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Abstract
Enterprises want to apply fine-grained access control policies to
manage increasingly complex data governance requirements. These
rich policies should be uniformly applied across all their workloads.
In this paper, we present Databricks Lakeguard, our implementa-
tion of a unified governance system that enforces fine-grained data
access policies, row-level filters, and column masks across all of
an enterprise’s data and AI workloads. Lakeguard builds upon two
main components: First, it uses Spark Connect, a JDBC-like exe-
cution protocol, to separate the client application from the server
and ensure version compatibility. Second, it leverages container
isolation in Databricks’ cluster manager to securely isolate user
code from the core Spark engine. With Lakeguard, a user’s permis-
sions are enforced for any workload and in any supported language,
SQL, Python, Scala, and R on multi-user compute. This work over-
comes fragmented governance solutions, where fine-grained access
control could only be enforced for SQL workloads, while big data
processing with frameworks such as Apache Spark relied on coarse-
grained governance at the file level with cluster-bound data access.
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• Computer systems organization → Distributed architec-
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1 Introduction
Enterprises need support for fine-grained access control policies to
manage increasingly complex data governance requirements. For
example, common use cases include limiting the visibility of data
between different departments, such as finance and HR, filtering
out PII (personally identifiable information), or granting users time-
constrained access to data. SQL data warehouses have rich support
for defining fine-grained access control (FGAC), including features
such as dynamic views, row-level filters, and column masks, as well
as more dynamic, attribute-based access control [2, 27]. In contrast,
big data processing frameworks such as Apache Spark have dif-
ferent and often more limited ways to manage access controls. To
reduce complexity and ensure data governance is always enforced,
enterprises need a unified way to specify and enforce rich access
control policies efficiently across all their data and AI workloads.

Today, it is common for data and AI workloads to access the same
data, commonly stored in inexpensive cloud storage [30] using open
file formats such as Delta [9] and Iceberg [6] following the Lake-
house [35] architecture. Data governance is defined on top, based
on a centralized data catalog, such as Unity Catalog [29], Glue [3],
or Hive [28]. Enforcement of the governance rules is defined by the
implementation of individual engines and therefore fragmented.
Previously, big data processing services relied on one of the fol-
lowing approaches to enforce governance: limit the user surface to
declarative non-programmable interfaces [33], only support coarse-
grained table-level access controls [6], column-level encryption
in Parquet [21], expensive external filtering [4], or by sacrificing
utilization [19]. To achieve unification, a central governance layer
is required, covering big data processing, data warehousing, and
AI, independently of the data use case. In Databricks, we unified
all of the above requirements in one data platform, which allows

https://doi.org/10.1145/3722212.3724433
https://doi.org/10.1145/3722212.3724433


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Martin Grund et al.

customers to seamlessly manage and govern not only data but as-
sets such as models, feature functions and pipelines, all part of the
value chain for deriving insights from data.

In this paper, we present Databricks Lakeguard, a system to en-
force rich data governance rules uniformly and efficiently across
data and AI workloads. From traditional SQL-based data ware-
housing workloads to workloads in data engineering and machine
learning in Python or Scala/Java. Lakeguard supports complex
access control policies familiar to SQL users, including dynamic
views, row-level filters, and column-level masks. Lakeguard con-
sists of two main components. First, we contributed Spark Connect
to the Apache Spark project, a query execution protocol in the
spirit of JDBC that allows the running of Spark applications lo-
cally or remotely [26]. Second, Lakeguard implements user code
isolation using containers on the Databricks cluster manager to
securely run user code in Spark applications. The combination
of both components allows users to use the full power of Spark
while Databricks enforces rich access control policies, uniformly
and efficiently, across all languages and workload types. Lakeguard
can also serve applications that need full access to the underlying
machine (e.g., GPU ML workloads) via external fine-grained access
control.

Lakeguard is thereby fully transparent to users. Users simply run
their workloads in Scala, Python, SQL and R on Databricks’s com-
pute, including interactive workloads that leverage Databricks’ stan-
dard multi-user compute. Lakeguard allows customers to achieve
significantly lower costs than filtering-based approaches [4] while
supporting richer policies than file- and column-level approaches [3,
21]

The remainder of this paper is structured as follows. In Section 2
we explain in detail the challenges when implementing fine-grained
data governance for enterprise data engineering workloads. In Sec-
tion 3 we present the novel approach of Databricks Lakeguard by
combining Spark Connect with sandboxing technology to achieve
full multi-user capabilities. Furthermore, we outline how to effi-
ciently offload fine-grained access control for workloads requiring
privileged access to the compute. We then follow Section 4 in which
we present how we integrate these capabilities directly into the
Databricks data platform. Section 5 briefly analyzes the overhead
of user code isolation. Section 6 describes how we take advantage
of the fundamental architectural shift to further evolve the Apache
Spark platform in completely new ways. We close this paper with
a comparison of our approach with related work in Section 7 and
conclude in Section 8.

2 Challenges enforcing fine-grained access
control for enterprise workloads

When companies try to enforce fine-grained access control policies
across their data and AI workloads, they face a number of chal-
lenges, e.g., managing access policies uniformly across different
workload types or managing data privacy and security compliance
requirements consistently. These challenges prevent them from
adopting a unified set of policies and force them into fragmented
governance rules that require administrators to reason about each
system individually.

Figure 1: Illustrating the architecture and participating com-
ponents in the motivating example.

2.1 Motivating example
An enterprise in the healthcare industry manages highly sensitive
patient and clinical trial data. All data is stored in cloud storage,
using Delta tables and Unity Catalog. Most of the table columns
contain nonsensitive data, from simple relational data (e.g., location
and timestamp values) to binary data (audio and video files), while
others contain PII of patients, which must adhere to the strongest
data protection requirements.

Processing data with Apache Spark allows users to perform
fast analytical queries while including domain-specific logic such
as user-defined functions (UDFs) in query processing. In our ex-
ample, illustrated in Fig.1, the data science team extracts features
from binary sensor data to produce a more suitable representa-
tion for further processing, using UDFs performing conversions.
Data scientists have access to most of the sensor data but must
not have access to PII. Therefore, the administrator created a dedi-
cated sensor_view for the data scientists team, which filters out
PII present in raw_data_table.

The administrator expects that any governance rule defined
in the catalog are always enforced at runtime: when data scien-
tists collaboratively work on the sensor data with SparkML for
model training, when users perform ad hoc SQL analysis on the
sensor data, or during the hourly data ingestion via Scala-based
ETL pipelines.

Although fine-grained access control has been well established
in data warehouses, there are a number of challenges when using
these techniques for big data processing, which will be outlined in
the following sections.

2.2 From cluster-bound to user-bound data
access permissions

In traditional data warehouses, direct access to the raw data is not
supported. Data access is always granted through catalog objects,
such as tables and views. In data engineering and data science how-
ever, users typically get access to raw files to transform them into
the desired representation. In fact, first-generation big data catalogs,
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such as Hive Metastore, did not enforce data access, but only dealt
with metadata management. Data access permissions were defined
at the file or prefix level on cloud object storage. Clusters became
the unit of isolation in terms of security and governance boundaries:
data access was configured at the cluster level via storage access
policies (e.g., AWS instance profiles) directly used by Spark. Users
gained access to data indirectly via cluster access: as such, data
access permissions were cluster-bound.

To enforce fine-grained access control, a common albeit ineffi-
cient practice was to create data replicas for specific user groups,
where sensitive data were removed. Users would gain access to
their filtered dataset through a dedicated cluster that had explicitly
configured the necessary access credentials.

Creating and maintaining such replicas comes with a high oper-
ational burden: increased storage cost, staleness of copied data, and
higher maintenance cost (e.g., GDPR across data copies), as well as
provisioning dedicated compute/access credential per dataset. As
a consequence, in second-generation data catalogs such as Unity
Catalog and Iceberg REST Catalog, data access permissions are now
an integral part of the catalog, moving data access from cluster-
bound to user-bound. The catalog service ensures that each user
can only access data to which they have been granted access. These
permissions must be enforced at all times: for any data and AI
workload and on any compute, as illustrated in Fig. 2. The Apache
Spark driver accesses the table metadata by requesting it from the
catalog, and the Spark executor nodes of the cluster request access
to temporary credentials for the tables they are accessing. At all
times, access to credentials is routed through the catalog and is
always associated with the requesting user identity.

2.3 Enforcing fine-grained access control
The preferred approach for efficient data governance for any data
and AI workload is to use well-established fine-grained access con-
trol mechanisms present in data warehousing, such as views, table-
centric access policies such as row filters and column masks, and

Figure 2: Moving storage access permissions from cluster
boundaries to the catalog.

Figure 3: Dynamic fine-grained access control on cell-level

Figure 4: User code running together with the Apache Spark
framework

dynamic access policies in the form of attribute-based access control
(ABAC) [15].

A common example is to grant a user access to a subset of the
rows of a table based on a SQL expression such as CURRENT_USER().
In this case, the engine reads and parses all the necessary data to be
able to evaluate the expression. As cloud storage vendors manage
access at the object level, for file formats such as Parquet, there is
no easy way to restrict data access to read only the subset of bytes
the user has access to (see Fig. 3). As a consequence, any user code
(in the form of UDFs, or client application code) already present in
the JVM is able to access this data using Python or Scala.

Although prior art [33] enforced fine-grained permissions by
limiting the user surface to only SQL, this is not acceptable for a
modern data and AI platform that also caters to data engineers and
data scientists using Python, Scala/Java, or R.

To ensure that fine-grained access control is always enforced,
in all languages when running Apache Spark workloads, we must
ensure that user code is always isolated from the Spark engine so
that no residual data is accessible to users running the application.

2.4 User code isolation
In contrast to SQL-based workloads in data warehouses, in systems
such as Apache Spark, users have the ability to write their code in
Scala, Python, R, and SQL. In an Apache Spark application, there
are two main avenues of how user code is used. First, the applica-
tion code is deployed directly with the Spark driver, providing the
user with privileged access to the JVM responsible for metadata
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processing, credentials management, and query processing. Sec-
ond, Apache Spark allows users to extend and customize their data
processing logic with user code, e.g., as UDFs running on Spark
executors. These UDFs run in a shared JVM on executors with
privileged access to the underlying machine. For example, a Scala
UDF could write arbitrary files to the file system or ex-filtrate data
to an external system. When UDFs are used in conjunction with
fine-grained access control mechanisms, it becomes impossible to
enforce these governance rules securely.

As a consequence, we have to make sure that any user code, be
it UDFs running on Spark executors or user code running on the
Spark driver, is fully isolated from the engine, with no access to the
underlying machine and governed egress control.

2.5 Multi-user capabilities
With the scale of the number of different workloads where rich data
governance rules that must be enforced, enterprises are looking
for ways to simplify the organization and management of compute
resources. Using more compute resources to enforce fine-grained
access control is not desired because of increased cost and lower
overall utilization, in particular, for interactive workloads. Cus-
tomers and data platform administrators are no longer willing to
provision compute for individual users to enforce governance but
want multiple users to share clusters to increase utilization and
reduce cost.

Since Apache Spark runs workloads in a single JVM, all users
share the execution environment. As a consequence, malicious
users can read residual state but also all the data Spark fetched to
process other users’ queries, leading to privilege escalation. As a
consequence, to enable multi-user capabilities, we must ensure that
user code is also isolated across users.

2.6 Summary
Table 1 summarizes the current status quo on how to integrate rich
access policies uniformly on different platforms. Only Databricks
Lakeguard uniformly enforces governance rules based on rich ac-
cess policies across all workloads. Other platforms require integra-
tionwith additional services to provide richer andmore fine-grained
access policies thereby increasing complexity and cost.

In summary, today, enterprises and organizations that want to
adopt a unified approach for fine-grained access control across their
data and AI workloads have to make sub-optimal choices.

(1) Avoid fine-grained data access control to continue being able
to grant permissions at the cluster or file level.

(2) Provision compute for each individual user separately to be
able to manage permissions for users independently. This
means that permissions and access control are still tied to
the compute instead of users. In addition, even in per-user
clusters, fine-grained access control cannot be efficiently
enforced.

(3) Implementing data governance policies separately for each
use case, depending on the system used to access the data.

Any of these choices leads to the duplication of datasets to man-
age permissions at a finer level, an increase in the cost of more
storage and compute, an increase in administrative complexity, and
an overall higher overhead.

3 Databricks Lakeguard
To address the requirements of enterprise customers to provide
a unified governance across all data and AI workloads, we intro-
duce Databricks Lakeguard. Lakeguard is the first system to ef-
ficiently enforce coarse- and fine-grained data governance rules
at runtime across single-user and multi-user workloads including
declarative SQL-based workloads as well as data engineering and
machine learning workloads in imperative programming languages.
Lakeguard supports rich access control policies such as dynamic
views, row-level filters, and column-masking rules familiar to data
warehouse users.

In this section, we describe the four ingredients of Lakeguard in
Databricks inmore detail. In Section 3.1, we explain howDatabricks’
Unity Catalog acts as the central governance catalog. In Section 3.2,
we describe the Spark Connect API and its components: the Spark
Connect client, the Spark Connect protocol, and the Spark Con-
nect service in more detail. In Section 3.3, we describe how user
code is securely isolated from the core Spark engine. Finally, in
Section 3.4, we show how governance is enforced even in case low-
level machine access is needed using external fine-grained access
control.

3.1 Governance using Unity Catalog
In Databricks, Unity Catalog is used to govern all of an enterprise’s
data. In contrast to the traditional Hive Metastore interface, Unity
Catalog manages access to tabular data, but also cloud storage paths.
Unity Catalog is meant to provide exactly one way to govern data
access: the flexibility of choosing between path-based and table-
based access is important to support the diverse set of workloads of
our customers using Apache Spark and data warehouses, especially
when ingesting and transforming raw files.

In addition to tabular data and files, Unity Catalog is the central
component of the Data Intelligence Platform [11]. It governs access
to machine learning models, feature functions, UDFs in SQL and
Python, and many other securable objects.

We recently chose to open-source Unity Catalog and are advanc-
ing the features of the open Unity Catalog in collaboration with the
Open Source community. This process further enhances its capabili-
ties according to the needs of our users, and the community at large.
The open source Unity Catalog, together with the open file formats
Delta [9] and Iceberg [6], is crucial in supporting Databricks’ Open
Lakehouse strategy.

3.2 Spark Connect API
When running data and AI workloads in Apache Spark, the appli-
cation code (e.g., the notebook) shares the same JVM with the rest
of the engine, as illustrated in Figure 4. To decouple the application
code from the trusted engine code, we contributed Spark Connect
to the Apache Spark project.

Apache Spark offers multiple APIs for data access: RDD [34],
DataFrame, and Dataset [10], while the recommendation is for
users to use the declarative DataFrame and Dataset APIs. Today,
new applications are predominantly using the DataFrame API, as it
provides the greatest potential for the core data processing engine
to optimize operations [10, 31]. An application using the low-level
RDD APIs is a black-box to the query optimizer, and thus can even
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Property
Databricks
Lakeguard

AWS EMR
Membrane[19]

AWS
Lake Formation

Microsoft Fabric
One Lake (Spark)

Google Dataproc
with BigLake[16]

Governance
Unified Policies
for DW and DS/DE ✓ ✗ ✗ DWH Only ✓

Catalog UDFs Python ✗ ✗ ✗
BigQuery

Spark Stored Procedures
User Code executed as part of the workload, application code and UDF

Single User SQL, Python,
Scala, R

SQL, Python,
Scala, R n/a SQL, Python,

Scala, R
SQL, Python,

Scala, R

Multi-User SQL, Python,
Scala, R ✗ n/a SQL

(DWH Only) ✗

FGAC methods supported
Row-Filter ✓ ✓ ✓ ✗ ✓

Column-Masks ✓ ✓ ✓ ✗ ✓

Views ✓ ✓ ✗ ✓ ✗

Materialized Views ✓ ✗ ✗ ✗ ✗

External Filtering ✓ ✗ ✓ ✗ BQ Storage API
Table 1: Comparing data platform governance solutions that leverage and can be used with Apache Spark.

Figure 5: Spark Connect Flow

result in worse performance. The general recommendation is to
only use these low-level APIs for very specific and highly optimized
use cases.

Based on the observation that the programming interface has be-
come Spark’s logical plan for new Spark applications, we proposed
decoupling the client application from the Spark engine based on
this interface. However, instead of directly depending on the specific
Scala interface, we introduce a generic abstraction that is language-
independent and version-compatible using an externally defined
protocol based on the Google Protocol Buffers format [13]. The sep-
aration of concerns between the client application and the Spark
server has additional benefits: Spark Connect provides a backward-
compatible interface that makes it easier to upgrade Spark versions
without breaking compatibility for client applications and provides
additional stability to the Spark cluster by decoupling the failures
of the client application from the server.

The general execution flow of a Spark Connect query is de-
scribed in Figure 5: First, when the client application calls the Spark
DataFrame APIs, we capture these operations. When an operation
on the plan is executed, we translate the chain of operations into the
Spark Connect Protocol Buffers format. The query plan is sent to
the Spark Connect service, which runs alongside the Spark Context.
The Spark Connect service implements a Google gRPC [14] service
interface. Here, the plan is deserialized and translated into Spark’s
logical plan structure. We then call the command on the plan, for
example, collect(), which triggers the regular processing logic
of Apache Spark. Once the query execution, with its regular stages
for analysis, optimization, and query execution is done, the Spark
Connect service serializes the result rows into Arrow IPC messages
and streams them back to the client. The client can now transform
the Arrow IPC message stream into the native representation of its
choice.

The Spark Connect architecture consists of three core compo-
nents:

(1) The language-agnostic client implementation
(2) The Spark Connect protocol buffer format
(3) The Spark Connect service on the Spark driver

The client communicates with the Spark Connect service us-
ing the gRPC message format over an HTTP/2 connection. In the
following sections, we will explain how the different components in-
teract with each other in more detail. Leveraging a standard HTTP
connection has additional benefits, as it allows platform providers
to seamlessly integrate with their own authorization and proxy
infrastructure.

3.2.1 Spark Connect client. The role of the language-agnostic Spark
Connect client is to provide the convenient, Spark-idiomatic DataFrame
implementation to interact with the Spark server. Currently, there
are already a few implementations of the Spark Connect protocol
available, namely, in Scala, Python, Rust [25], Go [23], C# [22] /
.Net [24]. For developers familiar with the Spark DataFrame API,
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using these clients provides low cognitive overhead as they fol-
low the same design patterns but are adapted to the programming
language-specific idioms.

In practice, this means that the Spark Connect client translates
the API operations on the exposed DataFrame API into the appro-
priate protocol buffer representation.

When executing an action, the Spark Connect client will send the
protobuf representation from the client to the server and wait for
the responses to be received. The response data (serialized Arrow
row batches) are then passed on directly to the caller for zero-copy
result extraction or translated into programming-language-specific
native values.

3.2.2 Spark Connect protocol and RPC. The service definition of
the Spark Connect protocol is centered on the primary query execu-
tion API called ExecutePlan / AnalyzePlan and additional control
RPCs to manage the execution. The root of any execution is either
a logical relation or a command. In Spark Connect, we distinguish
between relations and commands to indicate composability and
side effects. Relations do not have side effects when executed and
can be composed, whereas commands are not composable and can
have side effects when executing them. Relations are modeled after
high-level logical relational operations like join or sort following
the example of Spark’s DataFrame API. Lastly, the protocol captures
Expressions that transform individual columns of Relations.

The Spark Connect executionmechanism combines synchronous
and asynchronous query execution to reduce latency for short-
running operations and simplify the implementation of clients in
other languages. In addition, the execution protocol supports the
different idle connection termination strategies of cloud load bal-
ancers and interrupted connections from remote clients. These
properties have proven to be very important based on our experi-
ence of running Spark Connect workloads in production as part of
Databricks Connect [12].

In traditional Spark applications, extensibility is achieved by
directly inheriting from public developer APIs in Spark. With the
separation of the client application from the main Spark JVM, Spark
Connect needs to provide an additional way to support extensibil-
ity. Therefore, in Spark Connect, all major interfaces for relations,
expressions, and commands provide explicit extension points. The
extension points provide a mechanism to transparently embed cus-
tom message types as part of the execution. This allows Spark users
to develop and install Spark Connect plugins that provide embedded
functionality directly as part of the core Spark Connect protocol
without having to modify the protocol explicitly. Similarly to the
overall benefits of Spark Connect, separating the plugin implemen-
tation of the client provides a stable interface between the client
and the server and makes it easier for plugin providers to support
clients through new Spark versions. As long as plugin providers
follow the same compatibility requirements as defined for Spark
Connect, their users can benefit from the same stability and compat-
ibility benefits. A prominent example is the Delta [9] extension for
Spark Connect, which provides the custom relation and command
types needed to support Delta-specific API commands for Spark
Connect clients.

3.2.3 Spark Connect service. The Spark Connect service provides
the implementation of the gRPC service based on the protocol

buffer definition. In its initial version published in Apache Spark 3.4
the service was implemented as a Spark plug-in that was loaded
during the startup of the Spark context. With the current devel-
opment of Apache Spark 4.0, the Spark Connect service is now a
core component and will be directly embedded into the core Spark
distribution.

The main responsibility of the Spark Connect service is to man-
age incoming connections and map them to individual Spark Ses-
sions. A Spark Session encapsulates all client-specific application
state like, for example, registered temporary views or functions.
In addition, the service is responsible for managing the life cycle
of these Spark sessions and the temporary state that is attached
to them. Lastly, the Spark Connect service manages the life cy-
cle of concurrent query executions by regularly checking if the
clients continue to reattach to the query, the overall query makes
progress, and if a client disappears, abandon and tombstone the
query execution.

In Databricks, we have significantly enhanced Spark’s session
management, authentication, and authorization capabilities to pro-
vide a full multi-user system. This allows us to not only securely
share the underlying compute infrastructure but also full auditing
of all individual user actions. With this secure integration, Spark
Connect is tightly integrate with Databricks’ Unity Catalog gover-
nance platform.

3.3 Isolating user code from the engine in
Apache Spark

With the client code being separated from the engine, it is also
necessary to isolate the user code from the engine that is used
directly during query processing. In Section 2, we outline in the
example how a specific user code is used during data and query
processing. In contrast to traditional SQL-based database systems,
user code is not provided simply as a declarative SQL expression,
but the users of Apache Spark are writing their domain-specific
user code in Python, Scala, or even R. Importantly, the user code
executed in Apache Spark is not just ephemeral code submitted
by the user during query execution, but also code that is governed
by Unity Catalog. Python UDFs are cataloged objects, similar to
Hive UDFs, allowing customers to reuse domain-specific user code
across all of their data and AI workloads in a secure way.

A typical example is imperative logic that needs to interact with
external systems and convert data appropriately, as shown in Fig-
ure 6. Here, a Python UDF is used to call an external service that
returns air quality measures based on a zip code. Previously, all
user code was executed directly in the engine’s JVM, allowing users
to access all data, credentials, and secrets processed in the environ-
ment.

To overcome this limitation, we had to make major modifica-
tions to the query execution engine of Apache Spark. First, we
built the infrastructure to be able to securely execute user code in
containerized sandboxes outside of the Spark engine. Second, we
modified existing query operators and added new query operators
that handle containerized execution of user code.

In Figure 7, we outline the abstract architecture of a host of a
cluster in the Databricks environment. The host is provisioned into
a runtime environment that is accessible by Apache Spark, and a
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@udf(returnType="float")
def resolve_zip_to_air_quality(zip):

resp = requests.post(
f"http://example.aqi.com/zip/{zip}")

return float(resp.json()["yesterday"])

data = spark.table("customers")
data.select(

resolve_zip_to_air_quality(col("zip"))).show()

Figure 6: Example of PySparkUDF calling an external service.

Figure 7: Databricks Host Architecture with Cluster Manager

secure and protected cluster management environment that is fully
decoupled from the Apache Spark processes.

When user code is executed as part of query processing, the
query process interacts with the component called Dispatcher
that manages the sandboxes for query processes and users running
concurrently in the cluster. When a new sandbox is required, the
dispatcher requests a new sandbox from Databricks’ cluster man-
ager. The cluster manager creates a new sandbox and proxies all
traffic between the Apache Spark process and the sandbox itself.
The sandbox runs fully isolated from the runtime environment and
is not connected to it directly. We use dynamically controlled net-
work rules and Linux kernel network namespaces to additionally
control the egress network traffic of the UDF.

To reduce overhead and optimize query execution, we have
introduced several query optimization rules that collapse and fuse
the execution of user code into as few sandboxes as possible. In
addition to ephemeral user code written as part of the current
session, Unity Catalog catalogs user code in the form of functions,
for example, Python UDFs. These functions can be used across
workloads. This requires the dispatcher to implement and manage
different trust domains of user code executed in the context of
a single user query. A trust domain groups all user code that is
owned by the same user. However, cataloged UDFs may be written
by different users. Therefore, isolation is necessary to prevent side-
channel attacks and data leaks on the runtime environment of code
running inside a sandbox.

The trust domains become pipeline breakers for the optimization
rules we use to fuse code together for efficiency and ensure that
the execution is free of side effects.

The simple and efficient design of the infrastructure allows us
to run user code not just on the Apache Spark executors but on all
nodes of the cluster. Furthermore, the cluster manager interface to
create sandboxes allows us to generalize the concept of executing
user code. For requests that have specific resource requirements,
for example, GPUs or significant amounts of memory, we can route
these requests to specialized execution environments outside of the
cluster.

3.4 External fine-grained access control
For some workloads, having full privileged access to the underlying
machine is a requirement. A typical example are machine learning
workloads that use one or more GPUs as part of their operations.
Using GPUs requires direct memory access, direct access to the
device drivers, and privileged access to the network for the distribu-
tion of work. In this environment, it is not possible to run user code
completely separated from the engine. Previously, this meant that
customers who wanted to enforce their rich governance policies
uniformly across all kinds of workloads would have to create use
case-specific copies of data. In turn, administrators would have to
track these replicas and account for them in their data governance
rules.

Databricks Lakeguard solved this challenge by providing auto-
matic external fine-grained access control (eFGAC) for workloads
running on compute types with dedicated access to the cluster and
Apache Spark system.

To do so, we track the security and execution properties of each
cluster when communicating with Unity Catalog through privilege
scopes. This is necessary because the individual user might have
access to the entities governed by Unity Catalog, but the execution
environment is not able to properly enforce the governance policies.

To illustrate the behavior, let us assume that the user on a dedi-
cated cluster wants to execute a simple query on a table saleswith
a row filter that dynamically restricts access to only sales in the US
for this particular user.

SELECT amount, date, seller
FROM sales
WHERE date = '2024-12-01'

When this query is parsed, it is translated into the logical plan
and the fully resolved logical plan, as shown in Figure 8. In our im-
plementation of row filters, the query planner automatically injects
a SecureView into the query plan that prevents the propagation of
unsafe expressions to avoid leaking data.

However, on clusters with privileged access, the cluster can only
fetch the basic metadata about the involved relations but not details
about the predicates or literals used in the row-filter expressions. In
addition, the metadata for the participating relations is annotated
to indicate that these objects cannot be processed locally.

Instead of translating the query from the source query to the
fully resolved query shown in Figure 8, it is dynamically rewrit-
ten to perform the fine-grained access control externally. This is
highlighted as the rewritten query in Figure 8.

The foundation for eFGAC is Spark Connect (Section 3.2 and
the Databricks Serverless Spark offering (see Section 6.2). The core
principle of the query rewriting strategy for eFGAC is that it op-
erates at the highest logical level in the query plan. During the
rewrite phase, we identify the relations that need to be processed
externally and insert a remote scan operation in their place as a leaf
node in the plan. However, these leaf nodes are not simply scan
operators, but we leverage the optimizer rules to push additional
refinements into the remote scan. Most importantly, this allows us
to push partial aggregations, projections, and filters into the remote
scan. It is important to mention that the interface of the eFGAC
scan does not need to be aware of any specific governance rules.
The eFGAC scan operates on the unresolved logical plan level only.
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Figure 8: Translating and rewriting a source query with fine-
grained access control into a remote filtered data source op-
eration.

After the query rewrite phase is finished, during query execution,
the sub-query is submitted to Serverless Spark for execution. It is
important to mention that at no point in time, resources have to be
manually allocated or provisioned: all of the assignment and work
executing happens completely transparently to the user and is fully
managed by Databricks.

On the serverless endpoint that receives the eFGAC subquery, the
incoming Spark Connect plan is parsed, analyzed, and optimized as
any other Spark query. This means that during query planning and
optimization, the cluster fetches the metadata from Unity Catalog
and inserts the row filter of our example again into the query. For
partial aggregations, filters, and projections submitted as part of
the query, they are simply handled as part of the regular query
execution.

The Serverless Spark endpoint supports two result aggregation
modes that are chosen, for example, based on the size of the result
set. If the result is small, the results are returned inline with the
query to the origin cluster to avoid additional latency. For larger
result sets, the intermediate data is persisted in parallel in cloud
storage and processed in parallel on the origin cluster.

In contrast to other solutions such as AWS LakeFormation or Red-
shift Spectrum, our approach overcomes an important limitation:
the ability to handle more than basic scans. eFGAC in Databricks is
capable of processing all queries supported by the Spark Connect
protocol. This is important as it shows the universality of the ap-
proach. In Databricks, eFGAC allows reading from simple tables
that have comprehensive data governance policies, such as row
filters and column masks, as well as from complex views, including
materialized views.

Lastly, it is important to mention that eFGAC is not only usable in
the context of Databricks clusters but can be used seamlessly from
any external engine like Presto/Trino or other Spark distributions
to enforce data governance. This particular, limited, use case is in
spirit similar to the Google’s BigLake approach [16].

4 Unity Catalog compute in Databricks
In the previous sections, we have explained in detail the building
blocks that are necessary to provide unified, cost-effective, and
secure data processing capabilities in Databricks. As described,

the application programming surface when using Spark Connect
with the isolation primitives is slightly different from the tradi-
tional Apache Spark surface. For our customers, it is important that
Databricks provides a stable and consistent environment that gives
customers the necessary time to choose when to upgrade to the
new architecture but, at the same time, is able to enforce the data
governance rules.

Consequently, governance must not only be enforced on the
compute itself, but Databricks’ Unity Catalog must reason about
the source of the requests coming from clusters. Due to the way
that Unity Catalog is integrated into the authorization and authen-
tication system in Databricks, every caller authenticating to Unity
Catalog has additional information about the credential scope of
the caller. When the Apache Spark engine requests access to cloud
storage credentials from a specific compute type, Unity Catalog is
able to identify the individual identity and compute type that made
the request. This behavior is a crucial aspect in enforcing security
and governance across the platform because it acts as an additional
layer of depth to make sure that individual users only have access
to the data that they are supposed to.

Therefore, Databricks offers two compute types to its customers:
Standard and Dedicated compute.

4.1 Standard clusters
The primary compute type in Databricks is the standard cluster.
This type of cluster unifies all the building blocks to provide a fully
secure multi-user-capable environment that utilizes the power of
Apache Spark. Standard clusters can be used for scheduled and
ad hoc job submission and are fully supported throughout the
platform. In contrast to other vendors, the multi-user capabilities of
the standard cluster allow us to securely share the cluster between
many users and enforce all individual users’ permissions. All of the
data governance capabilities (dynamic views, row filters, column
masking) are directly enforced on standard clusters on top of the
coarse-grained object-level access control.

Our customers can use SQL, Python and Scala to develop and
schedule their workloads, making it the only system that is able to
have multi-user access to Spark across all of Spark’s main program-
ming languages.

In standard clusters, all Spark client applications run fully iso-
lated and sandboxed on the driver, and user code runs isolated and
sandboxed on the executors. Users who attach and run code on
the cluster do not have direct access to the core engine. Temporary
credentials, encryption keys, and other application-specific states
are not accessible directly to any user. This complete decoupling of
the application user from the engine allows the Databricks standard
cluster to process data in a privileged fashion and to execute row
filters and column masks locally.

Many of the jobs and applications written for Spark use addi-
tional libraries for processing. As part of the isolation primitives on
standard clusters, we additionally isolate how, for example, Python
dependencies are managed and installed. This allows us to track
individual dependencies for each individual user when connected
to a single cluster. Each of the environments specified dynamically
by a user is separate and never shared with the core processing
engine.
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Figure 9: Fully governed compute types in Databricks leveraging the Lakeguard Architecture,

However, we support administrators inmaking conscious choices
about installing additional libraries on the cluster that interact di-
rectly with the core Apache Spark engine. To ensure the intent and
security of the clusters, we have established a configuration process
that requires the delegation of explicit intent from both workspace
and cluster administrators about which explicit libraries should be
made available to the core engine.

4.2 Dedicated clusters
For customers who need access to the underlying virtual machine,
for example, to work with one or more GPUs, direct network access,
and access to special device drivers in addition to the Apache Spark
engine, Databricks offers dedicated clusters. Due to the low-level
cluster access, Dedicated clusters can only enforce coarse-grained
access permissions, so we provide our customers with automatic
access to external fine-grained access control (cf. Subsection 3.4).
The benefit is that this does not require any configuration, but is
integrated seamlessly to provide access to tables with row- and
column-level access control and views.

The most important distinction between dedicated and standard
clusters is that dedicated cluster cannot be shared by more than
one identity. As multiple users bring individual permissions to such
a cluster and every user has the same privileged access to the host,
it is not possible to enforce them independently.

The benefits for our customers are that dedicated clusters pro-
vides a convenient way for them to onboard to the features offered
by Unity Catalog and the Databricks platform in general. From
our analysis of customer usage, the main use cases for dedicated
clusters are workloads for machine learning, both for model train-
ing and inference, and second, mature workflows that have been
relying on traditional low-level Spark APIs and therefore rely on
the processing of data with RDDs [34].

For security reasons, it is not possible for multiple identities to
share a single dedicated cluster. This increases operational burden
and cost for our customers in particular for interactive use cases
when multiple users want to share and collaborate on designing
data processing logic or machine learning experiments. To alleviate
the immediate problems of sharing interactive clusters, Databricks
offers the ability for multiple identities to share a single dedicated
cluster for members of the same access group. When attaching

Num UDF Simple UDF Hash UDF
Sum(a+b) 100× SHA256

1 9.53% 3.37%
2 8.44% 4.29%
5 11.19% 4.77%
10 12.02% 4.15%

Table 2: Comparing the relative worst-case overhead of ex-
ecuting Python code in a sandbox with unisolated code in
Databricks.

to the cluster, all individual users’ permissions are reduced to ex-
actly the permissions of the group. This dynamic down-scoping
of permissions allows us to retain the originally connecting user
identity and guarantee that all attached users have exactly the same
permissions.

5 Evaluation
Previously, running user code using different isolation primitives
has been evaluated in different contexts, for example, in [5] or [20].
Since the properties of isolation techniques like gVisor have been
explored before, we focus on a very basic validation of these exper-
iments in Databricks’ production environment.

For the experimental evaluation of our approach to isolating user
code from the engine, we have to consider two major dimensions.
The first dimension is the static overhead for running isolated code
in our sandbox environment. The second aspect is the continuous
overhead that a UDF incurs because the code is running in isolation.
In addition, the experiment is designed to validate that fusing UDF
calls into a single sandbox can help prevent additional runtime
overhead.

We tested continuous overhead using two simple experiments;
we compare the execution time of a Apache Spark query over a fixed
number of rows and evaluate a UDF per row that simply returns
the sum of two arguments. Since computing the sum of two values
in itself does not consume meaningful resources, it highlights the
potential worst-case scenario in which the overhead is dominated
by moving batches of records into the sandbox and returning it.
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In the second experiment, we compare the execution time of a
UDF that calculates a SHA256 checksum with 100 iterations. The
goal of this experiment is to identify the pure CPU overhead of run-
ning performance-sensitive code inside the sandbox. The execution
environment was a 2-node Databricks cluster using the Databricks
Runtime version 15.4 LTS on AWS using in total 3 r6id.xlarge in-
stance types. We executed the same code multiple times on both
Standard and Dedicated Databricks cluster types.

In Table 2 we present the results of these experiments. For the
first case in which the UDF simply returns the sum of its arguments,
the measured overhead compared to running the code without
isolation is ≈ 10%. For the second experiment, the time spent in the
UDF code per row is significantly higher. In this case, the overhead
is reduced to ≈ 4.8%. The results confirm that running user code in
isolation comes at the price of slightly increased latency. However,
from our experience in analyzing customer workloads, we see that
the contribution of, for example, Python UDF runtime on the overall
query runtime is typically only a small fraction because Python
code itself is significantly slower than the highly optimized query
execution code in Databricks Spark. Lastly, we can observe that our
approach to fusing multiple UDF executions for a single row works,
and increasing the number of UDFs does not have an outsized
impact on the overall latency.

The last aspect of our performance evaluation was the impact
of the sandbox startup time. The sandbox startup time is split into
two categories: First, provisioning of the sandbox and starting the
Python process inside the sandbox. In our experiment, we see a
maximum duration of cold start in all experiments of≈ 2𝑠 . However,
this latency occurs only for the very first Python UDF across the
whole user session. Subsequent query executions reuse the already
existing sandbox, and the overall startup cost is quickly amortized.

6 Architectural evolution
The introduction of Spark Connect to Apache Spark allowed the
evolution from a cluster-centric data processing framework to a
fully decoupled client-server architecture. This decoupling allowed
the implementation of features and improvements that allow Spark
to be used in completely new ways and improve the overall user
experience in many ways. In this section, we will highlight how
Spark Connect fundamentally changed the way Databricks unifies
data and AI workloads for Apache Spark.

6.1 Databricks Connect
The starting point of the evolution is the first customer-facing
product that uses Spark Connect commercially. For many of our
customers, interactively developing and debugging their data engi-
neering workloads in an IDE is a critically important task. Previ-
ously, these users were forced to develop their workloads that use
Apache Spark locally by running a local version of Apache Spark
and then later deploying the code in Databricks and verifying it as
a scheduled job. This mismatch between developing code locally
and verifying it later asynchronously in Databricks makes it harder
to establish fast inner development loops and software engineering
best practices.

But since data, governance, and applications are managed in
Databricks, Apache Spark running locally could never fully replace
the ability to verify the workloads directly running on Databricks.

With Spark Connect, there is an established remote protocol
to communicate between the code running locally and the Spark
operations running remotely. Databricks Connect is a thin layer
on top of the native Spark Connect protocol implementation in
PySpark that manages authentication and authorization with the
Databricks compute endpoint. The rest of the specific protocol
semantics are the same as in open source Spark.

Databricks Connect allows customers to connect from anywhere
to Databricks and directly run their Apache Spark workloads from
their local machines. It allows connecting to designated clusters,
both Standard and Dedicated, and Databricks Serverless.

Databricks Connect not only enhances developer efficiency, but
also enables the integration of external applications with data man-
aged in Databricks in a completely new manner. Lastly, since Spark
Connect provides a language-agnostic way of connecting to Spark,
it allows Spark Connect protocol implementations in other lan-
guages to connect to Apache Spark and Databricks remotely. Cur-
rently, there are implementations for Spark Connect in many differ-
ent languages such as Rust [25], Golang [23], C# [22] and .NET [24].
Each of these open and independent client implementations can di-
rectly connect to Databricks in the same way as Databricks Connect
does.

6.2 Databricks Serverless Spark
When using Apache Spark, users rarely question the need to provi-
sion a cluster or at least an endpoint. In the context of many vendors,
the term "serverless" simply means that the compute hardware is
abstractly managed by the provider, but overall the cluster is still a
present concept because the application and execution have always
been very tightly bundled together. The lack of user isolation in
these offerings does not allow efficient resource sharing, increasing
cost and operational burden.

In Databricks, we changed the way Apache Spark workloads are
run for our serverless spark offering. First, we introduced a fully
decoupled architecture in which the client application is physically
separated from Spark. This allows us to only provide compute
resources to the client application when Spark is really needed.
Second, all of the managed compute running the Apache Spark
workloads are based on the previously introduced Standard cluster
architecture, providing full multi-user capabilities and allowing us
to share resources between users in the same organization securely.

This allows us to manage the resources for the Apache Spark
workloads in a much more efficient way. As Databricks completely
manages the resource provisioning, we observe and analyze similar
workloads to understand and predict their resource requirements.
The knowledge about past and future workloads feeds machine
learning models that we use to automatically scale an individual
cluster or dynamically provision a new cluster for new incoming
connections.

Furthermore, we enhanced the life-cycle management of Spark
Sessions in Databricks’ serverless Spark to be able to seamlessly mi-
grate individual user sessions from one backend to another without
incurring user visible downtime.
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Figure 10: Basic Serverless Spark Architecture with a
Workspace-Wide Endpoint

Figure 10 illustrates how clients connect to Databricks’ serverless
Spark offering. The client applications can be interactive experi-
ences like notebooks or scheduled workloads like jobs. All work-
loads connect to the same endpoint per workspace. The workspace-
level request is sent to the regional Spark Connect Gateway service
that tracks resource management and current utilization for indi-
vidual workspaces. Based on load and historical knowledge, the
Spark Connect Gateway will now either provision a new cluster or
forward the request to an existing cluster.

6.3 Versionless Spark workloads
One of the main goals of designing the Spark Connect protocol
was to define it in a way that allows us to completely decouple the
client-side implementation from the server. As we leverage the in-
herent properties of the protocol representation using the Protocol
Buffer format, it is very easy for older clients to connect to newer
server versions. As a result, we are able to achieve full backward
compatibility for clients. In internal surveys with Databricks cus-
tomers, we have identified that upgrading to more recent versions
of the Databricks runtime is a big pain point. The challenges of
updating versions arise from two areas: First, client applications
that compile against Databricks’ Spark version might have to deal
with changes in the APIs that the client is using. While Apache
Spark attempts to maintain binary compatibility in minor versions,
in major versions changes can be larger. Second, the Databricks
runtime environment, together with Apache Spark, bundles a set of
libraries that the customer has to be aware of. If these dependencies
conflict with the customer’s code, it can lead to breaking previously
running workloads. Customers prefer not to invest in workloads
that are running successfully and prefer stability over new features.

In Databricks, we have addressed these challenges with Server-
less Spark. We have isolated the client environment into an abstract
Workload Environment that is versioned and includes, next to the
specific Databricks Connect version, the set of dependencies that are
bundled with the Databricks runtime. TheWorkload Environment
is responsible for providing a stable surface for client applications
and jobs that our customers can rely on.

When the client notebook or job connects to Serverless Spark
endpoint, the Spark Connect protocol fully supports queries and
executions from previous versions. This version independence is

already enforced in open source Spark to make sure that the clients
remain backward compatible.

There is a special case where client applications submit user code
as part of the workload and query execution that depends on the
libraries and dependencies present in the Workload Environment.
In Databricks, we are able to leverage the same infrastructure that
we have built to support user code isolation to support clients con-
necting to Spark using different Workload Environment versions.
During the execution of the user code, the system will explicitly
load the given workload environment and execute the user code
exactly in this environment.

Explicit versioning of the workload environment has proven
extremely successful in upgrading dependencies. For example, it al-
lows us to support customer-specified code to be executed, isolated,
next to the core engine using multiple different versions of the
Python interpreter without the customer having to reason about
the version of Serverless Spark. The most important requirements
for customers are to be able to have a stable set of Spark APIs and
a fixed set of dependencies and their versions.

7 Related Work
For a long time, enforcing fine-grained permissions on big data
was not easily possible or only available with a very limited user
surface (e.g., SQL only). In addition, systems like Apache Spark
are typically one part of the overall data platforms and, as such,
middleware systems like Apache Ranger [8] are trying to provide
an entry point to managing permissions and access. However, such
systems do not provide a way to enforce permissions directly in
Apache Spark.

There are other approaches that integrate access and permission
management directly into theApache Spark engine.GuardSpark++ [32,
33] is an example. The system implements purpose-based access
control directly into the Spark planning and rewriting layer. How-
ever, this approach does not outline how to protect the assumed
trusted engine from the user code. This means that the system still
has to fall back to untrusted behavior when not using SQL.

The system closest to the capabilities that our system provides
is the implementation of Amazon Web Services for their Apache
Spark offering called Amazon EMR Membrane. Following our work
on Spark Connect in Apache Spark in the open source community,
the proprietary AmazonMembrane project [19] also recognizes that
executing user code directly in the core processing engine creates
a data governance and security issue when trying to enforce fine-
grained access control. The approach of Membrane is to split an
Apache Spark cluster into two security domains. A core trusted
engine domain and a user code domain. Data exchange between
domains occurs via shuffle operations. The biggest drawbacks of
this technical approach can be explained as follows: First, dividing
the cluster into two security domains does not efficiently allow the
sharing and scaling of resources based on need. Both domains have
to be effectively scaled and managed independently as they can
never overlap due to potentially residual data and state remaining
on the instances. This means that for highly variable workloads,
the overall utilization of the cluster will be much lower, leading to
increased costs for the customers and slower overall performance.
Second, relying on a custom, specific serialization format of the
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internal Apache Spark execution plans, the application code is not
sufficiently independent of the rest of the Apache Spark cluster,
making it difficult to upgrade to new versions of Apache Spark.
Third and most importantly, while the architecture allows one
to enforce fine-grained access control locally, it does not make
Apache Spark fully multi-user capable. The current architecture
does not foresee the ability for multiple users to share the cluster,
thus further increasing the utilization of the resources and lowering
costs. Similarly, Google’s BigLake [16] proposes a way to integrate
data managed in open file formats both in BigQuery directly and
in Apache Spark through the BigQuery Read API. However, in the
context of Apache Spark workloads, it is not directly integrated but
is built on a similar approach to what is described in Section 3.4
with similar limitations and no support for processing of views.

When it is not possible to directly enforce fine-grained access
control and permissions in a Apache Spark cluster, users are usually
forced to employ external systems for data preprocessing outside of
the cluster. This allows us to avoid implementing governance rules
directly in the core engine. AWS LakeFormation’s Data Filtering
offering [4] provides these capabilities and allows external systems,
not limited to Apache Spark, to integrate. However, as of today, it
only supports simple scans and expressions. The additional external
filtering capabilities that Databricks employs for Dedicated Clusters
support full subquery execution with aggregations, projections,
filters, and limit.

Whenwe started to work on Spark Connect with the open source
Apache Spark community, we looked extensively at different op-
tions of how to represent the protocol interaction between the client
and the server. For example, we looked at using the Substrait [18]
for the query plans sent from the client. There are two reasons why
we did not choose Substrait for the query plan representation. First,
the Substrait project started around the same time and it was not
immediately clear if the direction of the project was to focus on
logical or physical database query plans. Ultimately, Substrait is
designed to handle both abstractions equally. In Spark Connect,
however, we operate only on unresolved logical plans and unre-
solved expressions that are much simpler to represent and express.
Since the Spark Connect representation is effectively a subset of the
capabilities of Substrait, it is possible to translate a Spark Connect
query plan into a Substrait-based representation. Although Spark
Connect can support additional use cases similar to Apache Livy[7],
the approaches are very different. Apache Livy essentially operates
on plain text commands without any additional knowledge of the
semantics of the executed operations.

The topic of isolating untrusted code has been extensively inves-
tigated in the past years. The most important research contributions
stem from the work of the hyperscalers to efficiently and securely
support lightweight function handlers. The most prominent im-
plementation is Amazon’s Firecracker [1] technology. Firecracker
supports a very fast and almost native execution model; however, it
requires direct native access to the instances running the Firecracker

infrastructure. In Databricks, we deploy clusters to standard cloud
VMs, and using bare-metal instances is not feasible. The overhead
of running user code in higher-level virtualization solutions have
been analyzed by Anjali et al. in [5]. Alternatives are to write cus-
tom application-specific isolation logic directly using Linux Kernel
Namespaces and Seccomp [17]. However, manually constructing
these rules is only possible for a very narrow application interface.

In [20], the authors have looked at a similar technology to isolate
UDFs in a sandbox environment for Apache Spark. The primary
difference from the work presented in this paper, the sandboxed
environment is local to the cluster processing the data and avoids
additional network interaction. In addition, it is not limited to reg-
istering UDFs in the catalog but supports the full surface of inlined
UDFs in Spark.

8 Conclusions and future work
In this paper, we have shown how to uniformly, efficiently, and
securely support fine-grained access control and multi-user capa-
bilities on the Databricks platform for enterprise workloads lever-
aging Apache Spark. The approach based on using Spark Connect
for client isolation and the proprietary user code isolation layer
has proven to be very successful, supporting thousands of cus-
tomers across the Databricks platform. In addition, this architecture
started an architectural shift for Databricks Apache Spark work-
loads, where previously users and integrators always had to think
about provisioning compute when trying to leverage Spark, our
Serverless Spark offering has changed the way internal and exter-
nal users build upon our platform. Most importantly, governance
and security are always enforced and managed centrally by Unity
Catalog.

We believe that in the future, there will be a strong adoption
of Spark Connect in the context of Apache Spark workloads, not
just in Databricks, but across the open source community as well.
In the same way that JDBC interfaces have standardized access to
databases, we believe that Spark Connect provides a similar abstract
integration layer.
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