
Blink Twice - Automatic Workload Pinning and Regression
Detection for Versionless Apache Spark using Retries.

Justin Breese
Vijayan Prabhakaran

Martin Grund
Stefania Leone
Amit Shukla
Databricks

San Francisco, CA, USA

Michael Armbrust
Reynold Xin
Matei Zaharia
Lennart Kats
Sung Chiu

Tatiana Romanova
Databricks

San Francisco, CA, USA

Philip Nord
Mitchell Webster
Chris Munson

Bo Pang
David Ma
Databricks

San Francisco, CA, USA

Abstract
For many users of Apache Spark, managing Spark version upgrades
is a significant interruption that typically involves a time-intensive
code migration. This is mainly because in Spark, there is no clear
separation between the application code and the engine code, mak-
ing it hard to manage them independently (dependency clashes,
use of internal APIs). In Databricks’ Serverless Spark offering, we
introduced Versionless Spark where we leverage Spark Connect to
fully decouple the client application from the Spark engine which
allows us to seamlessly upgrade Spark engine versions. In this
paper, we show how our infrastructure built around Spark Con-
nect automatically upgrades and remediates failures in automated
Spark workloads without any interruption. Using Versionless Spark,
Databricks users’ Spark workloads run indefinitely, and always on
the latest version based on a fully managed experience while re-
taining nearly all of the programmability of Apache Spark.

CCS Concepts
• Computer systems organization → Distributed architec-
tures; Client-server architectures; Cloud computing.

Keywords
Big Data, Apache Spark, Upgrade, Versionless, Machine Learning,
Release Remediation, Pinning
ACM Reference Format:
Justin Breese, Vijayan Prabhakaran, Martin Grund, Stefania Leone, Amit
Shukla, Michael Armbrust, Reynold Xin, Matei Zaharia, Lennart Kats, Sung
Chiu, Tatiana Romanova, Philip Nord, Mitchell Webster, Chris Munson,
Bo Pang, and David Ma. 2025. Blink Twice - Automatic Workload Pinning
and Regression Detection for Versionless Apache Spark using Retries.. In
Companion of the 2025 International Conference on Management of Data
(SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3722212.3725084

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725084

1 Introduction
Today, upgrading Spark versions typically involves significant ef-
fort, with unclear investment requirements, including trial and error.
This is mainly because in Spark there is no clear separation between
the application code and the engine code. Apart from changes in
the public API, any Spark internal changes may affect user work-
loads as users may rely on Spark internals: bug fixes in the Spark
engine, changes to internal APIs, library upgrades, or language
upgrades may affect customer workloads. As a result, Spark users
are often reluctant to upgrade. The downside is that performance
improvements, bug fixes, and new features take significantly longer
to adopt, preventing customers from quickly benefiting from these
improvements. In addition, it increases engineering complexity to
manage a large number of different Apache Spark versions.

For Databricks serverless jobs and notebooks, we fundamentally
transformed and simplified the user experience when using Apache
Spark.We shifted user focus frommanaging Spark runtime versions
to managing the stable API that they integrate with - we created
client-versioned workloads with a versionless Spark server.

Decoupling the client from the Spark engine using Spark Con-
nect has enabled Databricks to automatically upgrade the Spark
server, providing users faster access to the latest features while
minimizing disruptions from both intentional and unintentional
breaking changes, all without compromising workload compatibil-
ity and with zero code changes needed from the user. This approach
also offers significant benefits to Databricks by streamlining the
release process, consolidating usage onto fewer server versions, and
reducing engineering overhead from needing to backport changes.

In this demonstration, we will first briefly introduce the architec-
tural foundation of versionless Spark, leveraging Databricks’ multi-
user Spark compute and Spark Connect, followed by describing in
more detail how we manage seamless upgrades for our customers,
and finally talk about what the user experience is.

2 Databricks Multi-User Apache Spark clusters
In Databricks, users run their workload on a standard, multi-user
Spark cluster. Standard clusters provide a fully-secure multi-user
capable environment that utilizes the power of Apache Spark, while
offering full user ioslation, namely, client isolation and user code
isolation. Client isolation is achieved using Spark Connect and user

https://orcid.org/0009-0007-8364-2592
https://orcid.org/0009-0004-7164-6965
https://orcid.org/0009-0001-1655-0133
https://orcid.org/0009-0004-1557-3378
https://orcid.org/0009-0002-9697-0468
https://orcid.org/0009-0007-5426-3681
https://orcid.org/0009-0002-5173-1578
https://orcid.org/0000-0002-7547-7204
https://orcid.org/0009-0000-3626-8744
https://orcid.org/0009-0000-2712-9814
https://orcid.org/0009-0007-9516-9106
https://orcid.org/0009-0007-8924-6590
https://orcid.org/0009-0005-4398-6265
https://orcid.org/0009-0003-1902-2699
https://orcid.org/0009-0006-0671-9878
https://orcid.org/0009-0000-8729-124X
https://doi.org/10.1145/3722212.3725084
https://doi.org/10.1145/3722212.3725084


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Justin Breese et al.

Figure 1: Fully Governed Multi-user Compute in Databricks
code isolation is achieved using Databricks’ proprietary container-
based sandboxing that is integrated with the Databricks cluster
manager, as outlined in Fig. 1

Standard clusters are used for scheduled and ad hoc job work-
loads. In contrast to other vendors, the multi-user capabilities of
standard clusters allow us to securely share the cluster between
many users and enforce all individual users’ permissions. All of the
data governance capabilities (dynamic views, row filters, column
masking) are directly enforced on standard clusters on top of the
coarse-grained object-level access control.

Databricks users can use SQL, Python, and Scala to develop
and schedule their workloads, making it the only system that is
able to have multi-user access to Spark across all of Spark’s main
programming languages.

In standard clusters, all Spark client applications run fully iso-
lated and sandboxed on the driver and user code runs isolated and
sandboxed on the executors. Users who attach and run code on
the cluster do not have direct access to the core engine. Temporary
credentials, encryption keys, and other application-specific states
are not accessible by any user. This complete decoupling of the
application from the engine allows a Databricks standard cluster
to process data in a privileged fashion and to execute queries us-
ing fine-grained access control dynamic views, row filters, column
masking locally.

Many of the jobs and applications written for Spark use addi-
tional libraries for processing. As part of the isolation primitives on
standard clusters, we additionally isolate how, for example, Python
dependencies are managed and installed. This allows us to track
individual dependencies for each individual user when connected
to a single cluster. Each of the environments specified dynamically
by a user is separate and never shared with the core processing
engine.

2.1 Client Isolation using Spark Connect
When running data and AI workloads in Apache Spark, the ap-
plication code (e.g., the notebook) traditionally shares the same
JVM with the rest of the engine. To decouple the application code
from the trusted engine code, we contributed Spark Connect to
the Apache Spark project. Apache Spark offers multiple APIs for
data access: RDD [4], DataFrame, and Dataset [1], while the rec-
ommendation is for users to use the declarative DataFrame and
Dataset APIs. Today, new applications are predominantly using the
DataFrame API, as it provides the greatest potential for the core
data processing engine to optimize operations [1, 3].

Based on the observation that the programming interface has
become Spark’s logical plan for new Spark applications, we pro-
posed decoupling the client application from the Spark engine based

Figure 2: Spark Connect Flow

on this interface. However, instead of directly depending on the
specific Scala interface, we introduce a generic abstraction that is
language-independent and version-compatible using an externally
defined protocol based on the Google Protocol Buffers format [2].
The separation of concerns between the client application and the
Spark server has additional benefits: Spark Connect provides a back-
ward compatible interface that makes it easier to upgrade Spark
versions without breaking compatibility for client applications and
provides additional stability to the Spark cluster by decoupling the
failures of the client application from the server.

The general execution flow of a Spark Connect query is de-
scribed in Figure 2: First, when the client application calls the Spark
DataFrame APIs, we capture these operations. When an operation
on the plan is executed, we translate the chain of operations into
the Spark Connect Protocol Buffers format. The query plan is sent
to the Spark Connect service, which runs alongside the Spark Con-
text. The Spark Connect service implements a Google gRPC service
interface. Here, the plan is deserialized and translated into Spark’s
logical plan structure. We then call the command on the plan, for
example, collect(), which triggers the regular processing logic
of Apache Spark. Once the query execution, with its regular stages
for analysis, optimization, and query execution is done, the Spark
Connect service serializes the result rows into Arrow IPC messages
and streams them back to the client. The client can now transform
the Arrow IPC message stream into the native representation of its
choice.

3 Serverless Spark
When using Apache Spark, users rarely question the need to provi-
sion a cluster or at least an endpoint. In the context of many vendors,
the term "serverless" simply means that the compute hardware is
abstractly managed by the provider, but overall the cluster is still a
present concept because the application and execution have always
been very tightly bundled together. The lack of user isolation in
these offerings does not allow efficient resource sharing, increasing
cost, and operational burden.

In Databricks, we changed the way Apache Spark workloads are
run for our serverless Spark offering. First, we introduced a fully
decoupled architecture in which the client application is physically
separated from Spark. This allows us to only provide compute
resources to the client application when Spark is really needed.
Second, all of the managed compute running the Apache Spark
workloads are based on the previously mentioned Standard cluster
architecture, providing full multi-user capabilities and allowing us



Blink Twice - Automatic Workload Pinning and Regression Detection for Versionless Apache Spark using Retries. SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Figure 3: Basic Serverless Spark Architecture with a
Workspace-Wide Endpoint
to share resources between users in the same organization securely
and more efficiently.

As Databricks completely manages the resource provisioning,
we observe and analyze similar workloads to understand and pre-
dict their resource requirements. The knowledge about past and
future workloads feeds machine learning models that we use to
automatically scale an individual cluster or dynamically provision
a new cluster for new incoming connections.

Figure 3 illustrates how clients connect to Databricks’ serverless
Spark offering. The client applications can be interactive experi-
ences like notebooks or scheduled workloads like jobs. All work-
loads are connected to an endpoint per workspace. The workspace-
level request is sent to the regional Spark Connect Gateway service
that tracks resource management and current utilization for indi-
vidual workspaces. Based on load and historical knowledge, the
Spark Connect Gateway will now either provision a new cluster or
forward the request to an existing cluster.

Security There are multiple layers of isolation in the security
model for serverless Spark. Each workload runs in an isolated, un-
privileged container with dedicated local and attached disks, which
are temporary, encrypted at rest, and automatically wiped after
use. Compute is dedicated per customer and has no privileges or
credentials to other systems. Finally, each workload is on an iso-
lated logical network with no public IP addresses or ingress allowed
from other workloads. Traffic is through the cloud provider’s global
network (not public Internet) and uses TLS 1.2+.

4 Versionless Spark
In Databricks’ serverless Spark offering, we explicitly leverage the
backward compatible properties of the Spark Connect protocol
to provide a fully versionless engine experience to our customers.
Customers and users do not have to choose a particular version of
the Spark engine that runs their workload. Instead, users choose
the API version they want to integrate their workloads with, and
Databricks manages the engine version independently and main-
tains compatibility.

As mentioned in Section 3, different clients are connected to
a central gateway and are then forwarded to backend compute
resources. The API of the client is defined as part of the client
environment.

4.1 Client Environment
The client environment manages the minimal set of dependencies
our users need to run their workloads against our serverless Spark
infrastructure. For Python workloads, it includes the API version
of the Spark Connect client, the Python version, and additional
dependencies included for convenience. We offer several versions

Figure 4: Serverless Notebook Environments
of client environments, called environment versions, each with dif-
ferent versions of the aforementioned minimal set of dependencies.
In their workloads, users are free to install additional dependencies
at runtime.

Whereas in traditional notebook environments it would be enough
to only manage dependencies on the client side, this is not the case
for Apache Spark. In Apache Spark, it is very common to extend the
functionality of Spark using user code in the form of user-defined
functions (UDF). UDFs are not only used for scalar transformations
of individual values, but user code can be used to implement custom
data sources in Python, write handler functions that are run during
streaming ingestion upon batch completion, etc. To support the
seamless execution of this user defined code, we are replicating the
client environment dynamically to the backend cluster to execute
the user code including all of its dependencies.

Figure 4 shows how users can dynamically install and manage
workload dependencies in their notebooks and how to choose an
environment version. For users submitting their workloads as sched-
uled jobs in Databricks, they can either manage the dependencies
similarly in a notebook or manage them as part of the job definition.

4.2 Server Runtime
Because the Spark Connect protocol is designed to support older
clients to seamlessly connect and the execution of user code being
hermetically decoupled from the engine, the actual backend Apache
Spark engine can be upgraded independently of the user workload.
This ensures that applications automatically receive performance
improvements and bug fixes without requiring any code changes.

5 Automatic Workload Remediation
Providing security, reliability, and performance are the most crit-
ical requirements for our customers when scheduling automated
workloads on Databricks. Due to the tight integration between the
user’s application code and Apache Spark, upgrading from one ver-
sion of Apache Spark to the other has always been associated with
uncertainty and additional work. For workloads using Databricks
serverless Spark, Databricks completely manages the upgrade ex-
perience of the Apache Spark workloads.

For every automated execution of the workload, the job runs
through the abbreviated activity diagram as shown in Figure 5.
For jobs scheduled in Databricks, we use a so-called workload
fingerprint to identify repeated executions of the same workload
based on a set of properties. This allows us to uniquely identify
workloads, independently of them being scheduled in Databricks
directly or using an external orchestrator. In addition, as part of



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Justin Breese et al.

Figure 5: Automated Workload Pinning in Databricks
the health-mediated release of Databricks runtime versions, we
operate what is called a pinning service. The role of the pinning
service is to track workload failures that are likely to correlate with
an upgrade of the Databricks runtime version. The pinning service
keeps track of the workload fingerprint, the last known successful
engine version, and additional workload metadata and metrics.

At the beginning of each job, the workload scheduler identifies
if the pinning service has an entry for this particular workload fin-
gerprint. If so, it will provision the workload using the last known
good version. If no pinning entry is available, the process will check
if a new engine version is available and whether an upgrade needs
to be applied. If no upgrade is available, the execution will continue
as normal. If an upgrade is available, the workflow will start provi-
sioning resources using the new engine version. Upon success, the
workload finishes normally. If the workload fails due to an error, we
use a specially trained machine learning model to classify whether
the error is a user error, infrastructure error, or system error. User
errors will fail the job and finish the workflow. Infrastructure errors
are retried on the same engine version, whereas system errors are
then retried on the previously known good Databricks runtime ver-
sion. If the new run, on the previous engine version for the system
error, is successful, we then create a pinning entry and trigger an
additional process to manage this pin. If the run is not successful,
we assume that it is a user error and report the failure. The pin
entry now captures the correlation signal of the same workload
acting differently in two different versions of the engine.

In addition to trivial pass-fail signals, our system is able to col-
lect additional signals, to detect performance regressions, such as
workload (or task) duration and resource consumption (e.g. mem-
ory, CPU, disk) to decide whether a workload needs to be pinned
based on historical runs. Some examples of these metrics include
total task time, total data read, total data written. Integrating these
additional signals is crucial for the success of our system, as the
overall surface of data management systems is very large.

As briefly mentioned, creating a pinning entry triggers an addi-
tional process. First, we use a machine learning model to identify
which engineering team is most suitable to do the first-level triage
of the ticket based on the failure metadata such as CPU usage,
memory consumption, stack traces, and server logs. In addition, the
triage process starts additional data collection jobs to enrich the
workload metadata with system-level observations of the workload
in the Databricks environment to facilitate faster remediation.

After the pinning tickets are triaged, there are two possible
situations: The ticket is a false positive, and resolving it will auto-
matically unpin the job for the next run. If the pinning ticket is a

valid bug or regression, the engineering team can associate a fix
release version with the ticket, so when the new version is deployed,
the workload is automatically unpinned. In addition to reacting to
individual occurrence of workload pins, we use the signal to control
the overall roll-out of a new server version into our fleet. Based on
the large amount of data available, we make high-fidelity decisions
whether to pause, continue, or slow down the roll-out of the new
version.

6 Demo
For the demonstration, the audience will see a job (with retries
enabled) that initially runs on an old client and an old server version
- this run succeeds. The job is then triggered again and picks up a
newer server version that contains a bug, causing the run to fail.
The retry attempt starts, consults the pinning service, and re-runs
the job on the previous (working) server version, which succeeds.
We’ll then unpin the workload from the pinning service, allowing
the next run to use the latest server version - now fixed - which
also includes a performance improvement. Finally, the job will be
updated to use a newer client version to take advantage of a new
user-facing API.

7 Conclusions and Outlook
Automaticworkload remediation using high-fidelityworkloadmeta-
data and pinning has been proven to be very successful in efficiently
rolling out new Databricks runtime versions to our serverless Spark
offering without forcing our customers to control the upgrade pro-
cess. Since the general availability of Databricks Serverless Spark
product, we have run hundreds of millions of workloads and seam-
lessly upgraded the engine without customer impact. The benefit
for our customers is obvious: The can immediately leverage new
features, stability, and performance improvements without hav-
ing to plan for or manage any upgrade. Our engineering team has
been able to resolve bugs faster and with more signal due to clear
before and after evaluation. In addition, there is an additional en-
gineering benefit for Databricks by reducing the number of active
runtime versions in our fleet, and therefore achieve a higher overall
engineering velocity.

References
[1] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives (Eds.). ACM, 1383–1394. doi:10.1145/2723372.2742797

[2] Google Protocol Buffers 2024-12-03. https://protobuf.dev/.
[3] Maryann Xue, Yingyi Bu, Abhishek Somani, Wenchen Fan, Ziqi Liu, Steven Chen,

Herman Van Hovell, Bart Samwel, Mostafa Mokhtar, Rk Korlapati, Andy Lam,
Yunxiao Ma, Vuk Ercegovac, Jiexing Li, Alexander Behm, Yuanjian Li, Xiao Li,
Sriram Krishnamurthy, Amit Shukla, Michalis Petropoulos, Sameer Paranjpye,
Reynold Xin, and Matei Zaharia. 2024. Adaptive and Robust Query Execution
for Lakehouses At Scale. Proc. VLDB Endow. 17, 12 (2024), 3947–3959. https:
//www.vldb.org/pvldb/vol17/p3947-bu.pdf

[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In Proceedings of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012,
Steven D. Gribble and Dina Katabi (Eds.). USENIX Association, 15–28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

https://doi.org/10.1145/2723372.2742797
https://protobuf.dev/
https://www.vldb.org/pvldb/vol17/p3947-bu.pdf
https://www.vldb.org/pvldb/vol17/p3947-bu.pdf
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Abstract
	1 Introduction
	2 Databricks Multi-User Apache Spark clusters
	2.1 Client Isolation using Spark Connect

	3 Serverless Spark
	4 Versionless Spark
	4.1 Client Environment
	4.2 Server Runtime

	5 Automatic Workload Remediation
	6 Demo
	7 Conclusions and Outlook
	References

