse saves you the redundancy and replicated data of a
lake and a data warehouse. This is especially important since
warehouses tend to have steeper storage costs and limitations.

There will be no direct answer on cost, but research is worth‐
while, as warehouses can be expensive, especially at scale.

Change data capture
Change data capture (CDC) is a data engineering design pattern
that captures and tracks changes in source databases to update
downstream systems. Rather than batch-loading entire databases,
CDC transfers only the changed data, optimizing both speed and
resource usage.
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This technique is crucial for real-time analytics and data warehous‐
ing, as it ensures that data in the target systems is current and in
sync with the source. By enabling incremental updates, CDC enhan‐
ces data availability and consistency across the data pipeline. Put
simply by Joe Reis and Matt Housley in Fundamentals of Data Engi‐
neering (O’Reilly, 2022), “CDC…is the process of ingesting changes
from a source database system.”

CDC becomes important in analytics and engineering patterns—like
creating Slowly Changing Dimension (SCD) type 1 and 2 tables,
a process that can be unnecessarily complex and time-consuming.
Choosing platforms or solutions that natively support CDC can
expedite common tasks, letting you focus on what matters most.
One example is Delta Live Tables (DLT) on Databricks, which
provide native support for SCD type 1 and 2 in both batch and
streaming pipelines.

Destination checklist
Here’s a sample checklist for questions to consider when selecting a
destination:

Question Example
Who will we collaborate with? Human Resources
How will the data be used? Understand how tenure/contract duration affects bottom-line

results in a multinational organization.
Are there multiple destinations? Data is staged in Delta Lake; final tables are built in Databricks

SQL.
What’s the format? Parquet in Delta Lake. Structured/semi-structured in Databricks

SQL.
What’s the frequency? Batch
What’s the volume? Approximately 1K new rows/day, with an existing pool of ~100K
What processing is required? Downstream processing using DLT. ML models and generative AI

applications in Spark.
How will the data be stored? Blend of Databricks SQL and external tables in Delta Lake.

Ingestion Considerations
In this section, we outline pivotal data characteristics. While this
list isn’t exhaustive and is influenced by specific contexts, aspects
like frequency, volume, format, and processing emerge as primary
concerns.
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Frequency
We already mentioned that the first consideration in frequency
should be bounds, i.e., is the dataset bounded or unbounded. Bounds
and business needs will dictate a frequency for data ingestion—
either in batch or streaming formats. Figure 1-3 neatly shows the
difference between batch and streaming processes; streaming cap‐
tures events as they occur, while batch groups them up, as the name
would suggest.

Figure 1-3. Latency is the property that defines “batch” or “streaming”
processes; beyond some arbitrary latency threshold, we consider data
“streamed” (courtesy of Denny Lee)

We’ll present batch, micro-batch, and streaming along with our
thoughts to help you select the most appropriate frequency and a
compatible ingestion solution.

Batch
Batch processing is the act of processing data in batches rather than
all at once. Like a for loop that iterates over a source, batch simply
involves either chunking a bounded dataset and processing each
component or processing unbounded datasets as data arrives.

Micro-batch
A micro-batch is simply “turning the dial down” on batch process‐
ing. If a typical batch ingestion operates daily, a micro-batch might
function hourly or even by the minute. Of course, you might say, “At
what point is this just semantics? A micro-batch pipeline with 100
ms latency seems a lot like streaming to me.”
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We agree!

For the rest of this chapter (and book), we’ll refer to low-latency
micro-batch solutions as streaming solutions—the most obvious
being Spark Structured Streaming. While “technically” micro-batch,
latency in the hundreds of milliseconds makes Spark Structured
Streaming effectively a real-time solution.

Streaming
Streaming refers to the continuous reading of datasets, either boun‐
ded or unbounded, as they are generated. While we will not discuss
streaming in great detail, it does warrant further research. For a
comprehensive understanding of streaming data sources, we suggest
exploring resources like Streaming 101, Streaming Databases, and, of
course, Fundamentals of Data Engineering.

Methods.    Common methods of streaming unbounded data include:

Windowing
Segmenting a data source into finite chunks based on temporal
boundaries.

Fixed windows
Data is essentially “micro-batched” and read in small fixed win‐
dows to a target.

Sliding windows
Similar to fixed windows, but with overlapping boundaries.

Sessions
Dynamic windows in which sequences of events are separated
by gaps of inactivity—in sessions, the “window” is defined by
the data itself.

Time-agnostic
Suitable for data where time isn’t crucial, often utilizing batch
workloads.

Figure 1-4 demonstrates the difference between fixed windows, slid‐
ing windows, and sessions. It’s crucial to differentiate between the
actual event time and the processing time, since discrepancies may
arise.
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Figure 1-4. Fixed windows, sliding windows, and sessions treat the
arrival of streaming data quite differently

Message services.    When we say “message services,” we refer to
“transportation layers” or systems for communicating and trans‐
porting streaming data. One important note is that this is not a
direct comparison; while there is overlap in these services, many
operate under fundamentally different architectures, rendering
“Kafka versus Pub/Sub” or “Kinesis versus Redpanda” discussions
largely irrelevant.

Apache Kafka
Originated at LinkedIn in 2011, Apache Kafka started as a
message queue system but quickly evolved into a distributed
streaming platform. While Kafka’s design allows for high
throughput and scalability, its inherent complexity remains a
hurdle for many.

Redpanda
Developed as an alternative to Kafka, Redpanda boasts similar
performance with a simplified configuration and setup. Red‐
panda is based on C++ rather than Java and compatible with
Kafka APIs.

Pub/Sub
Pub/Sub is the Google Cloud offering for a durable, dynamic
messaging queue. Unlike Kafka, Google Pub/Sub scales dynam‐
ically to handle variable workloads. Rather than dealing in
“streams” and “shards,” Pub/Sub opts for “topics” and “subscrip‐
tions.” A big draw to Pub/Sub is the elimination of most “main‐
tenance” tasks—it’s almost fully managed.
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Kinesis
Kinesis is another robust, fully managed service. As an Ama‐
zon service, Kinesis offers the obvious ease of integration with
other Amazon Web Services (AWS) offerings while bringing
automatic scalability and real-time data processing. Like Pub/
Sub, Kinesis stands out for its managed service nature, offering
a lower operational burden than Apache Kafka.

Stream processing engines.    Stream processing is about analyzing and
acting on real-time data (streams). Given Kafka’s longevity, the three
most popular and well-known stream processing tools are:

Apache Flink
An open source engine that continuously processes both
unbounded and bounded datasets with minimal downtime.
Apache Flink ensures low latency through in-memory compu‐
tations, offers high availability by eliminating single points of
failure, and scales horizontally.

Apache Spark Structured Streaming
An arm of the Apache Spark ecosystem designed to handle
real-time data processing. It brings the familiarity and power of
Spark’s DataFrame and Dataset APIs to streaming data. Struc‐
tured Streaming might be an attractive option given the popu‐
larity of Apache Spark in data processing and ubiquity of the
engine in tools like Databricks.

Apache Kafka Streams
A library built on Kafka that provides stateful processing capa‐
bilities, but ties to Java can be limiting.

Simplifying stream processing.    Several relatively new solutions sim‐
plify stream processing by offering straightforward clients, with a
focus on performance and simple development cycles.

Managed platforms
Taking Databricks as an example: leveraging tools like Delta
Live Tables (DLT) or simply running Spark Streaming jobs on
the Databricks runtime can be a powerful abstraction of com‐
plexity and drastically simplify the process of building stream‐
ing systems.
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Confluent Kafka
An attempt to bring Apache Kafka capabilities to Python,
although it remains rudimentary compared with its Java coun‐
terpart. Confluent Kafka is simply a client library in the same
way psycopg2 is a Postgres client library.

Bytewax
A library that aims to bridge the gap by offering a more intu‐
itive, Pythonic way of dealing with stream processing, making
it more accessible to a wider range of developers. Built on Rust,
Bytewax is highly performant, simpler than Flink, and boasts
shorter feedback loops and easy deployment/scalability.

Still newer tools that seek to unify stream processing—like Apache
Beam or Estuary Flow—or combine stream processing directly
with databases (streaming databases) are growing in popularity.
We recommend Streaming Systems and Streaming Databases for an
in-depth look.

The streaming landscape, while complex, has seen strides in simpli‐
fication and user-friendliness, especially when considering managed
platforms, like Databricks, and low-latency micro-batch solutions,
like Spark Structured Streaming.

While many think of real-time data as the ultimate goal, we empha‐
size a “right-time” approach. As with any solution, latency can
be optimized infinitely, but the cost of the solution (and complex‐
ity) will increase proportionally. Most will find going from daily
or semi-daily data to hourly/subhourly data a perfectly acceptable
solution.

Payload
The term “payload” refers to the actual message being transmitted,
along with any metadata or headers used for routing, processing, or
formatting the data. Data payloads are inherently broadly defined,
since they can take almost any shape imaginable. In this section,
we’ll discuss typical payload characteristics.

Volume
Volume is a pivotal factor in data ingestion decisions, influencing
the scalability of both processing and storage solutions. When
assessing data volume, be sure to consider factors like:

Ingestion Considerations | 15

https://learning.oreilly.com/library/view/streaming-systems/9781491983867/
https://learning.oreilly.com/library/view/streaming-databases/9781098154820/


Cost
Higher volumes often lead to increased costs, both in terms of
storage and compute resources. Make sure to align the cost fac‐
tor with your budget and project needs, including storage/stag‐
ing costs associated with warehouses, lakes, or lakehouses,
depending on your solution.

Latency
Depending on whether you need real-time, near-real-time, or
batch data ingestion, latency can be a critical factor. Real-time
processing not only requires more resources, but it also neces‐
sitates greater efficiency when volume spikes. For any data vol‐
ume, be sure your systems can handle latency requirements.

Throughput/scalability
It’s essential to know the ingestion tool’s ability to handle the
sheer volume of incoming data. If the data source generates
large amounts of data, the ingestion tool should be capable of
ingesting that data without causing bottlenecks.

Retention
With high volumes, data retention policies become more
important. You’ll need a strategy to age out old data or move
it to cheaper, long-term storage solutions. In addition to storing
old data, security and backfilling (restoring) lost data should be
considered.

For handling sizable datasets, using compressed formats like Apache
Avro or Parquet is crucial. Each offers distinct advantages and con‐
straints, especially regarding schema evolution. For each of these
considerations, be sure to look to the future—tenable solutions
can quickly disintegrate with order-of-magnitude increases in data
volume.

Structure and shape
Data varies widely in form and structure, ranging from neat, rela‐
tional “structured” data to more free-form “unstructured” data.
Importantly, structure doesn’t equate to quality; it merely signifies
the presence of a schema.

In today’s AI-driven landscape, unstructured data’s value is soaring
as advancements in large language and machine learning models
enable us to mine rich insights from such data. Despite this, humans
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have a penchant for structured data when it comes to in-depth
analysis, a fact underscored by the enduring popularity of SQL—
Structured Query Language—a staple in data analytics for nearly half
a century.

Unstructured.    As we’ve alluded, unstructured data is data without
any predefined schema or structure. Most often, it’s represented as
text, but other forms of media represent unstructured data, too.
Video, audio, and imagery all have elements that may be analyzed
numerically. Unstructured data might be text from a Pierce Brown
novel:

“A man thinks he can fly, but he is afraid to jump. A poor friend
pushes him from behind.” He looks up at me. “A good friend jumps
with.”

Such data often feeds into machine learning or AI applications,
underlining the need to understand stakeholder requirements com‐
prehensively. Given the complexity of machine learning, it’s vital to
grasp how this unstructured data will be utilized before ingesting it.
Metrics like text length or uncompressed size may serve as measures
of shape.

Semi-structured.    Semi-structured data lies somewhere between struc‐
tured and unstructured data—XML and JSON are two popular for‐
mats. Semi-structured data might take the form of a JSON payload:

'{"friends": ["steph", "julie", "thomas", "tommy", 
"michelle", "tori", “larry”]}'

As data platforms continue to mature, so too will the ability to
process and analyze semi-structured data directly. The following
snippet shows how to parse semi-structured JSON in Google Big‐
Query to pivot a list into rows of data:

WITH j_data AS (
        SELECT
            (
            JSON '{"friends": ["steph", "julie", "thomas", 
"tommy", "michelle", "tori", “larry”]}'
            ) AS my_friends_json
), l_data AS (
    SELECT
        JSON_EXTRACT_ARRAY(
            JSON_QUERY(j_data.my_friends_json, "$.friends"), 
'$'
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        ) as my_friends_list
    FROM j_data
)
    SELECT
        my_friends
FROM l_data, UNNEST(l_data.my_friends_list) as my_friends
ORDER BY RAND()

In some situations, moving data processing downstream to the ana‐
lytics layer is worthwhile—it allows analysts and analytics engineers
greater flexibility in how they query and store data. Semi-structured
data in a warehouse (or accessed via external tables) allows for
flexibility in the case of changing schemas or missing data while still
providing all the benefits of tabular data manipulation and SQL.

Still, we must be careful to properly validate this data to ensure that
missing data isn’t causing errors. Many invalid queries result from
the improper consideration of NULL data.

Describing the shape of JSON frequently involves discussing keys,
values, and the number of nested elements. We highly recommend
tools like JSONLint and JSON Crack for this purpose. VS Code
extensions also exist to validate and format JSON/XML data.

Structured.    The golden “ideal” data, structured sources are neatly
organized with fixed schemas and unchanging keys. For over 50
years, SQL has been the language of choice for querying structured
data. When storing structured data, we frequently concern ourselves
with the number of columns and length of the table (in rows).
These characteristics inform our use of materialization, incremental
builds, and, in aggregate, an OLAP versus OLTP database (column-/
row-oriented).

Though much data today lacks structure, we still find SQL to be
the dominant tool for analysis. Will this change? Possibly, but as
we showed, it’s more likely that SQL will simply adapt to accom‐
modate semi-structured formats. Though language-based querying
tools have started appearing with AI advancements, SQL is often an
intermediary. If SQL disappears from data analysis, it will likely live
on as an API.
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Format
What is the best format for source data? While JSON and CSV
(comma-separated values) are common choices, an infinite num‐
ber of format considerations can arise. For instance, some older
SFTP/FTP transfers might arrive compressed, necessitating an extra
extraction step.

The data format often dictates processing requirements and avail‐
able solutions. While a tool like Airbyte might seamlessly integrate
with a CSV source, it could stumble with a custom compression
method or a quirky Windows encoding (believe us, it happens).

If at all possible, we advise opting for familiar, popular data formats.
Like repairing a vehicle, the more popular the format, the easier
it will be to find resources, libraries, and instructions. Still, in our
experience it’s a rite of passage to grapple with a perplexing format,
but that’s part of what makes our jobs fun!

Variety
It’s highly likely you’ll be dealing with multiple sources and thus
varying payloads. Data variety plays a large role in choosing
your ingestion solution—it must not only be capable of handling
disparate data types but also be flexible enough to adapt to
schema changes and varying formats. Variety makes governance
and observability particularly challenging, something we’ll discuss
in Chapter 5.

Failing to account for data variety can result in bottlenecks,
increased latency, and a haphazard pipeline, compromising the
integrity and usefulness of the ingested data.

Choosing a Solution
The best tools for your team will be the ones that support your
sources and targets. Given the unique data requirements of each
organization, your choices will be context-specific. Still, we can’t
stress enough the importance of tapping into the knowledge of men‐
tors, peers, and industry experts. While conferences can be pricey,
their knowledge yield can be priceless. For those on a tight budget,
data communities can be invaluable. Look for them on platforms
like Slack and LinkedIn and through industry newsletters.
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When considering an ingestion solution, we think in terms of gen‐
eral and solution-specific considerations—the former applying to all
tools we’ll consider, and the latter being specific to the class of
tooling.

General considerations include extensibility, the cost to build, the
cost to maintain, the cost to switch, and other, system-level
concerns.

Solution-specific considerations are dependent on the class of tool‐
ing, which commonly takes one of two forms:

• Declarative solutions dictate outcomes. For example, “I use the•
AWS Glue UI to build a crawler that systematically processes
data” or “I create a new Airbyte connection via a UI.”

• Imperative solutions dictate actions. For example, “I build a•
lambda that calls the Stripe API, encodes/decodes data, and
incrementally loads it to Snowflake.”

Each of these solutions has its pros and cons. We’ll briefly discuss
each and present our recommended method for approaching data
integration.

Declarative Solutions
We classify declarative solutions as legacy, modern, or native,
largely dependent on their adherence to modern data stack (MDS)
principles, like infrastructure-as-code, DRY (don’t repeat yourself),
and other software engineering best practices. Native platforms dif‐
fer from the first two—they are integrated directly into a cloud
provider:

Legacy
Think Talend, WhereScape, and Pentaho. These tools have
robust connectors and benefit from a rich community and
extensive support. However, as the data landscape evolves,
many of these tools lag behind, not aligning with the demands
of the MDS. Unless there’s a compelling reason, we’d recom‐
mend looking beyond legacy enterprise tools.
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Modern
Here’s where Fivetran, Stitch, and Airbyte come into play.
Designed around “connectors,” these tools can seamlessly link
various sources and targets, powered by state-of-the-art tech
and leveraging the best of the MDS.

Native
In the first two solutions, we’re working from the assumption
that data must be moved from one source to another—but what
if you had a managed platform that supported ingestion, out
of the box? Databricks, for example, can natively ingest from
message buses and cloud storage:

CREATE STREAMING TABLE raw_data 
AS select * 
FROM cloud_files(“/raw_data”, “json”);

CREATE STREAMING TABLE clean_data
AS SELECT SUM(profit)...
FROM raw_data;

While there is no “right” type of declarative solution, many will
benefit from the reduced cost to build and maintain these solutions,
especially those native to your existing cloud provider/platform.

Cost to build/maintain
Declarative solutions are largely hands-off—here’s where you get a
bang for your buck! Dedicated engineers handle the development
and upkeep of connectors. This means you’re delegating the heavy
lifting to specialists. Most paid solutions come with support teams
or dedicated client managers, offering insights and guidance tailored
to your needs. These experts likely have a bird’s-eye view of the data
landscape and can help you navigate ambiguity around specific data
problems or connect you with other practitioners.

Extensibility
Extensibility revolves around how easy it is to build upon existing
solutions. How likely is that new connector to be added to Airbyte
or Fivetran? Can you do it yourself, building on the same frame‐
work? Or do you have to wait weeks/months/years for a product
team? Will using Stitch suffice, or will you need a complementary
solution? Remember, juggling multiple solutions can inflate costs
and complicate workflows. In declarative solutions, extensibility is
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huge. No one wants to adopt a solution only to learn it will only
solve 15% of their needs.

Cost to switch
The cost to switch is where the limitations of declarative tools come
to light. Proprietary frameworks and specific CDC methods make
migrating to another tool expensive. While sticking with a vendor
might be a necessary compromise, it’s essential to factor this in when
evaluating potential solutions.

Imperative Solutions
Imperative data ingestion approaches can be in-house Singer taps,
lambda functions, Apache Beam templates, or jobs orchestrated
through systems like Apache Airflow.

Typically, larger organizations with substantial resources find the
most value in adopting an imperative methodology. Maintaining
and scaling a custom, in-house ingestion framework generally
requires the expertise of multiple data engineers or even a dedicated
team.

The biggest benefit of imperative solutions is their extensibility.

Extensibility
By nature, imperative is custom—that means each tap and target
is tailored to the needs of the business. When exploring data integra‐
tion options, it quickly becomes apparent that no single tool meets
every criterion. Standard solutions inevitably involve compromises.
However, with an imperative approach, there’s the freedom to design
it precisely according to the desired specifications. Unfortunately,
without a large, dedicated data engineering organization, this exten‐
sibility is incredibly expensive to build and maintain.

Cost to build/maintain
While imperative solutions can solve complex and difficult ingestion
problems, they require quite a bit of engineering. One look at the
Stripe entity relationship diagram should be enough to convince you
that this can be incredibly time-consuming. Additionally, the evolv‐
ing nature of data—like changes in schema or the deprecation of an
API—can amplify the complexity. Managing a single data source is
one thing, but what about when you scale to multiple sources?
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A genuinely resilient, imperative system should incorporate best
practices in software design, emphasizing modularity, testability,
and clarity. Neglecting these principles might compromise system
recovery times and hinder scalability, ultimately affecting business
operations. Hence, we suggest that only enterprises with a robust
data engineering infrastructure consider going fully imperative.

Cost to switch
Transitioning from one imperative solution to another might
not always be straightforward, given the potential incompatibility
between different providers’ formats. However, on a brighter note,
platforms based on common frameworks, like Singer, might exhibit
more compatibility, potentially offering a smoother switch com‐
pared with purely declarative tools such as Fivetran or Airbyte.

Hybrid Solutions
Striking the right balance in integration often means adopting a
hybrid approach. This might involve leveraging tools like Fivetran
for most integration tasks, while crafting in-house solutions for
unique sources, or opting for platforms like Airbyte/Meltano and
creating custom components for unsupported data sources.

Contributing to open source can also be rewarding in a hybrid envi‐
ronment. Though not without faults, hybrid connectors, like those
in Airbyte or Singer taps, benefit from expansive community sup‐
port. Notably, Airbyte’s contributions to the sector have positively
influenced market dynamics, compelling competitors like Fivetran
to introduce free tiers. We also encourage a proactive approach to
exploring emerging libraries and tools. For instance, dlt (data load
tool—not to be confused with Delta Live Tables!) is an open source
library showing significant promise.

Consider data integration akin to choosing an automobile. Not
every task demands the prowess of a Formula One car. More often,
what’s required is a dependable, versatile vehicle. However, while
a Toyota will meet 99% of uses, you won’t find a Sienna in an F1
race. The optimal strategy? Rely on the trusty everyday vehicle, but
ensure access to high performance tools when necessary.
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CHAPTER 2

Data Transformation

While data ingestion simply transfers data from point A to B, data
transformation turns raw data into valuable insights through various
stages of the data lifecycle. This chapter delves into the diverse lan‐
guages, platforms, and technologies available to data practitioners
for executing data transformations.

We’ll see how to ensure that data transformations are conducted
efficiently and in a well-coordinated manner, laying the groundwork
for more detailed discussions on efficiency, scalability, and observa‐
bility later in the guide.

What Is Data Transformation?
Data transformation is the art of manipulating and enhancing data
to better serve users and processes. Transformation involves taking
some data, whether in a raw or nearly pristine state, and performing
one or many operations to move it closer to the intended use. In
an ETL pipeline, transformation occurs in not one, but many places.
Data might be transformed upon ingestion and again at any number
of points downstream. The goal of data transformation is to turn
data into an asset—using analysis and science to create something of
value for the business.

Transformation might be as simple as removing unwanted records,
e.g., filtering, or as complex as restructuring the source data entirely.
Transformation exists on a spectrum; there’s an almost infinite num‐
ber of ways to transform data—that’s what keeps things interesting!
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Similarly, transformation can be orchestrated in any language with
any technology, unhindered by the bounds of cloud providers,
servers, or sources. This could manifest as choreographed Spark
jobs, lambda functions, SQL workflows, or maybe something differ‐
ent—whether that be in Python, JavaScript, Rust, Scala, R, or (hold
your breath) a spreadsheet. While we advocate for picking familiar,
popular languages, we’d be remiss if we didn’t mention the ubiquity
of the practice of “transforming” data.

In this chapter, we’ll provide you with an overview of what trans‐
formation is and how we transform data as practitioners. Then,
we’ll walk through building a transformation solution, starting from
common patterns of transforming and updating data and continu‐
ing with best practices and considerations for streaming transfor‐
mation. Our aim is to provide a series of considerations for building
an efficient transformation system and equip you with the tools to
adapt this knowledge to your own unique problems.

Where Are We Now?
In the ever-evolving landscape of data engineering, the history of
data transformation is a tale of growth, simplification, and adapta‐
tion. In the early days of the internet, behemoths like Google and
Yahoo were trailblazers. They innovated with big data frameworks
like Hadoop and MapReduce. However, these technologies were
only slightly less complex than graduate-level linear algebra.

As the industry matured, tooling simplified and democratized.
Spark emerged, offering a streamlined distributed engine with APIs
in Python, SQL, and Scala. Not long after, Databricks emerged
with a mission to simplify Spark deployment. Simultaneously,
data warehouses hit the gym. BigQuery, Redshift, and Snowflake
emerged as technologies that could scale, eventually separating stor‐
age from compute. Presto, Trino, and Athena joined the fray, offer‐
ing lightning-fast query performance and scaling SQL to a big data
language.

Combined with the power of data warehouses, the flexibility of
cloud storage, and the availability of transformation tools, data
has never been more accessible. Today, lakehouses have emerged
as an additional option for managing data at scale in a unified,
cost-efficient manner.
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How Do We Transform Data?
As we’ve alluded, data transformation is an inherently broad topic.
We’ll attempt to bring structure and scope to data transformation
by discussing transformation environments, languages, frameworks,
and best practices.

Environments
Where we transform data often dictates how we transform data.
Here are the most common environments for data transformation:

Data warehouses
Transformation in the warehouse is performed using SQL.
Modern data warehouses have some interesting functionality
that enables transformation for a variety of data—materializa‐
tion, incremental logic, and partitioning, to name a few. Server‐
less data warehouses can dynamically scale to handle intense
workloads, making them prime for data transformation on
large, structured datasets.

Data lakes
Data lakes excel at storing large amounts of data economically,
making them a prime area for staging. Unlike data warehouses,
data lakes do not have any computing resources, so transfor‐
mations need to be orchestrated and executed using external
services.

Data lakehouses
Lakehouses can combine aspects of data lakes and warehouses
to provide a solution with greater flexibility, potentially at a
lower cost. Utilizing services like Apache Spark, practitioners
can transform data in PySpark or Spark SQL, solving the issue
of compute in a data lake. Databricks SQL is a warehouse that
sits atop the Databricks lakehouse platform, allowing the bene‐
fits of a serverless data warehouse.

The choice among data lakes, warehouses, and lakehouses hinges
on the specific needs of a project, the team’s expertise, and the
long-term data strategy of the organization, each catering to differ‐
ent facets of data transformation with its distinct set of tools and
challenges.
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Here are some questions to consider when selecting where your
transformations will take place:

• How do the costs compare among maintaining a data lake,•
warehouse, and lakehouse, especially concerning the complexity
of data transformations?

• Does any platform better fit the structure of your team or•
organization? Which is best for maintenance, development, or
expansion, given your current and expected workflows?

• What are the considerations for data security and compliance?•

When choosing a data platform, consider your budget, the skill and
experience of your team, and both current and future requirements.
A balance between well-established practices and cutting-edge tech‐
nology is crucial for long-term success.

Data staging
Between transformations, data is often staged—written in a tempo‐
rary state to a suitable location, often either cloud storage or an
intermediate table. Staged data may be kept temporarily or indefi‐
nitely, but it plays a crucial role in transformation.

Whether you’re taking a lake plus warehouse approach or going
with a pure lakehouse implementation, how will you stage data?
Medallion architecture (Figure 2-1) is an approach that describes
three distinct “layers”: Bronze for raw, Silver for light transforma‐
tion, and Gold for “clean.”

Figure 2-1. A medallion architecture promotes three distinct layers of
data preparedness

Using terms from medallion architecture, staged data usually fol‐
lows this pattern:
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• Bronze data is raw and unfiltered, often directly from integra‐•
tion sources. For example, your raw tables might be written
directly from an API.

• Silver data is filtered, cleaned, and adjusted. You might remove•
unnecessary, extraneous information, apply transformations to
ensure consistency, and enrich data as necessary.

• Gold data is generally stakeholder-ready and sometimes aggre‐•
gated. Your consumers (analytics, engineering) should be
querying Gold tables a vast majority of the time, with only
occasional need for Silver tables. Generally, production assets
(visualizations, reports) should not hit anything other than Gold
tables.

Downstream from your lake, a similar approach can be used in a
warehouse, with staging, curated, and marts tables denoting levels of
transformed data. This is a time-tested way to transform data, and
the approach dbt currently recommends.

Thus, the architectural pattern for staging transformation is to
take each storage layer and break it down into discrete “stages” of
data cleanliness. Interwoven in this approach is leveraging storage
functionality, like Delta Lake. In any case, patterns like write-audit-
publish can be applied to any stage.

Languages
Of course, how we transform data is largely dictated by the tools
at our disposal. Our biggest choice, programming language, plays a
key role in the libraries, frameworks, and methods we use to reach a
solution. Here are a few of the most popular libraries in data:

Python
Python has remained a steadfast choice in the evolving land‐
scape of the digital era, particularly in data science and trans‐
formation. Figure 2-2 shows Python’s dominance in the last
decade. At the heart of Python’s data science capabilities is the
Pandas library, bolstered by a range of I/O libraries for data
manipulation. Historically, scaling Python for large datasets has
been challenging, often necessitating the use of libraries like
Dask and Ray. However, recent advancements have marked a
significant evolution in Python-based data processing, which we
view as a renaissance in the field.
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Figure 2-2. Though Rust is on the rise, Python continues a trend of
dominance (adapted from PYPL); the y-axis values are in log scale

When transforming data in Python, the first step is to choose a
suitable library, followed by selecting a framework for orches‐
trating and executing the transformation. We recommend
starting with Pandas, renowned for its robustness. However,
emerging libraries such as Polars and DuckDB are also worthy
of consideration. This chapter will delve into various transfor‐
mation techniques, and we will explore orchestration in more
depth in Chapter 3.

SQL
SQL boasts the title of a declarative language, a term that now
makes its second appearance (see Chapter 1). This title implies
that the language is more about describing desired outcomes
than outlining the step-by-step process to achieve them. For
instance, the statement SELECT * FROM views.active_users
isn’t code in the traditional sense; it’s more of a polite request,
saying, “Please fetch all active users.”

We argue that SQL can be used as a declarative or an imperative
language, as we’ve seen some queries that are pretty innovative
(for better or worse), but SQL is still inherently limited by a lack
of functionality that languages like, say, Python are not.

This inherent limitation nudges most SQL transformations into
the companionship of a templating solution, facilitating scalable
SQL transformation. Languages like Jinja/Python (via dbt) and
JavaScript (via Dataform) often complement SQL workflows.
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Most SQL transformations occur in a data warehouse or lever‐
age the data warehouse’s compute to execute a query.

Rust
Rust is an up-and-coming transformation language that has
many claiming it’s the future of data engineering. Developed by
Mozilla, it was first released in 2010. Its primary edge comes
from its speed compared with Python and its strongly typed
nature, which is beneficial for production workflows. However,
Rust is relatively new, and Python has a solid foothold given
its extensive community support, rich library ecosystem, and
widespread adoption across industries.

While exploring Rust is encouraged, for production services,
sticking to well-adopted languages is advisable. A pragmatic
approach to Rust might be engaging with a Python library writ‐
ten in Rust, like Polars.

Frameworks
Transformation frameworks are multilanguage engines for execut‐
ing data transformations across machines or clusters. As paralle‐
lization and distributed computing has become the norm, these
frameworks have powered transformation at scale.

The benefit of a framework is that multiple APIs exist for executing
workflows, which means transformations may often be manipulated
in various languages, like Python or SQL. We’ll discuss the two most
popular engines, Hadoop and Spark, though you could also think of
your data warehouse as an engine:

Hadoop
Apache Hadoop is an open source framework that emerged as
a groundbreaking solution for handling big data. Its history, use
by large corporations, and current state are closely intertwined
with the rise of Apache Spark and the advent of serverless
data warehouses. Hadoop gained significant traction in the
mid-2000s, with tech giants like Yahoo, Facebook, and later
Google adopting it to manage their growing data volumes.

While Hadoop was instrumental in handling large-scale data, it
had limitations. Optimized for batch processing, Hadoop’s Map‐
Reduce was not well suited for real-time or iterative workloads.
This led to the rise of Apache Spark in the early 2010s, offering
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in-memory processing, faster analytics, and support for various
workloads, including batch, streaming, and machine learning.

While Hadoop remains relevant, its dominance has waned.
Many organizations have shifted toward hybrid data architec‐
tures built around cloud-based solutions and serverless data
warehouses.

Spark
Apache Spark is a powerful open source data processing frame‐
work that revolutionized big data analytics by offering speed,
versatility, and integration with key technologies. Its history is
closely linked to the need for an alternative to Hadoop’s Map‐
Reduce, as it was developed at University of California, Berkeley
in response to MapReduce’s limitations. Spark’s key innovation
is resilient distributed datasets (RDDs), enabling in-memory
data processing and faster computations.

Apache Spark also shares a deep connection with Databricks, a
company founded by its original creators, providing a unified
analytics platform for data engineers, scientists, and analysts.
Databricks simplifies Spark adoption and enhances collabora‐
tion, making it a pivotal player in modern data analytics.

With high-level APIs in Java, Scala, Python, and R, Spark is
accessible to almost any data professional. To get started trans‐
forming data in Spark, we recommend considering a managed
platform, like Databricks, for the low barrier to entry and ease
of getting started.

Database/SQL engines
With the rise of the serverless data warehouse, one might (val‐
idly) question if big data engines are still necessary. Serverless
data warehouses can scale up or down to meet anticipated
demand. Combined with the appropriate use of data lakes/lake‐
houses and external tables, they can be a highly efficient way to
crunch and transform large amounts of data. Not only that, but
the simplicity and ubiquity of SQL stands in stark contrast to
the complexity of other technologies.

At a certain point, it’s likely your team will need to leverage
Spark (or even Hadoop), but query engines, like BigQuery,
Databricks SQL, and Redshift should not be disregarded as
viable solutions, especially in the early stages of a data team.
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With recent advancements in in-memory computation (like
MotherDuck and DuckDB), it’s likely we’ll see data warehouses’
transformation capabilities continue to expand. Siding with his‐
tory, never doubt the durability or extensibility of the relational
database and plain-old SQL.

Other approaches
An alternative to traditional transformation methods is the use of
low- or no-code platforms. Due to their user-friendly interfaces,
these platforms are particularly suited for organizations with less
technical expertise. While such platforms offer accessibility, this
often comes at the cost of reduced customization, scalability, and
control, so they’re certainly not for everyone.

Relying solely on graphical user interface (GUI) tools might hinder
your ability to fine-tune software to specific needs, leading to inef‐
ficiencies or functionality gaps. Additionally, GUI-based solutions
can be less transparent and harder to version control, making it
challenging to collaborate with other developers.

Other, more downstream methods of transformation—for example,
BI tools or Google Sheets—are largely out of the domain of engi‐
neering. While they make sense for analysis or certain stakehold‐
ers, we recommend ownership of those solutions lie directly with
users, i.e., analysts. Why? These solutions often lack the ability to
be productionalized—a lack of continuous integration/continuous
deployment (CI/CD), version control, and transformations as code
make them unqualified for software development.

Building a Transformation Solution
Up to this point, we’ve discussed the pieces of the puzzle—lan‐
guages, environments, and frameworks for transforming data—but
how do we put those pieces together to create something valuable?
The next section will discuss the transformation patterns and best
practices on structured data used in modern data pipelines.

Data Transformation Patterns
In this section, we’ll provide a suite of the most common data
transformation patterns, along with examples of their application
in a production setting. Data transformation is largely a pattern-
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mapping exercise—understanding what transformations exist and
when they should be applied is most of the job!

Enrichment
This entails enhancing existing data with additional sources,
for example, appending demographic information to customer
records to provide a more complete picture. Enrichment might
involve joining on internal structures or fetching additional data
from external sources.

Example: Your raw orders table has a status column that repre‐
sents the order status as an internal code. This is a non-human-
readable code that makes analysis confusing. You join on orders
to enrich status codes: “1337” to “complete.”

Joining
Joining involves combining two or more datasets based on a
common field, akin to a JOIN operation in SQL. Joining is vital
when integrating data from disparate sources and plays a pivotal
(no pun intended) role in data architecture. Which fact and
dimension tables should be joined to improve analysis? Which
should remain disparate? An understanding of different JOIN
types is paramount.

Example: In talking with your analytics team, you realize that
reports frequently analyze sales data by the originating country
of the order, but that data isn’t present in your cleaned sales
table. Joining sales data with user data allows you to pull in
the originating country and saves your analytics team time and
confusion.

Filtering
When filtering, you select only the necessary data points for
analysis based on certain criteria. This can reduce the volume
and improve the quality of the data that is loaded into the target
system.

Example: A new system should contain no data from years prior
to 2024, but you find some errant records exist. You filter the
data to eliminate erroneous records: SELECT * FROM purchases
WHERE date >= '2024-01-01'.
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Structuring
Structuring involves translating data into a required format or
structure. This could mean transforming JSON documents into
a tabular format or vice versa.

Example: A financial data API returns JSON data. You unpack
and structure the data, then append it to a Parquet data store in
an S3.

Conversion
Conversion is changing the data type of a particular column or
field, like converting a string to a date/time format or an integer
to a float. This is one of the most common types of transforma‐
tion, especially when converting between semi-structured and
structured data sources.

Example: An upstream API returns a timestamp in the string
format “2011-01-01 00:00:00,” but for easy retrieval and visual‐
ization, you cast timestamps to the corresponding format in
your database. A more advanced date/time conversion might
involve Unix timestamps, which can’t simply be cast.

Aggregation
Aggregation is summarizing and combining data, such as calcu‐
lating the total sales for a certain period or the average of a set
of values. Data aggregation is essential for drawing conclusions
from large volumes of data. As engineers, we often try to shift-
right aggregation and bring it as close to analysis as possible.
This ensures data can be analyzed at the finest grain. The goal of
aggregation is to enable us to draw insights from vast amounts
of data and inform business decisions, creating value from our
data assets.

Example: You receive millisecond-level data from IoT sensor
devices deployed by your services team. Because of the incredi‐
bly large quantity of information, you store a small subset of
this data at a given time and aggregate on the second in down‐
stream tables.

Anonymization
Anonymization is masking or obfuscation of sensitive informa‐
tion within a dataset to protect privacy. As data practitioners,
we must do our best to protect the privacy of our users, for
both legal and ethical reasons. Anonymization might look like
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hashing emails or otherwise removing personally identifiable
information (PII) from records.

Example: Emails are hashed and stored as a unique identifier
to prevent sensitive customer information from reaching down‐
stream data users. Information is retained in tables with very
limited access.

Splitting
Splitting, which is dividing a single complex data column into
multiple columns, can be thought of as a simple form of
denormalization.

Example: You would like to provide information on users’ email
domains while keeping data private. You split emails into prefix
and domain columns, dropping the prefix to keep data anony‐
mous, while retaining the domain.

Deduplication
The process of deduplication, part of data normalization, is the
act of removing redundant records to create a unique dataset.
Deduplication might occur through aggregation, filtering, or
other methods.

Example: An event stream occasionally picks up duplicate
events (with identical universally unique identifiers [UUIDs])
for a single occurrence. Stakeholders agree the earliest record
should be retained. A transformation is created that drops
duplicate event UUIDs.

Data Update Patterns
Part of transforming data is understanding how to update data
that already exists in your target system. Here, we present ways of
updating data to ensure smooth-running transformation processes:

Overwrite
The simplest form of updating data involves a complete drop of
an existing source or table and an overwrite with entirely new
data. While this is absolutely the simplest form of data update, it
can quickly become untenable as the size of your data increases.
Still, it might be a good starting point, given its simplicity.
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Insert
Instead of overwriting data, you might choose to append new
data to your existing source. This is the process of insert‐
ing. Inserting data only adds new rows; no existing rows are
changed.

An ideal insert use case is one where new data is entirely inde‐
pendent of old data; for example, a table of transactions or stock
market data for a given day. In these cases, simply incrementally
inserting new records is a fast and simple way to maintain
up-to-date data sources.

Upsert
Upsert, short for update and insert, is a more complicated
update pattern, with applications for change data capture, ses‐
sionization, and deduplication, making it particularly useful,
albeit complex.

Changed data is identified by a predefined unique identifier,
and then pertinent records are updated and/or inserted. Given
the inherent complexity of DIY upsert transformations, plat‐
forms like Databricks have MERGE functionality that drastically
simplifies the process.

The following example from Databricks showcases UPSERT
nicely:

MERGE INTO people10m 
USING people10mupdates 
ON people10m.id = people10mupdates.id 
WHEN MATCHED THEN 
 UPDATE SET
    id = people10mupdates.id, 
    firstName = people10mupdates.firstName, 
    lastName = people10mupdates.lastName, 
    birthDate = people10mupdates.birthDate, 
    ssn = people10mupdates.ssn, 
    salary = people10mupdates.salary 
WHEN NOT MATCHED 
  THEN INSERT ( 
    id, 
    firstName, 
    lastName, 
    birthDate, 
    ssn, 
    salary 
  ) 
  VALUES ( 
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    people10mupdates.id, 
    people10mupdates.firstName, 
    people10mupdates.lastName, 
    people10mupdates.birthDate, 
    people10mupdates.ssn, 
    people10mupdates.salary 
  )

Delete
The concept of data deletion is often misunderstood in data
engineering. We encounter two main types of deletion: “hard”
and “soft.” A soft delete might involve marking a record as
“deleted” (e.g., setting status = “deleted”), while a hard delete
means completely removing the record from the database.

In the context of privacy regulations like the General Data Pro‐
tection Regulation, there is a tendency to favor hard deletes.
However, the utility of soft deletes should not be overlooked.
For instance, in a software as a service (SaaS) company manag‐
ing digital assets, soft deletes enable the creation of a historical
record for an asset’s status. This can be crucial for maintaining
communication with users, analyzing account terminations, and
other operational aspects. In contrast, hard deletes eliminate
these historical records, which might be problematic in cases of
data recovery.

Best Practices
While transformation can look quite different depending on the
system, some themes emerge as constants. Consider these best prac‐
tices when building out your transformation solution, regardless of
where it lives:

Staging
We’ve already discussed how you can use a medallion archi‐
tecture to stage data in a lake or warehouse, but it’s worth
reiterating. Staging should be a consideration whenever data is
transformed, to protect against data loss (improve recoverabil‐
ity) and ensure a low time to recovery (TTR) in the event of a
failure.

Idempotency
Idempotency is a fundamental concept that ensures consistency
and reliability. While idempotent is a great vocabulary word, it
can seem a bit opaque. However, it’s actually a simple concept:
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1 For a deeper dive on normalization and denormalization, see “Data Normalization
Explained: How to Normalize Data” and “Data Denormalization: The Complete
Guide”.

doing something multiple times yields consistent results. In
that sense, idempotency is like “reproducibility.” Say you run a
pipeline twice with no new source data—does your output data
look the same? Idempotency is crucial for handling failures and
ensuring data consistency in distributed systems.

Normalization and denormalization
These terms can be confusing to new data practitioners (I know
I was confused when I first heard them). Normalization involves
refining data to the clean, orderly format we’d expect. This can
get complicated quickly, so we’ll stay brief: normalized data is
unique and sometimes has a primary key.

Denormalization is precisely the opposite. It involves duplicat‐
ing records and information to make a system more perform‐
ant. In large data systems, redundant elements can be utilized
to improve the performance of analytic systems or downstream
elements.1

Incrementality
On the topic of data updates, incrementality defines whether
our pipeline is a simple INSERT OVERWRITE or a more complex
UPSERT. The volume, compute, and cost will largely determine
if nonincremental workflows are possible. There exist many
predefined patterns for building incremental workflows in tools
like dbt and Airflow. Databricks also has a robust library of
resources for incremental pipelines.

If you’re loading data into a database, using MERGE instead of
INSERT can do wonders. If you’re loading data into a lake, using
“stateful processing” or “bookmarking,” i.e., keeping track of
where a transformation left off, can be valuable.

Real-Time Data Transformation
In our discussion on real-time data in Chapter 1, we presented the
differences between batch, micro-batch, and streaming transforma‐
tions. Here, we’ll simply note that micro-batch transformations can
be effective streaming transformations when latency is low enough.
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Streaming data transformation refers to the processing of data in
real time as it is generated or received. True streaming transforma‐
tions (Beam, Flink, Kafka) can introduce a level of complexity that
most are unprepared for. Unless absolutely essential, we recommend
a micro-batch approach with something like Spark.

Apache Spark, particularly through its components PySpark and
Spark SQL, excels in this area by offering micro-batch/streaming
transformations. These are simpler to implement compared with
true, single-event transformations, which are more complex due to
real-time data processing constraints like windowing.

Spark Structured Streaming is a popular streaming application
among developers, as it efficiently handles incremental and contin‐
uous updates. Key features include streaming aggregations, event-
time windows, and stream-to-batch joins, all facilitated by Spark’s
Dataset API in a more straightforward manner than other methods.

Although technically using a micro-batch processing engine, Spark
Structured Streaming achieves latencies as low as 100 milliseconds,
with exactly once fault tolerance, which is sufficiently low to be con‐
sidered as “streaming.” Additionally, Continuous Processing, intro‐
duced in Spark 2.3, can reduce latencies to as little as 1 millisecond,
offering at-least-once guarantees, further enhancing its capability
for streaming data transformation.

The Future of Data Transformation
The modern data stack is amid a second renaissance, spurred by new
technologies addressing shortcomings in traditional data workflows.
Concurrently, advancements in AI are reshaping not only how we
work, but the actual systems we build.

On a seemingly weekly basis, new tools and technologies emerge
that redefine what it means to transform data. Thankfully, the con‐
cepts and patterns provided in this chapter are timeless—regardless
of your tooling, you’ll need to be sure to adhere to time-tested
strategies for managing data and creating cleaned assets to drive
value at your organization.

The future of data transformation is simultaneously similar to and
different from transformation today—similar in that the strategies,
skills, and communication required to architect an efficient system
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will not change and different in that tooling will be supercharged
and process automated...well, hopefully.

Supercharged tooling and automations can be a blessing and a
curse, as they bring a tremendous amount of power to practitioners.
But, as they say, with great power comes great responsibility. It’s
our job as engineers to be sure we can deliver well-planned and
-executed transformation systems with a high value-to-cost ratio.

The Future of Data Transformation | 41





CHAPTER 3

Data Orchestration

Though we’ve already discussed ingestion (E, L) and transformation
(T), we’ve only scratched the surface of ETL. Contrary to viewing
data pipelines as a series of discrete steps, there exist overarching
mechanisms that operate on a meta level, aptly dubbed “under‐
currents” by Matt Housley and Joe Reis in Fundamentals of Data
Engineering:

• Security•
• Data management•
• Data operations (DataOps)•
• Data architecture•
• Data orchestration•
• Software engineering•

In this chapter, we’ll explore dependency management and pipeline
orchestration, touching on the history of orchestrators, which is
important for understanding why certain methods of orchestration
are popular today. We’ll present a menu of options for you to
orchestrate your own data workflows and discuss some common
design patterns in orchestration.
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Throughout will be a discussion of how an “orchestrator” has his‐
torically been separate from a “transformation” tool. We’ll touch
on why this has been true and why it might not be true in the
future, though we still believe a separate orchestrator is the preferred
approach.

What Is Data Orchestration?
Every workflow, data or not, requires sequential steps: attempting to
use a French press without heating water will only brew disappoint‐
ment, whereas poorly sequenced data transformations might brew
a storm far more bitter than a caffeine-deprived morning (though
the woes of the decaffeinated are not to be trivialized). In data, these
“steps” are often referred to as tasks and “workflows,” or directed
acyclic graphs (DAGs), a term we’ll dive into shortly.

Orchestration is a process of dependency management, facilitated
through automation. The data orchestrator manages scheduling,
triggering, monitoring, and even resource allocation. Orchestrators
are distinctly different from schedulers, which are solely cron-based.
Orchestrators, on the other hand, can trigger on events, webhooks,
schedules, and even intra-workflow dependencies. Data orchestra‐
tion provides a structured, automated, and efficient way to handle
large-scale data from diverse sources.

Orchestration is, first and foremost, about ensuring pipelines pro‐
duce accurate and timely results. A good orchestrator should
also have a focus on efficiency, scalability, and speed, though as
we’ll discuss shortly, operations will largely take place outside the
orchestrator.

Why Orchestrate?
Orchestration steers workflows toward efficiency and functionality,
with an orchestrator serving as the tool enabling these workflows.
Typically, orchestrators trigger pipelines based on a schedule or a
specific event. Event-driven pipelines are beneficial for handling
unpredictable data or resource-intensive jobs. Here’s a breakdown
of the perks that come with having an orchestrator in your data
engineering toolkit:
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Workflow management
Orchestrators assist in defining, scheduling, and managing
workflows efficiently, ensuring tasks are executed in the right
order by managing dependencies.

Automation
As engineers, we should be automating as much as possible
(or feasible). Orchestrators can be used to automate routine,
repetitive, and even complex tasks, saving time and ensuring
tasks run as scheduled without manual intervention.

Error handling and recovery
Orchestrators often come with built-in error handling and
recovery mechanisms. They can retry a failed task, notify the
team, or trigger other tasks to fix the issue.

Monitoring and alerting
Monitoring workflows and receiving alerts for failures or delays
are crucial for maintaining reliable data pipelines. Orchestrators
provide these capabilities.

Resource optimization
By managing when and where tasks run, orchestrators help
optimize resource use, which is crucial in environments with
limited or costly resources.

Observability and debugging
Orchestrators provide a visual representation of workflows, log
management, and other debugging tools, which is invaluable for
troubleshooting and optimizing workflows.

Compliance and auditing
Orchestrators maintain an audit trail of all tasks, which is cru‐
cial for compliance with data governance and other regulatory
requirements.

Employing an orchestrator is a strategic step toward building robust,
efficient, and scalable data pipelines, ensuring that data engineering
processes are well coordinated, monitored, and managed.

The DAG
The “directed acyclic graph” is possibly the most unnecessarily com‐
plex term in data engineering. Borrowed from graph theory (for
some reason), it’s simply used to describe a “tree” of data execution
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where “tasks” are represented as nodes and “dependencies” are edges
(Figure 3-1). These trees are:

Directed
The execution of tasks follows a specific direction from one end
of the tree to the other, indicating the presence of dependencies
within the graph.

Acyclic
There are no cycles in our tree; that is, if we execute route 1 → 2
→ 5 in the image in Figure 3-1, we will not then execute 5 → 1
within the same pipeline.

Figure 3-1. A very simple DAG

DAGs bring order, control, and repeatability to data workflows. By
contrast, my life is an undirected cyclic graph—chaotic events seem
to occur repeatedly without any rhyme or reason. Thus, I’m at least
grateful for the standard DAGs impose on data engineering.

The main purpose of DAGs is to manage dependencies. Dependen‐
cies can get very complex very quickly. Before you know it, you’ll
be working with something that looks like a bifurcation diagram,
which is apt, because chaos will likely ensue.

In the domain of data engineering, DAGs are pivotal for orchestrat‐
ing and visualizing pipelines. They are the blueprint for mapping
out a sequence of tasks, ensuring a structured and predictable flow
of data. This becomes indispensable in managing complex work‐
flows, particularly within a team or a large-scale setup.

Take a data pipeline where tasks are designated for data collection,
cleaning, transformation, and, finally, loading into a database. A
DAG serves as a clear roadmap defining the order of these tasks—
ensuring, for instance, that data isn’t prematurely loaded into the
database before undergoing cleaning and transformation.
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DAGs were popularized by workflow orchestration tools like
Apache Airflow, which facilitates the creation, scheduling, and mon‐
itoring of data pipelines through the lens of DAGs.

Data Orchestration Tools
The journey of data orchestration tools reflects a narrative of
remarkable evolution over the past few decades. Initially, data engi‐
neers resorted to legacy or makeshift solutions to orchestrate data
workloads—ranging from custom Python scripts to adapted CI/CD
tools. However, as data landscapes grew in complexity, the call for
specialized tools grew louder, resulting in the creation of Apache
Airflow and Luigi.

The trajectory of the field is on a continuum of evolution, driven
by the open source community and the demands of big data. While
Apache Airflow has emerged as a dominant force, there are a num‐
ber of alternatives like Dagster, Prefect, and Mage. It is important to
choose the right tool for the job, as each tool has its own strengths
and weaknesses. The future of data orchestration is likely to be a
diverse ecosystem of tools, each with its own niche.

Choosing an Orchestrator
As you can likely tell by now, I enjoy analogy. Orchestration, quite
literally, is what the conductor of an orchestra does. Thus, data
orchestrators are aptly named, but the similarities run deeper. If the
musicians in the symphony are the members of our data stack, it’s
the conductor who ensures they’re playing in harmony and makes
adjustments in tempo, phrasing, or repetitions, relaying their vision
to the team.

Now, the important piece here is that the conductor is not also
playing an instrument. Somewhere along the line, we confused
orchestration with a data platform. To be fair, this is an easy mistake
to make. For example, Airflow is simple enough to install and learn
(and even easier to deploy, thanks to the availability of managed
options), and, once everything is configured, you have this beautiful
blank canvas to write.… Pure Python.

Rather, using orchestrators for their purpose, to orchestrate, makes
the most effective use of their competitive advantage. Map out
your dependencies in external services—Fivetran, dbt, Databricks,
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and the like—then use your orchestrator to trigger and monitor
these services in the appropriate order. A conductor can’t effectively
conduct and play the trombone, so why do we expect our orchestra‐
tor to?

A consistent theme in this guide has been the need for hybrid tools
that balance declarative and imperative frameworks to provide the
flexibility of code with the rigor and efficiency of software engineer‐
ing best practices. We feel that orchestrators are no different. You
can either build such a framework yourself or pay a vendor/platform
to do it for you—that depends largely on your situation.

Characteristics
With the above in mind, we can move on to considerations for
selecting an orchestrator. Here are some characteristics to keep in
mind:

Scalability
As data processing needs grow, orchestrators help in scaling
workflows to handle increased loads. We’ll discuss the benefits
of containerized orchestration shortly, but consider whether
your orchestrator will be able to scale vertically (increasing the
number of parallel tasks) or horizontally (increasing the com‐
pute of each task).

As we’ve alluded, ideally the process of orchestrating your data
will be separate from the process of transforming your data, so
scale should be a matter of handling complex logic and depen‐
dencies, not necessarily compute. Think through what your
workflows might look like with 10x the DAGs, dependencies,
and tasks—is it manageable?

Code and configuration reusability
Unlike the more mature realms of software development, data
engineering is notoriously bereft of established best practices.
That’s not to say they don’t exist, only that they won’t exist if
you don’t make an honest effort to ensure their implementation
(choosing the right tools, ensuring frameworks exist, etc.).

Your orchestrator should foster code and configuration
reusability, simplifying access to similar services and reutiliza‐
tion of common tasks across pipelines. For a good example of
how this is managed in Airflow, see the Astro SDK. Anything
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that is done more than once should be converted to a function
or class.

Connections
Orchestration, like data integration, is about connections. What
do we mean? If a significant portion of your workflows tran‐
spire on a particular platform, housing your orchestrator there
is sensible. Consequently, every major cloud provider offers a
hosted version of Airflow—Amazon (Managed Workflows for
Apache Airflow), Google (Cloud Composer), and Azure (Azure
Data Factory Managed Airflow).

Platform-embedded alternatives to Airflow, such as Databricks
Workflows, are arguably more aligned to customers with Data‐
bricks deployments. Since orchestrators serve to kick off exter‐
nal processes, ensuring a wide library of native connections,
rather than flimsy webhooks, will give you the most visibility
into the tasks you’re orchestrating.

Support
Popular orchestrators have strong community support and con‐
tinuous development, ensuring that the tool remains up to date
with the latest technologies and best practices. When investigat‐
ing an orchestrator, as with any tool, do some digging into
how frequently you can expect updates. Also, assess the tool’s
maturity—can your team take on the deployment of a pre-v1
tool? Is frequent updating feasible, or is a more stable solution
preferable?

If you’re opting for a closed-source or paid solution, support
is just as important. Do you have solutions engineers helping
your team with implementation? Can you count on support
to help you resolve issues? In some cases, these support teams
can be as valuable as consultants, given their view into other
organizations with similar implementations.

Observability
Areas of the modern data stack often bleed together. While
orchestrators aren’t necessarily observability tools, yours should
provide you with insight into your transformation flows. Did a
job fail? Was one retried?

Think about your own process. What makes the most sense for
an alert system? Is it a Slack message, an email, a handwritten
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letter delivered by carrier pigeon?1 Make sure your orchestrator
supports whatever method best suits your team and provides
the necessary visibility into the status of your data pipelines.

Orchestrator options
Today, to implement an orchestration solution, you can:

Build a solution
We do not advocate this option for the simple reason that the
scale required for this to make sense is on the Uber/Airbnb-
level.

Buy an off-the-shelf tool
This can be a valuable option for teams looking to abstract away
DevOps work and simplify their deployment.

Self-host an open source tool
If you have the resources to self-host, this option can be a
great way to avoid vendor lock. It should be noted that self-
hosting comes with an entirely different set of challenges and
headaches, however.

Use a tool included with your cloud provider or data platform
If you’re heavily platform dependent, solutions like Azure Data
Factory or Databricks Workflows can be a simple, effective way
to orchestrate your workflows.

There are pros and cons for every approach. We’ll discuss a few
options, starting with the tool that serves as the basis for a num‐
ber of cloud native options (Amazon Managed Workflows, Google
Cloud Composer, Azure Data Factory Managed Airflow) and war‐
rants its own category, Apache Airflow:

Apache Airflow
Developed by Airbnb, Airflow has blossomed into the de facto
orchestration tool, with a vibrant community, massive adoption,
and support by every major cloud provider. It remains a popular
choice, thanks to its ease of adoption, simple deployment, and
ubiquity in the data space.
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There’s no denying that Airflow has not only been instrumental
in the development of the modern data stack but also that it
continues to be an effective tool for orchestration. However,
we’ve observed a number of flaws inherent with the tool.

Conceived in the early 2010s, Airflow was engineered to
orchestrate, not to transform or ingest. Despite Astronomer’s
commendable efforts, fundamental barriers in transformation
workflows persist within Airflow due to its original blueprint.

Airflow is deceptively easy to spin up, but much more difficult
to build at scale and in production. The lack of constraints
allows for simple missteps, often surfacing without seasoned
guidance.

We highly recommend checking out newer tools in the orches‐
tration and transformation space to see just what’s out there. If
Airflow is your only choice—great news, it’s still an excellent
tool for orchestration with a wealth of community support.

Other open source tools
Many popular orchestrators, Airflow included, are built on
open source with the option for paid, hosted service and sup‐
port. There are a number of newer tools that are innovating in
the space, with Prefect and Dagster the leaders in both funding
and adoption. A number of newer still, pre-v1 tools have been
on the rise, like Mage, Keboola, and Kestra.

Choosing an open source option can be attractive for a number
of reasons, like community support and the ability to directly
modify source code. Of course, open source tools are heavily
dependent on such support for continued development. Addi‐
tionally, choosing pre-v1 software will likely get you fast updates
and new features but at the risk of project abandonment and
instability.

When considering a solution, take into account its history, sup‐
port, and stability. Compare that with the requirements of your
team, both now and in the future. Many open source tools
offer an option for paid hosting and support. If your team is in
a position to offload the DevOps work of managing a hosted
instance, it might be worth researching. Otherwise, be sure to
understand the support options (community) of your chosen
tools and the complexity of deployment.
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Paid, closed-source tools
As with managed open source options, paid solutions come
with a number of benefits: support with predefined service-level
agreements (SLAs) around response times, possible architec‐
ture consulting/guidance, and complete removal of deployment
headaches.

The main drawback is vendor lock on proprietary tooling.
Because most data teams quickly find themselves with dozens
or even hundreds of data pipelines, this can be incredibly
costly in the long term. We recommend thoroughly vetting
any paid proprietary solution for reputability, functionality, and
longevity.

Platforms
Data platforms offer their own orchestration solutions that are
tightly coupled to other services on the platform, like Data‐
bricks Workflows. These orchestrators are ideal for teams that
are all-in on a particular platform and offer:

Improved observability
Integrated directly into the platform, these solutions have
a maximum level of visibility into the granular details of
pipeline runs.

Maximum compatibility
As we’ve discussed, the orchestrator exists to interface with
external services. A platform-embedded option is necessar‐
ily compatible with other tools on that platform.

Increased support
As with other paid services, platform tooling provides you
with paid support and solution engineers whose job is to
help your team succeed. This service should not be dis‐
missed and can be invaluable for a new data team that
needs pseudo-consulting on implementation details.

While platform-specific orchestrators increase vendor lock and
come at a price, they can drastically reduce the work necessary
to maintain and scale your solution. That value should not be
dismissed…and if you’re on a platform like Databricks already,
their solutions make quite a bit of sense.
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Orchestrating SQL
Thus far, we’ve been largely concerned with orchestrating entire data
systems, but there’s a subset of data transformation that has its own
concept of orchestration—relational databases. Often, data is written
to a source system, then transformed sequentially with complex SQL
queries and manipulations.

Before the modern data stack, teams relied on custom infrastructure
to manage these transformations alone. Today, we use tools like dbt,
Delta Live Tables, Dataform, or SQLMesh. These tools are orchestra‐
tors in the sense that they evaluate dependencies and conditions,
then optimize and execute commands against a database to produce
a desired result.

This overlap gains significance in the context of data orchestration.
For instance, consider an Airflow DAG that:

1. Ingests data to a stage.1.
2. Lightly transforms the data.2.
3. Triggers a dbt project.3.

The interesting thing is that #3 is actually just a DAG—one that gets
executed against a data warehouse (Figure 3-2).

Figure 3-2. A dbt pipeline—looks familiar, no?

However, this structure hints at a potential limitation. There exists a
lineage outside of the SQL orchestrator and another within, leading
to a need for a mechanism to observe data across these layers—from
ingestion to transformation.
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This is a common pitfall many data teams encounter, often resulting
in a disconnection between sources and cleaned data. Identifying
errors in downstream data becomes a formidable challenge: discern‐
ing whether an anomaly was introduced by an analyst or a data
engineer is like finding a needle in a haystack.

Lineage not only streamlines the orchestration process but also fos‐
ters a more comprehensive view of data observability, bridging the
gap between different data layers and ensuring a smoother error
detection and resolution process. This is one reason to choose a
platform-specific data orchestrator—greater visibility, both between
and within data workflows.

We’ll discuss observability further in Chapter 4, but for now, we’ll
simply mention that SQL-based transformation frameworks are
largely orchestrators, and finding an orchestrator that delivers end-
to-end observability can be invaluable for ETL workflows.

Design Patterns and Best Practices
Design patterns, when employed judiciously, can significantly
enhance the efficiency, reliability, and maintainability of data
orchestration processes within a modern data engineering
environment.

These patterns exist outside the considerations mentioned in
“choosing an orchestrator,” since most can be accomplished inde‐
pendent of your orchestration choice. It should be noted, however,
that some orchestration solutions make these patterns significantly
easier—an important consideration in selection:

Backfills
If you’re building a data system, data likely existed prior to
its implementation. That means you’ll need to backfill the old
data before you start recording new data. Many will fall prey to
“one-time thinking” and create a hacky solution that they can’t
replicate.

A best practice is that anything done once should be repeatable.
In orchestration, we have an excellent opportunity to build
backfill logic into our pipelines themselves—a best practice is
to ask, “If this data disappeared tomorrow, could I recreate it?”
While that exact scenario might not happen, it’s likely that you’ll
need to add a column or pick up a few extra dates in the future.
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In tools like Airflow, we recommend building DAGs that allow
you to simply set a past start_date to trigger a run that recreates
historical data. This is sometimes easier said than done and will
require idempotent pipelines.

Idempotence
We discussed idempotence in Chapter 2, but it’s worth reiterat‐
ing—idempotence, or ensuring doing something multiple times
yields consistent results, is essential for reliable data engineering.
It’s especially important when running a backfill—if you acci‐
dentally have overlapping dates, will data be duplicated? Can we
run a pipeline for past dates, in addition to future ones?

Event-driven orchestration
Event-driven orchestration allows for reactivity to changes in
data or system states. Triggering on events means your data
will be as up to date as possible or occur at just the right time.
For example, if your data warehouse is heavily dependent on
a Fivetran ingest job, you might trigger it once that completes.
That way, you can avoid weird cron syntax or the potential that
a long-running job overlaps and causes issues.

Event-driven orchestration can also be used to lower cost. Have
a burdensome pipeline with infrequent source data? You can
build a system to only trigger that pipeline when the source
updates.

Conditional logic
The interesting thing about data and ETL, specifically, is that
inputs are always changing. The question isn’t “Will it break?”
but “When will it break, and how frequently?” As such, an
orchestrator should be able to handle conditional logic—“if
True then X, if False then Y”—to direct data workflows.

Conditional logic means your team will be able to further
automate the ETL process. If a common exception arises in
a pipeline, adding conditional logic can account for errors, fail‐
ures, or malformed data, allowing your team to free itself from
exception-handling hell.

Concurrency
Given the existence of this book, we know that ETL is hard
(or at least not very easy). It’s highly likely one or more of
your pipelines will be bottlenecked by a large amount of small,
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individual tasks. For example, you might have to ingest thou‐
sands of tiny zipped CSVs. Looping through each would take
hours, especially with the wrong execution scheme.

Instead, we can employ concurrency, sometimes referred to as
dynamic tasks, to save time. Orchestrators are obviously capable
of running concurrent pipelines, but most can fan out tasks to
be executed simultaneously. Figure 3-3 shows an example of a
concurrent, dynamic pipeline, executed in Apache Airflow.

Figure 3-3. Dynamic task mapping is one way to programmatically
create tasks executed in parallel in Apache Airflow

Fast feedback loops
Orchestrators are inherently complex and often trigger actions
that are difficult to test. This makes them notoriously difficult to
develop locally. We’ve heard the phrase “the easiest way to stop
a local Airflow instance is to reboot my machine,” which, while
hyperbole, has a ring of truth.

We recommend investing significant time and energy into find‐
ing a tool that allows you to fail fast and identify errors quickly,
achieve parity with a cloud-deployed instance, and have a local
environment that’s developer friendly and quick to spin up.

With the ease of deploying infrastructure (thanks to containeri‐
zation), it’s also possible to deploy something that’s incredibly
cumbersome to maintain and extend. If you find yourself in this
trap, it can be a very, very painful experience.

Retry and fallback logic
In the same way we need to be prepared for backfilling pipe‐
lines, retries and failures are inevitable. In a complex data stack,
handling failures well ensures data integrity and system relia‐
bility, which, in turn, facilitates smooth data operations and
reduces downtime.
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Part of idempotent pipelines is handling failures in a way that
doesn’t omit or duplicate data, but rather sets up a scenario
for either retrying the operation or skipping and alerting the
proper parties. Most orchestrators will allow you to directly set
a “retry” parameter at both the task and pipeline level.

Conditional logic can be paired with retry/fallback logic to cre‐
ate scenarios that gracefully handle errors, lowering both the
time you spend triaging them and the stress levels across your
data team.

Parameterized execution
Along with retry and conditional logic, parameterized execution
allows for further malleability in your orchestration. Adding
parameters simply means allowing your orchestrator to accept
variables.

This can be a valuable way to not only handle different cases
but also reuse pipelines for multiple purposes. Parameterized
execution can be invaluable in facilitating backfills, for example.
By architecting a DAG that accepts a date as a parameter for
fetching data from an API, for example, you could create a
simple structure to backfill a pipeline by sequentially executing
a list of dates to backfill for.

Lineage
Lineage refers to the path traveled by data through its lifecycle.
Given the visual nature of the DAG, it’s also a great place to
understand the different actions taken on data. Be sure your lin‐
eage solution is robust, as lineage is instrumental for debugging
issues and extending pipelines. Ideally, strive for column-level
lineage: a column-level view of data’s journey, from ingestion to
analysis.

Column-level lineage is illuminating the pathway of data
through transformation pipelines, amplifying traceability and
debugging prowess. This granularity is poised to become an
industry norm in SQL orchestration. I would argue column-
level lineage should be table stakes in any new implementa‐
tion. Advanced lineage capabilities are one obvious benefit of
a platform-integrated orchestration solution—like Databricks
Unity Catalog and Delta Live Tables.

Design Patterns and Best Practices | 57



Pipeline decomposition
A good strategy for ensuring tidy, readable pipelines is to break
them down into smaller, more manageable tasks that facilitate
better monitoring, error handling, and scalability (Figure 3-4).

Figure 3-4. An example of pipeline decomposition—breaking pipelines
into microservices and orchestrating them with meta-DAGs

Borrowing from software engineering—take pipelines as microser‐
vices: a key function of microservices is their autonomy and ability
to operate independently of each other. Aim to build autonomous
DAGs that can be run in parallel to mitigate dependencies and
critical failures. Modular design will also make it easier to build and
debug your workflows.

The Future of Data Orchestration
Wondering why this guide has such a strong focus on the history
and future of the modern data stack? In a rapidly evolving industry,
grasping trends is crucial—it can be the difference between adopting
a tool that will become obsolete in a few years and one that will gain
traction.
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The right tools, gauged in terms of time and resource savings,
can catapult well-led data teams far ahead of their counterparts.
Although we’ve expressed reservations about merging orchestration
and transformation tooling in this chapter, the evolution of transfor‐
mation tools, as discussed in Chapter 2, might change the narrative.

Containerized infrastructure, which facilitates both vertical and hor‐
izontal autoscaling, along with a new breed of tools aiming to elimi‐
nate complex big data tooling (like MotherDuck, PyArrow, modern
orchestrators), may reduce the demand for powerhouse transforma‐
tion solutions. Hybrid transformation tools like Prefect and Dagster
warrant serious consideration.

The evolution in SQL orchestration augurs well for enhanced
observability and monitoring within our data warehouses (or lake‐
houses). Emerging tools like SQLMesh are poised to challenge
established players like dbt, although dbt continues to innovate and
regularly update its platform.

As platforms mature, solutions like Databricks Workflows are
becoming increasingly appealing from a plug-and-play perspective.
The fact that these solutions are native to their respective platforms
instills confidence in their functionality and seamless integration.

Staying up to date in such a rapidly changing environment is a
Herculean task, but that’s why I have a job writing guides like these.
Regardless, these developments should be exciting, since they’ll
enable us to do our jobs more effectively and deliver what we’re
all after: quality data in a timely, robust manner.

The Future of Data Orchestration | 59





CHAPTER 4

Pipeline Issues and
Troubleshooting

As we’ve alluded, the primary objective of any ETL is to deliver busi‐
ness value. This goal, however, is often hindered by fragile systems
characterized by prolonged recovery times, leading to excessive
resource allocation toward troubleshooting rather than innovation
and value creation.

A well-designed ETL pipeline, therefore, must be robust and main‐
tainable, embodying key characteristics such as high data quality,
efficient error handling, and effective issue identification—all inte‐
gral components of system observability. Regardless of your engi‐
neering prowess, your systems will fail—not everything is within
our control!

Planning for failure means engineering pipelines that:

• Are easy to maintain and extend—that is, allow for quick error•
triage and new feature development

• Provide automated ways to handle errors in real time and•
recover from failure

• Incorporate a framework for improvement based on learning•
and experience

This approach ensures maintainability and seamlessly ties into
another critical aspect of ETL systems: scalability.
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As we delve deeper, we’ll explore how maintaining a system goes
hand in hand with scaling it, addressing challenges and strategies to
ensure your ETL pipeline is both resilient and adaptable to evolving
business needs.

Maintainability
In a chapter on issues and troubleshooting, we’re mainly addressing
the topic of maintainability—quite literally, the ability to maintain
the things you’ve already built.

As engineers, we sometimes goal-seek on solutions exclusively.
While we’re huge advocates for minimum viable products and the
80/20 principle, when collaborating on systems to drive business
value, the ability to maintain and scale (the topic of Chapter 5) those
systems is imperative. The inability to maintain a pipeline will come
at a direct and indirect cost to your team. While the former is obvi‐
ously more salient, the latter is more likely to sink your battleship:

Direct cost
Most are quite aware of direct cost—if you want something
expensive, you usually have to pony up and make a good case
for it. When interest rates were near zero and venture capital
money flowed like the Rio Grande, many overlooked the cost of
things like cloud computing, storage, and DataOps. Efficiency
starts with pattern design. Bad patterns mean low efficiency
across an entire organization.

An ETL system with a low maintainability will incur a high
direct cost in the form of inefficient operations and long run‐
times. This will not only incur a high bill from your provider of
choice, but it will also result in slow jobs and delayed data from
your team.

Indirect cost
Indirect costs can far outpace direct costs. Creating systems
that fail often and require constant triaging can be dismal for
resource allocation. Your team’s time and energy are the most
valuable commodities you have.

Spending the majority of your working hours fixing DAGs,
responding to alerts, and fighting fires might make you look
busy, but generally manifests itself as unsustainable and unpro‐
ductive. Teams that win build efficient systems that allow them
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to focus on feature development and data democratization.
Inefficient systems mean more fire drills, more sleepless nights,
and fewer hours spent building things that matter.

The main selling point of SaaS is that the benefit outweighs the
cost, namely the cost of developing and maintaining in-house
solutions. If you’re on a team with limited resources or experi‐
ence, the most maintainable solution might be one you buy.

Of course, these outages don’t just impact data engineers—those
downstream are also affected. That means a loss of trust from
stakeholders, loss of revenue from customers, and even loss of
reputation from the general public. The indirect cost of a data
failure, especially one that exposes PII, can be catastrophic.

So, why focus on maintainability? Winning teams are built on main‐
tainable systems.

If your goal is to move your organization forward with timely,
efficient data, you’ll need to minimize issues and troubleshooting,
lowering the direct and indirect costs of operation. In the rest of
this chapter, we’ll discuss precisely how you can do that through
observability, data quality, error handling, and improved workflows.

Monitoring and Benchmarking
Here, we make the distinction between observability and monitor‐
ing/benchmarking. Benchmarking and monitoring systems is essen‐
tial—a subset of observability. But observability isn’t just about
troubleshooting and maintenance. Monitoring and benchmarking
our systems is required for minimizing pipeline issues and expedit‐
ing troubleshooting efforts.

Tightly monitored and neatly benchmarked systems are set up quite
nicely as “observable” and make it easier to improve the maintaina‐
bility of our data systems and lower the costs associated with broken
data. Without proper monitoring and alerting, your team might not
even know things have gone wrong! The last thing we want is for
stakeholders to be the ones to discover a data error…or worse, the
error to go undiscovered and poor business decisions to result.

We should observe data across ingestion, transformation, and stor‐
age, handling errors as they arise (gracefully, if possible) and alerting
the team if (when) things break.
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Observability isn’t just for troubleshooting, however. It also helps us
scale, as we’ll discuss in Chapter 5.

Metrics
Here are some essential measures used to assess the reliability and
usefulness of data within an organization. These metrics help ensure
that the data being collected and processed meets specific standards
and serves its intended purpose effectively:

Freshness
Freshness refers to the timeliness and relevance of data in a
system. It’s the measure of how up to date and current the
data is compared with the real-world events it represents. Main‐
taining data freshness is crucial in ensuring that analytics, deci‐
sion making, and other data-driven processes are based on
accurate and recent information. Data engineers work to design
and implement systems that minimize latency in data updates,
ensuring that stakeholders have access to the most current data
for their analyses and operations.

Common freshness metrics for a dataset include:

• The length between the most recent timestamp (in your•
data) and the current timestamp

• The lag between source data and your dataset•
• The refresh rate, e.g., by minute, hourly, daily•
• Latency (the total time between when data is acquired and•

when it’s made available)

Volume
Volume refers to the sheer amount of data that needs to be pro‐
cessed, stored, and managed within a system. It’s a fundamental
aspect of data handling. Dealing with data at scale presents chal‐
lenges, such as efficient storage, quick retrieval, and processing
speed. High data volume demands specialized infrastructure
and techniques like distributed computing, parallel processing,
and data compression.
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Volume metrics include:

• The size of a data lake (gigabytes, terabytes, petabytes)•
• The number of rows in a database•
• The volume of daily transactions in a system•

Quality
Quality involves ensuring that data is accurate, consistent, and
reliable throughout its lifecycle. Data quality revolves around
accuracy, consistency, reliability, timeliness, completeness, secu‐
rity, documentation, and monitoring. Addressing these aspects
guarantees high-quality data for informed decision making and
analysis.

Here are some sample data quality metrics:

• Uniqueness: are there duplicate rows in your dataset?•
• Completeness: how many nulls exist? Are they expected?•
• Validity: is data consistently formatted? Does it exist in the•

proper range, e.g., greater than zero?

Methods
Monitoring implies the ability to see everything that’s happening
across your stack and detect errors in a timely fashion. Data quality
means implementing strict measures that improve the quality of the
observed data.

The following are patterns and techniques you can apply to directly
improve the quality of the data you’re monitoring, hopefully leading
to fewer errors and less downtime:

Logging and monitoring
The first step to debugging is to check the logs. But to check
logs, there have to be logs to check! Be sure that your systems
are logging data verbosely. For systems that you build, make
logging mandatory. Define and codify logging best practices,
including libraries and what to log. Not only must you be an
exceptional data plumber, but you also have to be a data lum‐
berjack, a term we deem much more flattering.
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Lineage
Simple in concept, lineage—the path traveled by data through
its lifecycle—is one of the most important ways to observe your
data. Having visual and code representations of your pipelines
and systems is important for everyday runs, and will save you
endless amounts of time in triaging and debugging issues.

For lineage to be useful, it needs to be both complete and
granular. Complete in the sense that all systems are observed,
including interconnectedness between systems. Ideally, your lin‐
eage will be at the most granular level possible. For tabular data,
that’s the column level. Column-level metadata gives the most
granular insight possible. It enhances a team’s ability to triage
errors, simplifies workflows, and improves productivity…and
the experience of working on data. As shown in Figure 4-1,
lineage exercises start with the column.

Figure 4-1. A first principles assessment of data origins reveals the
complexities of lineage

A good start is implementing systems with self-contained line‐
age solutions. A more complete lineage system might observe
all of your data processes. Managed platforms are good for this,
since they’re generally self-contained. Other tools, like Monte
Carlo, might provide insight into the entire stack.

Anomaly detection
The trickiest thing about data is that you can’t see it all. Most of
our errors arise from stakeholders or analysts returning unex‐
pected results, which begs the question, “What gremlins are
alive in my data today?”
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Anomaly detection is one way to know that, within some
threshold, anomalous data does not exist. Anomaly detection
systems work through basic statistical forecasts to analyze time-
series data and return data that lies outside some confidence
interval.

Anomaly detection can be a great way to catch errors that might
originate outside your systems—for example, a payments pro‐
cessing team introducing a bug that underreports purchases in
Europe. No alarms will sound, but an anomaly detection system
pointed at the right table will catch the bug.

Data diffs
Data engineering contains an additional dimension software
engineering does not: data quality. Changing code changes out‐
puts in ways that can be difficult to understand. What’s the
trickiest thing about data?

Data diffs are systems that report on the data changes presented
by changes in code. These tools will inform row and column
changes, primary key counts, and more specific effects. Their
primary purpose is to be sure accurate systems stay accurate.

For data diffing solutions, we recommend tools like Datafold.
Newer SQL orchestrators, like SQLMesh, also have data diffing
functionality. Data diffing is tied closely to CI/CD and is accen‐
ted nicely by assertions and tests. We’ll discuss all of the above
shortly.

Assertions
Assertions are constraints put on data outputs to validate source
data. Different from anomaly detection, assertions are much
simpler. For instance, you might say, “Assert that users.purcha‐
ses only contains prices in the plans.pricing table.” If a value that
does not exist in pricing appears in purchases, you know either
(a) a new price was introduced or (b) there’s an error in your
system.

While manual in nature (assertions require some business con‐
text and understanding of what should be), assertions are one of
the few ways that we can be entirely confident data is not erro‐
neous (in the way we specify, at least). For assertion solutions,
check out libraries like Great Expectations or look for systems
that have the built-in ability to define assertions.
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Errors
Now that we’ve discussed observation and preventing errors, we
come to the simple truth. Regardless of how robust your solution
is, there will still be errors! Thus, error handling becomes incredibly
important, both for your sanity and that of your team.

Separate from handling errors is recovering from their effects,
whether that be lost data or downtime. An important part of recov‐
ery is retrospectives, postmortems, and reflections on how to pre‐
vent similar errors in the future.

Error Handling
Error handling is how we automate error responses or boundary
conditions to either keep our data systems functioning or alert our
team in a timely and discreet manner. The following approaches
detail some methods for processing errors gracefully and efficiently:

Conditional logic
When building your data pipelines, conditional logic can be
useful for unreliable or inconsistent sources. The ability to say
“If X then A, else if Y then B” adds a powerful component
to your orchestration and transformation tooling. Seek out solu‐
tions that allow conditional logic.

Retry mechanisms
Systems, even well-built ones, fail. Unforeseen errors can cause
one-off API timeouts or other oddities. For that reason, even
well-functioning code can produce errors. Retry logic is impor‐
tant in any orchestration tooling. Of course, for these to work,
sensible retry settings must be configured. Be sure to incorpo‐
rate a retry strategy that can handle data oddities or nuances but
that isn’t wasteful and doesn’t result in endless runs.

Pipeline decomposition
We previously mentioned the concept of modularity in Chap‐
ter 3, but breaking pipelines down into “microservices” is an
effective way to keep the impact of errors contained. Consider
building DAGs and systems that only require absolutely neces‐
sary tables and connections.

68 | Chapter 4: Pipeline Issues and Troubleshooting



Graceful degradation and error isolation
Error isolation is enabled through pipeline decomposition—
whenever possible, systems should be designed to fail in a con‐
tained manner. You wouldn’t, for example, want your product
usage data to live upstream of a financial reporting pipeline, or
else an unrelated failure might have your CFO returning late
metrics to the board, a situation that will end well for precisely
no one.

Graceful degradation is the ability to maintain limited function‐
ality even when a part of the system fails. By isolating errors
and decomposing pipelines, we’re effectively enabling graceful
degradation. You might experience an error that only one part
of the business notices because the rest of your systems work so
well. Trust us, this is far better than errors that everyone notices.

Alerting
Alerting should stand as a last line of defense—receiving alerts
is necessarily reactive. We see that something bad has happened
and drop everything to fix it. While proactive resolution of
common errors is best, the unexpected will prevail eventually.
Alerts might come in the form of an email or Slack message—
we prefer Slack, since it’s highly visible and team members can
add comments with helpful context.

When alerting, be cognizant of alert fatigue. Alert fatigue refers
to an overwhelming number of notifications diminishing the
importance of future alerts. Isolating errors and building sys‐
tems that degrade gracefully, along with thoughtful notifica‐
tions, can be powerful mechanisms for reducing alarm fatigue
and creating a good developer experience for your team.

Recovery
So we now have insight into our systems, we’re actively enforcing
quality constraints, and we have dedicated methods for handling
errors. The final piece is building systems for recovering from disas‐
ters, which might include lost data. The following are a few methods
and concepts that will help you bounce back after the inevitable
failure:
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Staging
We’ve mentioned staging quite a bit thus far, but an additional
benefit of staged data is disaster recovery. With Parquet-based
formats like Delta Lake and patterns like the medallion architec‐
ture, time travel makes it possible to restore data (up to a certain
point). While staged data should be treated as ephemeral, it’s an
important pattern for redundancy.

Backfilling
It’s likely that you’ll either (a) want data from some period
before you began running your pipeline or (b) have lost data
that needs to be backfilled. Backfilling is the practice of simulat‐
ing historical runs of a pipeline to create a complete dataset. For
example, Airflow has a backfill command that runs a pipeline
for every date between two dates.

When building systems, keep backfills in mind. Systems that are
easy to backfill will save you quite a bit of time when something
breaks. Seek out tools that support simple backfills, as backfill
logic is something that can get very complex, very quickly.
Idempotent pipelines will also make your life easier. Check your
orchestrator of choice for backfill functionality out of the box.

Improving Workflows
As much as we wish improving processes were entirely within
our control, it’s not. Our job is inherently collaborative—proverbial
“plumbers,” we give stakeholders pipelines for internal and external
data. This makes our job inherently collaborative.

We’ve mentioned it briefly, but data engineering is truly a question
of when things break, not if. Even in the best systems, anomalies
arise, mistakes happen, and things fall apart. The Titanic is a lesson
for a reason, right?

The deciding factor becomes your ability to adapt and resolve
issues…and that’s the point of this chapter! Starting with systems
that prioritize troubleshooting, adaptability, and recovery is a great
way to reduce headaches down the line. In this section, we’ll provide
a few ways for you to continually improve your processes.
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Start with Relationships
Consider the following example: semi-regularly, your software team
changes a production schema without warning. This not only breaks
your daily ETL job from the prod dataset, it also runs the risk of
losing data, since your export method lacks CDC.

Understandably, this leaves your team pretty frustrated. Not only
are you losing time and resources by fixing these issues, but they
seem entirely avoidable. Before reacting harshly, ask yourself the
question, “Is the software team trying to reduce overall productivity
and invoke worse outcomes?” If the answer is yes, we recommend a
job search, but in 99.999% of cases the answer will be “No, of course
not.”

In fact, if you ask yourself exactly what that team is trying to do, it’s
probably the same thing you are—do the best work possible given
your resources. Great, now you have empathy for their motivations.

Next is to understand their workflows and communicate your frus‐
trations. From there, you can begin to craft a process to improve
efficiency. Here are some ways you can ensure healthy relationships
through a structured, pragmatic approach:

SLAs
Service-level agreements (SLAs) are common in the provider
space for runtime and uptime guarantees, but they can be used
just as effectively within and between teams. If you’re struggling
with data quality, consider an SLA that formally defines things
like performance metrics, responsibilities, response and resolution
times, and escalation procedures so that everyone has a clear
understanding of what’s required for incoming data.

By communicating requirements clearly and assigning owner‐
ship, SLAs can be a surprisingly effective way to improve the
quality of data that’s outside of your control, just by writing a
few agreements down on paper.

Data contracts
Data contracts have gained traction in the past few years as
an effective way to govern data ingested from external sources.
Popularized by dbt, contracts are a type of assertion that check
for metadata (usually column names and types) before execut‐
ing part or all of an ETL pipeline.
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1 This section is adapted from a Monte Carlo guide by Barr Moses, “12 Data Quality
Metrics That ACTUALLY Matter”.

We like the term “contract” because it implies an agreement
between two parties, like an SLA. We recommend first defining
an SLA, even if it’s simply a back-of-the-envelope agreement,
then implementing that SLA in the form of data contracts on
external assets. If (when) a contract returns an error, the SLA
will dictate exactly whose responsibility it is to resolve that error
and how quickly it should be expected.

APIs
APIs can be a more formal method of enforcing contracts and
SLAs. In a sense, SQL is itself an API, but there is no reason
internal data can’t be fetched (or provided) via an API. APIs
are just a method of transmitting an expected set of data,
but, implemented correctly, they provide an additional layer of
standardization and consistency to the source. APIs also come
with more granular access control, scalability benefits, and ver‐
sioning, which can be useful for compliance.

Compassion and empathy
You might be used to these terms appearing in texts where
dbt is capitalized and refers to something other than a transfor‐
mation tool, but they’re just as important in engineering as in
psychology. Understanding your coworkers (and partners) and
their motivations, pain points, and workflows will allow you
to effectively communicate your concerns and appeal to their
incentives.

In this digital age, it’s far too easy to take an adversarial
approach or assume ill intent, especially from vague video
meetings and terse snippets of text. We advocate going the
extra mile to understand your coworkers, whether through
one-to-ones, long-form written communication, or in-person
meetings, where possible.

Align Incentives
To foster meaningful progress, we need to align incentives and
outcomes.1 If your team’s only mandate is to “build lots of stuff,”
little time will be spent on making that stuff resilient and robust.
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Setting key performance indicators (KPIs) around common incident
management metrics can help justify the time and energy it takes to
do the job right:

Number of incidents (N)
Counting the number of incidents over some timeframe will
provide you with a window into the frequency of incorrect,
incomplete, or missing data.

Time to detection (TTD)
TTD describes the average time it takes for an incident to be
detected.

Time to resolution (TTR)
This metric gauges the swiftness with which your systems can
resume normal operations after a disruption. It’s a direct mea‐
sure of your system’s resilience and recovery capabilities.

Data downtime (N × [TTD + TTR])
Using the above three metrics, we can arrive at an average “data
downtime.” This summary metric can help you understand the
severity of your outages and health of your systems.

Cost
From downtime, you can calculate the cost of these failures.
Cost is highly specific to your team and organization. We rec‐
ommend a bespoke cost calculation, factoring in the specifics of
your deployment.

Improve Outcomes
Thomas Edison’s famous quote, “I’ve not failed, I’ve just found
10,000 ways that don’t work,” aptly applies to the process of building
exceptional data pipelines and the frameworks that support them.
The journey toward excellence in this field is marked by a series
of educated guesses, experiments, and, crucially, the ability to adapt
and correct course when faced with challenges.

If you’ve followed along thus far, you know great systems are built
on great frameworks. Here are a few ways to iterate and improve
your processes in the wake of failures and adjust your good pipe‐
lines to make them great:
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Documentation
If your data is staged and backfill-able, the only thing left is to
know how to fix it! Be tedious and pedantic when it comes
to documenting your systems processes and code. While it
might feel like a chore, we can guarantee it will be less time-
consuming (and stressful!) then trying to reengineer your code
during a failure.

Postmortems
In any large event or outage, a postmortem can be valuable for
analyzing the failure. A postmortem involves reflecting on what
went wrong and performing an analysis to understand why.
Postmortems, and reflection in general, are excellent ways to
learn, educate, and grow. Ideally, your postmortems will lead to
fewer events that require recovery in the first place.

Unit tests
Unit testing is the process of validating small pieces of code
(the components of a system) to ensure they produce results
as expected. Like any other engineering system, code in a data
engineering system should be unit tested. That means any cus‐
tom code or bespoke systems you create should have tests to
ensure they’re producing desired results.

These are specifically different from assertions, since unit tests
check the underlying code rather than the output data. Building
unit tests into your code is an excellent preventative practice to
minimize future errors.

While many platforms are slowly adopting unit tests/assertions,
there are a surprising number of data teams operating without
them. We advocate their adoption in every data system.

CI/CD
Continuous integration/continuous deployment (CI/CD) is a
term that refers to how you integrate and deploy your code—
that is, how changes (like pull requests) are assimilated, tested,
and rolled out to your code base.
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In practice, CI/CD for data engineering might include any
number of things we’ve already discussed and a few things we
haven’t. Unit tests, assertions, linting, and data diffs will ensure
a consistent code base that functions well and allows you to
seamlessly collaborate with others to build something awesome
(at scale).

Simplification and abstraction
More of a design pattern than a tool, as an engineer, you should
seek to simplify and abstract as much complex logic out of your
code as possible. This not only makes it easier to collaborate,
but it also reduces the likelihood that you will introduce errors.

When you’re writing a piece of code, think to yourself, “If I
don’t look at this for six months, how difficult will it be for
me to understand it?” If something breaks in six months, you’ll
likely be looking at it under some form of pressure, so keep that
in mind.

Data systems as code
Data diffs hit on a concept that we’ve yet to discuss—building
data systems as code. By versioning and codifying every system,
it becomes possible to roll back changes and revert to previous
states. In a sense, staging systems with a medallion architecture
let us do something similar with time travel.

Building your data systems with software engineering best prac‐
tices and implementing logic as version-controlled code will
drastically improve your observability, disaster recovery, and
collaboration. Be wary of any tooling that is difficult or impossi‐
ble to version control or otherwise manipulate through code,
even if only JSON or YAML configs.

With responsibilities defined, incentives aligned, and a full monitor‐
ing/troubleshooting toolkit under your belt, you’re ready to begin
automating and optimizing your data workflows. Recognizing that
some tasks cannot be automated and edge cases will always exist,
the art of data engineering is balancing automation and practicality.
Now, with robust, resilient systems, we’re ready to scale.
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CHAPTER 5

Efficiency and Scalability

In this final chapter, we focus on the crucial aspects of optimizing
and scaling the data pipelines we’ve developed. We start by defining
what we mean by “efficiency” and “scalability” to set the boundaries
for our discussion.

Our journey begins with resource allocation, which hinges on
a thorough understanding of our operational environment. This
understanding enables us to optimize our processes effectively.

The chapter culminates with a dual-focused discussion. First, we
explore the process of collaboration, particularly how to scale effec‐
tively in terms of team size and skill set. Second, we delve into
creating an optimal developer experience, a key factor in efficient
data pipeline management.

Throughout the chapter, we weave in ongoing themes such as tool‐
ing and platform considerations, the pros and cons of managed ver‐
sus custom-built solutions, and architectural strategies for crafting
superior ETL systems. These discussions aim to provide a compre‐
hensive view of building and maintaining efficient, scalable data
systems.
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Efficiency and Scalability Defined
Efficiency is about optimizing workflows to deliver business value
through data. It measures our ability to generate impactful outputs
with the resources at our disposal, encompassing aspects of code,
services, and teamwork. The ultimate measure of efficiency is the
impact produced relative to the finite resources used.

Scalability refers to the capability of a system, network, or process
to handle a growing amount of work, or its potential to be enlarged
to accommodate that growth. In the context of data transformation,
it’s about the ability of data processing systems to handle increasing
volumes of data and more complex transformation tasks without
compromising performance or efficiency.

Imagine a data transformation system that initially handles data
from a small ecommerce website. As the business grows, so does its
data—from thousands to millions of customers, transactions, and
product interactions. Scalability in this context means the system
can expand its data processing capabilities to manage this growth.

Data teams frequently encounter trade-offs between price and per‐
formance when scaling data transformation systems. Higher perfor‐
mance often comes with higher costs—be it through more powerful
compute, sophisticated solutions, or expanded cloud storage.

In data, as in life, balance is key. Though it’s easier said than done,
our goal is to find solutions that provide just the right amount of
performance at a sustainable price. Usage-based pricing, for exam‐
ple, can be a great way to start assessing services, though it typically
is eclipsed by subscription or flat pricing at some point. Data teams
must evaluate the cost-effectiveness of scaling decisions, ensuring
they’re getting the optimal performance for their investment and
not overspending for unnecessary capacity.

So how do we balance efficiency, scalability, and cost-effectiveness?

As we discussed in Chapter 4, setting clear metrics around data
quality, freshness, and volume is crucial. These metrics can justify
investments in optimization or increased computing resources. For
example, if your team needs to deliver data hourly but the current
system is too slow or expensive, these metrics make it easier to argue
for optimization or budget adjustments.
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Metrics around efficiency and scalability can be useful too. Here are
a few examples of key results (KRs) around efficiency/scalability:

• Increase average throughput speed by 25%•
• Maintain a latency of <200 ms in streaming jobs•
• Reduce data storage costs by 15%•
• Increase spot instance usage by 30% without degrading•

performance

KRs can be obtained by setting KPIs that correlate with their
outcomes:

Processing time
The time taken to process a given volume of data

Throughput
The amount of data processed in a given timeframe

System uptime
The percentage of time a system is available and operational

Error rate
The frequency of errors in your data pipelines

Aligning team OKRs and KPIs with stakeholder expectations
ensures that resources are appropriately allocated to scalability and
optimization efforts.

Understanding the tools and resources at your disposal, which we’ll
discuss in this chapter, along with constraints like data freshness or
quality, allows you to fine-tune your workflows for optimal perfor‐
mance and cost.

Understand Your Environment
Scale in data engineering is fundamentally rooted in architecture.
Establishing the right framework and foundations is crucial for
effective scalability. While data advancements have made it easier
to start building, this ease also brings the risk of creating systems
that function initially but become maintenance burdens or struggle
to scale.

Understand Your Environment | 79



As the adage goes, hindsight is 20/20, and every implementation
will inevitably lead to lessons learned and opportunities for optimi‐
zation. The key to successful scaling is a deep understanding of your
environment, enabling the construction of a robust and enduring
foundation for your data systems.

Frameworks
Optimizing a system begins with a thorough understanding of it.
Thus, before we dive into allocating resources, improving efficiency,
and optimizing workflows, we have to understand the framework
we’re operating on.

The better you comprehend execution mechanics, the more effec‐
tively you can optimize your tasks. If you’re using Pandas in Spark,
for example, spend time reading up on best practices; the docs
are always a good place to start. If you’re running SQL against
BigQuery, understand query plans and execution order. Once again,
docs can be your savior.

Other fundamental concepts for scalability to consider include:
distinguishing between OLAP and OLTP databases, comprehend‐
ing Spark’s logical and physical plans, differentiating between spot
and on-demand instances, and understanding how your chosen
distributed compute system—be it Databricks, Kubernetes, or even
AWS Lambda—allocates resources and scales.

Resource Allocation
With a robust architectural foundation in place, the scalability of
your data systems significantly hinges on effective resource alloca‐
tion. Having the right tools is only part of the equation; it’s how you
utilize them that truly counts. The key is to leverage strengths in
the most appropriate context. So, what factors should we consider in
resource allocation? The next sections discuss some critical aspects
to keep in mind.

Parallelization and concurrency
If you’re not utilizing a fully managed, serverless platform for your
data workflows (which is a feasible option), you will generally have
a degree of control over how your ETL pipelines are executed. In
the current landscape, distributed computing, which harnesses the
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power of clusters and nodes, is predominantly conducted on shared,
virtual machines located in data centers around the world.

Your setup might involve a self-hosted execution environment,
such as Kubernetes, or a shared one, like Databricks. Each option
presents its own set of considerations in terms of resource alloca‐
tion, scalability, and maintenance.

Clusters
When managing ETL workflows, an important decision you’ll face
involves the configuration of clusters. Clusters are collections of
servers working together as a unified system, with each server
referred to as a “node.” These nodes are responsible for executing
and monitoring your workflows.

Clusters can be all-purpose or job-specific; that is, they can be used
for ad hoc queries and general analysis or specific tasks in your
data pipelines. The process of configuring clusters involves decisions
about the number and types of nodes. These choices will affect key
factors like memory and processing power, directly influencing the
compute capacity and associated costs.

A nuanced understanding of cluster configuration allows for the
customization of your workflows to various setups, or even the
automation of scaling and configuration. This enables you to strike
an optimal balance between cost efficiency and performance. In
the coming paragraphs, we’ll explore some effective techniques for
managing clustered execution.

Spot versus on-demand cluster instances
Spot instances offer a cost-efficient solution, typically priced signif‐
icantly lower than on-demand instances, making them a practical
choice for budget-sensitive projects. They are particularly effective
for tasks that can accommodate flexibility and tolerate interruptions,
such as batch processing or data analyses that don’t necessitate
immediate results. However, their availability is variable, reliant on
market demand, and providers can reclaim them with little warning,
potentially disrupting ongoing tasks.

In contrast, on-demand instances guarantee continuous service,
offering reliability and consistent performance. They are ideally
suited for tasks that are critical to operations and require real-time
processing, where consistent availability is crucial. However, this
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level of reliability and consistency comes at a higher cost compared
with spot instances.

The decision to use spot or on-demand instances should be based
on the specific needs of each task. This includes considering factors
such as the importance of cost efficiency and the ability to handle
potential disruptions with spot instances, against the need for stabil‐
ity and uninterrupted performance with on-demand instances.

Pooling
Pools are utilized in data engineering to avoid the costly process
of repeatedly creating and destroying resources. Specifically, a pool
refers to a group of clusters that are kept idle and ready to use.

Opting for a platform or system that supports the use of pools can
significantly enhance the cost efficiency of your solutions. By having
clusters readily available, pools can reduce the time it takes to start
clusters and auto-scale them.

For instance, when working with Spark on a managed platform, uti‐
lizing a feature like Databricks pools can be a cost-effective strategy.
Incorporating spot instances into these pools can further decrease
expenses. Figure 5-1 demonstrates how Databricks pools can be
used to effectively reduce costs.

At the same time, employing on-demand instances for tasks that
require quicker execution times or have stringent requirements can
enhance performance speed. This approach allows for a balanced
use of resources, optimizing both cost and efficiency in your data
engineering workflows.
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Figure 5-1. Databricks pools can be used to reduce price without
sacrificing performance

Cluster sharing
Shared clusters offer a cost-effective approach to resource allocation
in data engineering. By enabling multiple users to attach to and exe‐
cute their workloads concurrently on the same compute resource,
shared clusters lead to notable cost savings. They simplify the man‐
agement of clusters and facilitate comprehensive data governance,
including precise access control measures. Despite the implication
of the term “shared,” these clusters provide a secure method of
reducing costs through efficient resource utilization.
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Autoscaling
There are two types of scaling. Horizontal scaling refers to increas‐
ing the number of nodes or machines upon which a task is exe‐
cuted; vertical scaling means increasing the size or power of existing
resources. For instance, if a database is running low on storage,
you can vertically scale it by increasing its storage capacity. Alter‐
natively, to improve the performance of a large, resource-intensive
job, you might opt for horizontal scaling by adding more machines.
Figure 5-2 provides a visual representation.

Figure 5-2. Vertical versus horizontal scaling—both have an appropri‐
ate time and place

Autoscaling encompasses the tools and techniques that automati‐
cally adjust your resources to suit fluctuating workloads. A classic
example is U.S. retail websites on Black Friday, when there is a
significant spike in web traffic. Maintaining high-level compute
resources throughout the year would be prohibitively expensive.
Instead, autoscaling can be employed to efficiently handle these
traffic surges, even when they’re unexpected.

Nowadays, an increasing number of cloud services offer autoscal‐
ing features, ranging from data warehouses to Spark executors.
Autoscaling as a managed service can save significant time and
resources, reducing the burden of DevOps tasks. However, this con‐
venience comes with a cost, and the degree to which you utilize
managed autoscaling services should be based on your team’s spe‐
cific needs and stage of development.

Serverless
Serverless computing is a model where backend services are pro‐
vided based on actual usage rather than a predetermined allocation
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of resources. While servers are still integral to this model, the dis‐
tinctive aspect is the pricing structure: companies using serverless
computing services are billed based on their usage, not on a fixed
bandwidth or a set number of servers.

Serverless solutions, exemplified by BigQuery and Databricks SQL,
offer the ability to autoscale according to fluctuating workloads.
This adaptability significantly reduces—or, in some cases, elimi‐
nates—the necessity for meticulous tuning of resources. While
serverless compute often has a bespoke pricing structure, the elim‐
ination of certain maintenance makes it an attractive option for
many.

Data Processing Techniques
Regardless of how your resources are allocated, you’ll still need
to process data for optimal efficiency. Here are some concepts to
consider when you’re building out your pipelines, whether that’s in a
warehouse or a data lake.

Incremental processing
Processing entire datasets can become prohibitively expensive, espe‐
cially as the volume of data increases. While truncate and reload is
a straightforward approach, it reaches a point of being unfeasible or
excessively costly at scale. Incremental processing, which involves
adding only new data (INSERT) or updating existing data while
inserting new ones (UPSERT), presents a more scalable alternative.
Incremental processing logic can get complex quickly—we recom‐
mend seeking out tooling with prebuilt patterns for incremental
processing, like dbt incremental models, change data capture, or
Databricks MERGE.

Column-oriented data stores
For data and analytics, column-oriented formats and databases offer
substantial performance enhancements. Since data analysis often
involves reading by column, storing data in a columnar format is
inherently more efficient. In contrast, traditional OLTP databases
like Postgres are row-oriented, which suits scenarios where data
is frequently written or read one row at a time, as in production
environments.
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Today, column-oriented stores are preferred by data and analytics
teams. To achieve optimal analytic performance, consider utilizing
data formats such as Parquet and Avro and databases like BigQuery
and DuckDB. See Figure 5-3 for a visualization of the two data
stores.

Figure 5-3. Row- and column-oriented databases play pivotal roles in
data and app development but have vastly different use cases

When these columnar storage methods are combined with par‐
titioning (or another way of segmenting data), they create an
exceptionally powerful and efficient pattern for data handling. Data‐
bases like Databricks SQL are built directly on Parquet-based for‐
mats (Delta Lake), unlocking cost optimizations and performance
enhancements, like liquid clustering.

Data partitioning
The act of “partitioning” data simply means breaking it up into
parts. Partitioning is highly important for read/write performance
and should not be overlooked. Using formats like Parquet and libra‐
ries like PyArrow, partitioning data can be simple.

The effectiveness of partitioning becomes particularly pronounced
with columnar datasets. Let’s take a common scenario—a dataset
containing 100 days of data across 10 columns. Consider the query:

SELECT user_id FROM data WHERE date = '2024-01-01'

In an unpartitioned, row-based dataset, this query would scan every
row and column, resulting in slow execution times and increased
compute costs.
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However, in a column-oriented database partitioned by date, the
query efficiently processes only the necessary data. If we assume an
equal distribution of data across days, accessing data from one col‐
umn for one day in a partitioned columnar database is one thousand
times more efficient. That might not make much of a difference
in one query, but stack that up over hundreds of dashboards, quer‐
ies, and pipelines and you can quickly reap benefits. Figure 5-4
provides an illustration of how partitioning works to split datasets
and improve performance.

Figure 5-4. Partitioning data improves both query performance and
storage efficiency

Managed services, which eliminate the need for creating and main‐
taining partitions, are also worth exploring. Partitioning can be a
difficult process that requires domain knowledge and thoughtful
engineering to create and maintain. Systems that automatically par‐
tition, order, and optimize datasets may very well be worth their
cost.

Materialization
Materialization refers to the creation of physical data stores, namely
tables. This term might be a bit misleading in the digital age, as
“physical” is more conceptual than literal. Modern databases often
support “views,” which are essentially virtual representations of data
derived from specific queries. For instance, you could execute a
query like SELECT * FROM users WHERE status = 'active' and
define this as a view, active_users. This view then functions as if it
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were a table, providing a convenient way to access analytics-ready
datasets that need minimal transformation from the source data.

An “external view” refers to a view created on data stored exter‐
nally—for example, in a data lake. A growing trend involves storing
semi-structured data in a data lake and querying it directly as an
external view. This approach represents a “shift right” in data engi‐
neering, where the bulk of data transformation is moved to the
data warehouse. It allows analysts and other stakeholders to interact
directly with semi-structured data, streamlining the process.

When planning data transformations, it is crucial to carefully con‐
sider whether to use tables, views, or materialized views, as each has
its own implications and benefits in the architecture of data systems.

Process Efficiency
It’s essential to have a functioning prototype or production solution
in place. Once you have a working system, observability becomes
key. This means having the ability to monitor and measure the
performance of your solution. Questions to consider include: How
well does the solution manage resources? Are there any bottlenecks?
What occurs post-execution?

It’s crucial to reassess your initial assumptions and decisions once
you’ve obtained insights from observing your system in action.
Engineering, by nature, involves continuous learning and adapting
based on new insights that weren’t apparent during the planning
phase. Optimization is an ongoing process, a constant cycle of
reevaluating requirements, seeking simplification, and exploring
automation.

Data (Engineering) Democratization
Data democratization refers to making data-driven decision mak‐
ing accessible across an entire organization, beyond just the data
team. Commonly associated with analytics, it often entails providing
self-service analytics tools that enable stakeholders to explore data
independently, without relying on an analytics team.

For data engineering teams, data democratization involves creating
systems and frameworks that simplify resource creation and ETL
job development. Here’s an example:
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A stakeholder needs to enrich data with a new custom API data
source (absent from a connector, like Fivetran). The analytics team
comes to you asking for an ETL job to pull from the data source,
write to a stage table, and ingest into your data warehouse.

Now, many I’ve worked with would say, “Sure, we can fit that in
five sprints from now.” That’s a lose-lose from the business perspec‐
tive: it adds to the data engineering backlog and delays important
supplemental data. Five sprints and two months later, the company
has rolled out new KPIs, the initiative has been relegated, and the
pipeline sits unused. When so far divorced from the user (our stake‐
holders!), EOD turns into “end of December,” and things become
much less efficient.

Democratizing data engineering means building systems and plat‐
forms that are self-service. The goal of these systems is to enable
analysts or other stakeholders to do most of the legwork, unblocked
for work they need. Building a system follows this process:

1. Identifying common requests or patterns that data engineers1.
frequently encounter

2. Assessing the necessity of these requests2.
3. Simplifying the process as much as possible3.
4. Exploring SaaS offerings or custom solutions usable by less4.

technical users
5. Continuously simplifying and optimizing5.
6. Reaping the benefits6.

Such systems might still require code reviews or pull requests,
but they should largely operate autonomously. This could involve
setting up a repository where analysts submit SQL and YAML to
automatically generate an Airflow job, or employing hybrid GUI/
code solutions for interactive pipeline development.

Tools facilitating this approach are becoming increasingly prevalent.
The ability of data teams to implement such systems is emerging as
a key differentiator between teams that effectively scale and those
bogged down with endless requests—the differentiator between a
team that scales and one whose JIRA board is filled well into the
next year.
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1 Noda, A., et al. 2022. “DevEx: What Actually Drives Productivity? The developer-
centric approach to measuring and improving productivity.” In Proceedings of the 2022
ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE) (pp. 32–47).
ACM. https://dl.acm.org/doi/10.1145/3610285.

Data democratization represents a unique aspect of scalability.
It alleviates bottlenecks in data teams by enabling self-service,
whether through low-code, no-code, or custom in-house platforms.
Without self-service capabilities, data teams risk being perpetually
overwhelmed by ad hoc requests.

Developer Experience
Efficiency and scalability in ETL systems focus on optimizing
and scaling code workflows, but for the data engineering teams
behind these systems, it’s about enhancing the developer experience
(DevEx). Noda et al. define the “core dimensions” of DevEx as flow
state, feedback loops, and cognitive load,1 represented in Figure 5-5.

Figure 5-5. The developer experience can be broken down into three
main areas: flow state, feedback loops, and cognitive load

Feedback loops
Feedback loops can be defined as the speed and quality of
responses to actions. Consider the process of developing a DAG
in Airflow. Can you develop locally with ease? When you make
a change, can you immediately see how that change affects your
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system? Your data? We believe data engineers should target a
“frontend DevEx.” Frontend engineers can code in one window
and see real-time changes in another, then deploy changes with
a few simple commands. How can you build your systems to
produce a similar local DevEx?

Cognitive load
Cognitive load is the amount of mental processing required
for a task. How hard is it to configure your local development
environment? To create a new dbt model? To understand the
existing tables, infrastructure, and metadata in your environ‐
ment? Are you commonly switching between seven tools to do
your job? As engineers, we should seek to simplify and thus
minimize the cognitive load to development. Invest in systems
that make configuration and building as simple as possible so
you can focus on impactful work.

Flow state
Flow is the mental state of immersion, with feelings of focus,
involvement, and enjoyment. Everyone has heard of flow state,
and it’s what we’re all after. How do we get there? Doing mean‐
ingful, impactful work with short feedback loops and a low
cognitive load. The first component is largely driven by interest,
so we can’t help you there, but tuning your systems to promote
swift development in a low-stress environment will help you
find flow.

Collaboration
Our last section is about collaborating. Big surprise—you’ll get more
done with others than you will by yourself! In the world of data
engineering, this means striving to create solutions that are not only
effective but also easy for others to understand, extend, and engage
with:

Infrastructure as code
Every piece of your infrastructure should exist as version-
controlled, testable code. This will allow you to leverage tech‐
nologies like Git and providers like GitHub to build with the
rigor of an engineer. Yes, you’ll likely find yourself combing
through Stack Overflow for “that one Git command” that you
forgot, but it will be much better than breaking something and
having to rebuild it entirely.
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This is especially important with GUI-based low-/no-code tools.
Don’t completely write them off, but be sure that your solutions
at least have a versioned configuration file and some way to
back up/restore settings. The last thing you want is a tool
that requires 10 clicks to rebuild a pipeline. The first time you
experience a failure, the nightmare of rebuilding those one hun‐
dred pipelines will not be fun.

Documentation and knowledge sharing
Documentation is often looked at as a chore, but there’s an
art to communicating and authoring effective wikis. Anything
and everything you do should be documented and saved off for
posterity (and yourself). Let us save you the trouble; it can be a
nightmare to try to remember that thing you built last year or to
try to dig into someone else’s code without any resources. Docu‐
ment the code you write. Document the data. It’s guaranteed to
be worth the effort.

Conclusion
Efficiency and scalability in data engineering extend far beyond
the realm of constructing the quickest and highest-performing pipe‐
lines. They encompass a broader understanding of resource limi‐
tations, which we all inevitably face, as well as the vital roles of
collaboration and the necessity of making trade-offs.

While technical expertise in coding and implementation of efficient
algorithms and data structures is crucial, the softer skills are equally
important. Effective communication, thorough documentation, and
adept team management are all integral components of a successful
data engineering practice. Our aim with this chapter, and indeed
with the entire guide, is to equip you with a comprehensive skill
set that enables you to scale your data pipelines effectively and
quickly—to quote a similarly ambitious fictional astronaut—“to
infinity and beyond.”
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Conclusion

Thank you for engaging with our technical guide, Understanding
ETL. In this journey, we’ve explored the intricacies of data ingestion,
delved deep into the nuances of data transformation, and unraveled
the complexities of ETL undercurrents: orchestration, troubleshoot‐
ing, and scalability. Along the way, we’ve also shed light on the
evolving landscape of data engineering, focusing on enduring meth‐
odologies for crafting clean and reliable datasets.

While we’ve aimed to cover concepts with lasting relevance, it’s
important to recognize that the field of data engineering is likely to
evolve significantly in the coming years. However, the fundamental
process of ETL—extracting data from a source, transforming it,
and loading it into a target—is expected to remain a cornerstone,
regardless of future technological advancements or changes in the
methods of building ETL systems.

This guide has provided a foundational overview of data engineer‐
ing, intending to help you identify and fill gaps in your knowledge.
The landscape of data can be vast and complex, but understanding
the key components and the bigger picture is crucial in navigating it
effectively.

Beyond the technical aspects, we’ve woven in themes like solution
architecture and enhancing the developer experience, both of which
are pivotal in data engineering and beyond. Emphasizing the impor‐
tance of understanding your coworkers, users, and the challenges
they face will not only make you a more proficient engineer but also
lead to more precise and effective solutions. Adopting a philosophy
of relentless simplification and measured decision making can be
transformative in your work.
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Finally, we encourage you to actively participate in the wider data
community. Whether it’s contributing to open source projects,
attending conferences, writing articles, or sharing insights on social
media, your involvement can be immensely fulfilling. Engaging with
the community not only fosters personal growth and learning but
also contributes to the collective advancement of data engineering
practices. Good luck—we hope to see you out there!
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