databricks

Learning
Use Cases

@
@
Machine ®
9o


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Contents

< databricks

CHAPTER 1:
Introduction

CHAPTER 2:
Moneyball 2.0: Improving Pitch-by-Pitch Decision-Making With MLB’s Statcast Data

CHAPTER 3:
Improving On-Shelf Availability for ltems With Out-of-Stock Modeling

CHAPTER 4:
Using Dynamic Time Warping and MLflow to Detect Sales Trends
Part 1: Understanding Dynamic Time Warping
Part 2: Using Dynamic Time Warping and MLflow to Detect Sales Trends

CHAPTER 5:
Detecting Financial Fraud at Scale With Decision Trees and MLflow on Databricks

CHAPTER 6:
Al Drug Discovery Made Easy: Your Guide to Chemprop on Databricks

CHAPTER 7:
Efficient Distributed Energy Load Forecasting with Databricks at EDP E-REDES

CHAPTER 8:
Processing Geospatial Data at Scale With Databricks

14

20

26

34

45

53

63


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

CHAPTER 1:

Introduction

< databricks

Organizations across many industries are using machine learning to power
new customer experiences, optimize business processes and improve
employee productivity. From detecting financial fraud to improving the
play-by-play decision-making for professional sports teams, this book
brings together a multitude of practical use cases to get you started on
your machine learning journey. The collection also serves as a guide —
including code samples and notebooks — so you can roll up your sleeves

and dive into machine learning on the Databricks Lakehouse.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Moneyball 2.0:

Improving Pitch-by-Pitch
Decision-Making With
MLB's Statcast Data

Introduction

The Oakland Athletics baseball team in 2002 used data analysis and quantitative modeling to identify
undervalued players and create a competitive lineup on a limited budget. The book “Moneyball,” written
by Michael Lewis, highlighted the A's ‘O2 season and gave an inside glimpse into how unique the

team'’s strategic data modeling was for its time. Fast-forward 20 years — the use of data science and

quantitative modeling is now a common practice among all sports franchises and plays a critical role

in scouting, roster construction, game-day operations and season planning.

x| | PR

By Max Wittenberg

Player Tracking

Pich o Plate Tracking

Power Cable
Fibre Cable

dnodual Tecncal
Power Supply

& Cores.

6 Cores

6 Cores

& Cores. & Cores.

Figure 1: Position and scope of Hawkeye cameras at a baseball stadium

< databricks


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

In 2015, Major League Baseball (MLB) introduced Statcast, a set of cameras and
radar systems installed in all 30 MLB stadiums. Statcast generates up to seven
terabytes of data during a game, capturing every imaginable data point and
metric related to pitching, hitting, running and fielding, which the system collects
and organizes for consumption. This explosion of data has created opportunities

to analyze the game in real time, and with the application of machine learning,

Figure 2: Numbers represent events during a play captured by Statcast

< databricks

teams are now able to make decisions that influence the outcome of the game,
pitch by pitch. It's been 20 seasons since the A's first introduced the use of data
modeling to baseball. Here's an inside look at how professional baseball teams
use technologies like Databricks to create the modern-day “Moneyball” and gain
competitive advantages that data teams provide to coaches and players on

the field.

pitch_type game_date release_speed release_pos_x release_pos_z player_name batter pitcher events description
Sl 2020-09-18T00:00:00.000+0000 91 1.59 5.02 Sherriff, Ryan 600524 595411 field_out hit_into_play
Sl 2020-09-18T00:00:00.000+0000 90.8 1.57 5 Sherriff, Ryan 600524 595411 NaN foul

Bl 2020-09-18T00:00:00.000+0000 91.2 1.8 4.95 Sherriff, Ryan 600524 595411 NaN ball

Sl 2020-09-18T00:00:00.000+0000 91.4 1.83 4.81 Sherriff, Ryan 600524 595411 NaN ball

Sl 2020-09-18T00:00:00.000+0000 91 1.69 4.93 Sherriff, Ryan 600524 595411 NaN called_strike
Sl 2020-09-18T00:00:00.000+0000 90.5 1.74 4.84 Sherriff, Ryan 669720 595411 field_out hit_into_play
Sl 2020-09-18T00:00:00.000+0000 91.8 1.7 4.96 Sherriff, Ryan 669720 595411 NaN called_strike
Sl 2020-09-18T00:00:00.000+0000 89.7 1.6 4.95 Sherriff, Ryan 578428 595411 field_out hit_into_play
Sl 2020-09-18T00:00:00.000+0000 89.8 1.61 5.01 Sherriff, Ryan 578428 595411 NaN called_strike
FF 2020-09-18T00:00:00.000+0000 95 2.9 5.38 Scott, Tanner 664040 656945 field_out hit_into_play

Figure 3: Sample of data collected by Statcast



https://en.wikipedia.org/wiki/Statcast
https://www.databricks.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Background

Data teams need to be faster than ever to provide analytics to coaches and
players so they can make decisions as the game unfolds. The decisions made from
real-time analytics can dramatically change the outcome of a game and a team's
season. One of the more memorable examples of this was in game six of the 2020
World Series. The Tampa Bay Rays were leading the Los Angeles Dodgers 1-0 in
the sixth inning when Rays pitcher Blake Snell was pulled from the mound while
pitching arguably one of the best games of his career, a decision head coach Kevin
Cash said was made with the insights from their data analytics. The Rays went on
to lose the game and World Series. Hindsight is always 20-20, but it goes to show
how impactful data has become to the game. Coaching staff task their data teams
with assisting them in making critical decisions — for example, should a pitcher
throw another inning or make a substitution to avoid a potential injury? Does a
player have a greater probability of success stealing from first to second base,

or from second to third?

| have had the opportunity to work with many MLB franchises and discuss what
their priorities and challenges are related to data analytics. Typically, | hear three
recurring themes their data teams are focused on that have the most value in

helping set their team up for success on the field:

1. Speed: Since every MLB team has access to the Statcast data during a game,
one way to create a competitive advantage is to ingest and process the data

faster than your opponent. The average length of time between pitches is

< databricks

23 seconds, and this window of time represents a benchmark from which
Statcast data can be ingested and processed for coaches to use to make

decisions that can impact the outcome of the game.

2. Real-Time Analytics: Another competitive advantage for teams is the
creation of insights from their machine learning models in real time.
An example of this is knowing when to substitute out a pitcher from fatigue,
where a model interprets pitcher movement and data points created
from the pitch itself and is able to forecast deterioration of performance
pitch by pitch.

3. Ease of Use: Analytics teams run into problems ingesting the volumes of
data Statcast produces when running data pipelines on their local computers.
This gets even more complicated when trying to scale their pipelines to
capture minor league data and integrate with other technologies. Teams want
a collaborative, scalable analytics platform that automates data ingestion

with performance, creating the ability to impact in-game decision-making.

Baseball teams using Databricks have developed solutions for these priorities
and several others. They have shaped what the modern-day version of
“Moneyball” looks like. What follows is their successful framework explained

in an easy-to-understand way.


https://www.sportingnews.com/us/mlb/news/blake-snell-kevin-cash-analytics-explained-world-series/15ja52nunza2b1b37untxyltk3
https://www.databricks.com/blog/2020/06/04/how-the-minnesota-twins-scaled-pitch-scenario-analysis-to-measure-player-performance-part-1.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Getting the data

When a pitcher throws a baseball, Hawkeye cameras collect the data and save it
to an application that teams are able to access using an application programming
interface (API) owned by MLB. You can think of an API as an intermediate
connection between two computers to exchange information. The way this works
is: a user sends a request to an API, the API confirms that the user has permission
to access the data and then sends back the requested data for the user to
consume. To use a restaurant as an analogy — a customer tells a waiter what they
want to eat, the waiter informs the kitchen what the customer wants to eat, the

waiter serves the food to the customer. The waiter in this scenario is the API.

Application

Request Request

l

Response
‘ ’

Response

%

e

LL

Figure 4: Example of how an APl works, using a restaurant analogy

This simple method of retrieving data is called a “batch” style of data collection
and processing, where data is gathered and processed once. As noted earlier,
however, data is typically available through the APl every 23 seconds (the average
time between pitches). This means data teams need to make continuous requests

to the APl in a method known as “streaming,” where data is continuously

< databricks

collected and processed. Just as a waiter can quickly become overworked
fulfilling customers’ needs, making continuous API requests for data creates some
challenges in data pipelines. With the assistance from these data teams, however,
we have created code to accommodate continuously collecting Statcast data
during a game. You can see an example of the code using a test APl below.

from pathlib import Path
import json

class sports_api:
def _init_(self, endpoint, api key):
self.endpoint = endpoint
self.api key = api key
self.connection = self.endpoint + self.api key

def fetch payload(self, request 1, request 2, adls path):
url = f”{self.connection}é&series id={request 1}{request 2}-
99.M”
r = requests.get (url)
json _data = r.json()
now = time.strftime (“"$Y¥m$d-%HIMSS”)
file name = f”json _data out {now}”
file path = Path(“dbfs:/”) / Path(adls path) / Path(file name)
dbutils.fs.put (str (file path), Jjson.dumps(json data), True)
return str(file path)

Figure 5: Interacting with an API to retrieve and save data

This code decouples the steps of getting data from the APl and transforming
it into usable information, which in the past, we have seen, can cause latency
in data pipelines. Using this code, the Statcast data is saved as a file to cloud

storage automatically and efficiently. The next step is to ingest it for processing.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Automatically load data with Auto Loader

As pitch and play data is continuously saved to cloud storage, it can be ingested
automatically using a Databricks feature called Auto Loader. Auto Loader scans
files in the location they are saved in cloud storage and loads the data into
Databricks where data teams begin to transform it for their analytics. Auto Loader
is easy to use and incredibly reliable when scaling to ingest larger volumes of data
in batch and streaming scenarios. In other words, Auto Loader works just as well
for small and large data sizes in batch and streaming scenarios. The Python code

below shows how to use Auto Loader for streaming data.

df = spark.readStream.format (“cloudFiles”) \
.option(,) \
.schema () \
.load ()

df .writeStream. format (“delta”) \

.option (“checkpointLocation”, ) \
.trigger () \
.start ()

Figure 6: Setup of Auto Loader to stream data

One challenge in this process is working with the file format in which the Statcast
is saved, a format called JSON. We are typically privileged to work with data that is
already in a structured format, such as the CSV file type, where data is organized
in columns and rows. The JSON format organizes data into arrays and despite its
wide use and adoption, | still find it difficult to work with, especially in large sizes.

Here's a comparison of data saved in a CSV format and a JSON format.

< databricks

CcSV JSON
1
2 8 ¢ o "Employee": [
1 |ID .lGender City Monthly_|
2 |ID000002C Female Delhi 20000
3 |ID000004EMale  Mumbai 35000 {
4 |ID000007F Male Panchkulz 22500
5 |1D000008I: Male Saharsa 35000 "id":"1",
6 |1D00000S) Male Bengalury 100000
7 |IDO00010K Male Bengaluru 45000 R o i
8 |ID000011L Female  Sindhudut 70000 Name™: “Ankit",
9 |1D000012N Male Bengaluru 20000
10 |1D000013N Male Kochi 75000 "Sal": "1000",
11 |ID000014C Female  Mumbai 30000
12 |ID000016C Male Mumbai 25000 1
13 |ID000018S Female  Surat 25000 .
14 |IDO00019T Female  Pune 24000 {
15 |ID000021\ Male Bhubanes 27000
16 |1D000022v Female Howrah 28000 "id":"2",
"Name": "Faizv".

Figure 7: Comparison of CSV and JSON formats

It should be obvious which of these two formats data teams prefer to work

with. The goal then is to load Statcast data in the JSON format and transform it
into the friendlier CSV format. To do this, we can use the semi-structured data
support available in Databricks, where basic syntax allows us to extract and
transform the nested data you see in the JSON format to the structured CSV style
format. Combining the functionality of Auto Loader and the simplicity of semi-
structured data support creates a powerful data ingestion method that makes the

transformation of JSON data easy.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Using Databricks’ semi-structured data support with Auto Loader

spark.readStream.format (“cloudFiles”) \
.option(“cloudFiles.format”, “json”) \
.option(“cloudFiles.schemalLocation”, “”) \
.load (™) \
.selectExpr (
W 17
“tags:page.name”, # extracts {“tags”:{“page”:{“name”:...}}}
“tags:page.id::int”, # extracts {“tags”:{“page”:{“id”:...}}} and
casts to int
“tags:eventType” # extracts {“tags”:{“eventType”:...}}

)

As the data is loaded in, we save it to a Delta table to start working with it further.
Delta Lake is an open format storage layer that brings reliability, security and
performance to a data lake for both streaming and batch processing and is the
foundation of a cost-effective, highly scalable data platform. Semi-structured
support with Delta allows you to retain some of the nested data if needed. The
syntax allows flexibility to maintain nested data objects as a column within a Delta
table without the need to flatten out all of the JSON data. Baseball analytics teams
use Delta to version Statcast data and enforce specific needs to run their analytics

on while organizing it in a friendly structured format.

< databricks

Auto Loader writing data to a Delta table as a stream

# Define the schema and the input, checkpoint, and output paths.
read schema = (“id int, ™ +

“irstName string, “ +
“middleName string, “ +
“lastName string, “ +
“gender string, “ +
“birthDate timestamp, “ +
“ssn string, “ +
“salary int”)
json read path = ‘/FileStore/streaming-uploads/people-10m’

checkpoint path = ‘/mnt/delta/people-10m/checkpoints’
save path = ‘/mnt/delta/people-10m’

people stream = (spark \
.readStream \
.schema (read schema) \
.option(‘maxFilesPerTrigger’, 1) \
.option(‘multiline’, True) \
.Json(json_read path))

people stream.writeStream \
.format (‘delta’) \
.outputMode ( ‘append’) \
.option (‘checkpointLocation’, checkpoint path) \
.start (save path)

With Auto Loader continuously streaming in data after each pitch, semi-structured
data support transforming it into a consumable format, and Delta Lake organizing
it for use, data teams are now ready to build analytics that gives their team the

competitive edge on the field.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Machine learning for insights

Recall the Rays pulling Blake Snell from the mound during the World Series — that
decision came from insights coaches saw in their predictive models. Statistical
analysis of Snell’s historical Statcast data provided by Billy Heylen of sportingnews.
com indicated Snell had not pitched more than six innings since July 2019, had a
lower probability of striking out a batter when facing them for the third time in a
game, and was being relieved by teammate Nick Anderson, whose own pitch data
suggests was one the strongest closers in MLB, with a 0.55 earned run average
(ERA) and 0.49 walks and hits per innings pitched (WHIP) during the 19 regular-
season games he pitched in 2020. Predictive models analyze data like this in real
time and provide supporting evidence and recommendations coaches use to

make critical decisions.

Machine learning models are relatively easy to build and use, but data teams often
struggle to implement them into streaming use cases. Add in the complexity of
how models are managed and stored and machine learning can quickly become
out of reach. Fortunately, data teams use MLflow to manage their machine learning
models and implement them into their data pipelines. MLflow is an open source
platform for managing the end-to-end machine learning lifecycle and includes
support for tracking predictive results, a model registry for centralizing models that
are in use and others in development, and a serving capability for using models in

data pipelines.

MLflow Tracking

Record and query
experiments: code, data,
config, and results

Read more

MLflow Projects

Package data science code
in a format to reproduce runs
on any platform

Read more

MLflow Models

Deploy machine learning
models in diverse serving
environments

Read more

Model Registry

Store, annotate, discover,
and manage models in a
central repository

Read more

Figure 8: MLflow overview

< databricks


https://docs.databricks.com/applications/mlflow/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

To implement machine learning algorithms and models to real-time use cases,
data teams use the model registry where a model is able to read data sitting in
a Delta table and create predictions that are then used during the game. Here's
an example of how to use a machine learning model while data is automatically
loaded with Auto Loader:

Getting a machine learning model from the registry and using it with

Auto Loader

#get model from the model registry
model = mlflow.spark.load model (
model uri=f"models:/{model name}/{ ‘Production’}”)

#read data from bronze table as a Stream
events = spark.readStream \
.format (“delta”) \
#.option (“cloudFiles.maxFilesPerTrigger”, 1)\
.schema (schema) \
.table (“baseball stream bronze”)

#pass stream through model
model output = model.transform(events)

#write stream to silver delta table
events.writeStream \
.format (‘delta’) \
.outputMode (Vappend”) \
.option (‘checkpointLocation’, “/tmp/baseball/”) \
.table (“default.baseball stream silver”)

< databricks

11

The outputs a machine learning model creates can then be displayed in a data
visualization or dashboard and used as printouts or shared on a tablet during a
game. MLB franchises working on Databricks are developing fascinating use cases
that are being used during games throughout the season. Predictive models are
proprietary to the individual teams, but here’s an actual use case running on

Databricks that demonstrates the power of real-time analytics in baseball.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Bringing it all together with spin ratios and sticky stuff

MLB introduced a new rule for the 2021 season meant to discourage pitcher’s use
of “sticky stuff,” a substance hidden in mitts, belts or hats that when applied to a
baseball can dramatically increase the spin ratio of a pitch, making it difficult for
batters to hit. The rule suspends for 10 games pitchers discovered using sticky
stuff. Coaches on opposing teams have the ability to request an umpire check for
the substance if they suspect a pitcher to be using it during a game. Spin ratio is a
data point that is captured by Hawkeye cameras, and with real-time analytics and
machine learning, teams are now able to make justified requests to umpires with

the hopes of catching a pitcher using the material.

How spin affects a pitch
P P Direction of pitch

>

ol — . - S

A

The ball is pushed in
the direction of the spin,
making it harder to hit.

-—

Friction pulls air
around the ball.

e

Figure 9: lllustration of how spin affects a pitch

< databricks

12

Average adjusted fastball spin rate per season
20 21 22 23 24 25
2017

2018
2019

2020
2021

After June 3

Source: Baseball Prospectus

Figure 10: Trending spin rate of fastballs per season and after rule introduction on
June 3, 2021

Following the same framework outlined above, we ingest Statcast data pitch by
pitch and have a dashboard that tracks the spin ratio of the ball for all pitchers
during all MLB games. Using machine learning models, predictions are sent to the
dashboard that flag outliers against historical data and the pitcher’s performance
in the active game, which can alert coaches when they fall outside of ranges
anticipated by the model. With Auto Loader, Delta Lake and MLflow, all data

ingestion and analytics happen in real time.


https://www.washingtonpost.com/sports/2021/06/15/mlb-pitchers-sticky-stuff-enforcement-suspensions/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Technologies like Statcast and Databricks have brought real-time analytics to
sports and changed the paradigm of what it means to be a data-driven team.

As data volumes continue to grow, having the right architecture in place to capture
real-time insights will be critical to staying one step ahead of the competition.
Real-time architectures will be increasingly important as teams acquire and
develop players, plan for the season and develop an analytically enhanced
approach to their franchise. Ask about our Solution Accelerator with Databricks
partner Lovelytics, which provides sports teams with all the resources they need

to quickly create use cases like the ones described in this blog.

< databricks

24.63
Average Spin Rate :
Velocity

¥0.66% from Last Seascn

Historical Trend

25.50
25.00

24.50 /\

24.00

Historical Average by Pitch

4-Seam Fastball
N
1
2
o
T
i

Aug

| 2021

sep

Player Comparison

Abreu, Albert A10.64%

Abreu, Bryan

Adam, Jasen

Adams,
Austin

Akin, Keegan

Alcala, Jorge

Alcantara,
Sandy

Alexander,
Tyler

Allard, Kolby

Allen, Logan

Almonte,

AL115%

A0.62%

¥2.11%

¥2.55%

¥2.97%

¥3.11%

A0.33%

¥o0.94%

¥261%

A=z

Game Trend

e

Llast Game Outliers

Abreu, Albert
| Abreu, Bryan
Adam, Jason
| Adams, Austin
Akin, Keegan
I Alcala, Jorge
I Alcantara, Sandy
Alexander, Tyler
| Allard, Kolby
Allen, Logan
| Almonte, Yency
Altavilla, Dan
I Alvarez, José
I Alzolay, Adbert
Anderson, Chase
| Anderson, lan
Anderson, Shaun

Within Threshold | Ou

Difference

A115%
A0.62%
¥2.11%
¥2.55%
¥2.97%
¥3.11%
A0 33%
¥0.94%
Y261%
A0.58%
Al40%

V4.75%
¥2.32%
¥0.54%

Last Game

2461
28.96
2833
2534
2403
23.41
24.48
23.50
2139
2252
24.51

24.23
23.10
21.81

This Season

This Season

23.39
27.84
28.06
2593
2398
2373
2463
2403
2178
2238
24.46

25.21
23.14
21.59

tside Threshold

Last Season

24.33
28.78
28.94
26.01
2477
2416
24.40
23.72
21.96
2239
24.17

25.43
23.65
21.93

~

Figure 11: Dashboard for “sticky stuff” detection in real time


https://www.databricks.com/company/contact
https://lovelytics.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 14

Improving On-Shelf
Availability for Items With
Al Out-of-Stock Modeling

This post was written in collaboration with Databricks partner
Tredence. We thank Rich Williams, Vice President Data
Engineering, and Morgan Seybert, Chief Business Officer, of
Tredence for their contributions.

By Rich Williams, Morgan Seybert,
Rob Saker and Bryan Smith

< databricks

Introduction

Retailers are missing out on nearly $1 trillion in global sales because they don’t have on hand what
customers want to buy in their stores. Adding to the challenge, a study of 600 households and several
retailers by research firm IHL Group details that shoppers encounter out-of-stocks (OOS) as often as
one in three shopping trips, according to the report. And a study by IRl found that 20% of all out-of-

stocks remain unresolved for more than 3 days.

Overall, studies show that the average OOS rate is about 8%. That means that one out of 13 products
is not purchasable at the exact moment the customer wants to get it in the store. OOS is one of the

biggest problems in retail, but thankfully it can be solved with real-time data and analytics.

In this write-up, we showcase the new Tredence-Databricks combined On-Shelf Availability Solution
Accelerator. The accelerator is a robust quick-start guide that is the foundation for a full out-of-stock
or supply chain solution. We outline how to approach out-of-stocks with the Databricks Lakehouse to

solve for on-shelf availability in real time.

And the impact of solving this problem? A 2% improvement in on-shelf availability is worth 1% in

increased sales for retailers.


https://www.retaildive.com/news/out-of-stocks-could-be-costing-retailers-1t/526327/
https://www.retaildive.com/news/out-of-stocks-could-be-costing-retailers-1t/526327/
https://cdn.ymaws.com/www.theipm.org.uk/resource/resmgr/communities/connected_shopper/osa_white_paper_-_final__1_.pdf
https://www.winsightgrocerybusiness.com/operations/inventory-management-out-time-out-stocks
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Growth in e-commerce makes item availability
more important

The significance of this problem has been amplified by the availability of
e-commerce for delivery and curbside pickup orders. While customers that face
an out-of-stock at the store level may just not purchase that item, they are likely to
purchase other items in the store. Buying online means that they may just switch

to a different retailer.

The impact is not just limited to a bottom line loss in revenue. Research from
NielsenlQ shows that 30% of shoppers will visit new stores when they can't find
the product they are looking for, leading to a loss in long-term loyalty. Members of
e-commerce membership programs are most likely to switch retailers in the event
of an out-of-stock. IHL estimates that “upwards of 24% of Amazon's current retail

revenue comes from customers who first tried to buy the product in-store.”

Retailers have responded to this with a variety of tactics including over-ordering
of items, which increases carrying costs and lowers margins when they are forced
to sell excess inventory at a discount. In some instances, retailers and distributors
will rush order products or use intra-delivery “hot shots” for additional deliveries,
which come at an additional cost. Some retailers have invested in robotics, but
many pull out of their pilots citing costs. And other retailers are experimenting with
computer vision, although these approaches merely notify them when an item is

unavailable and don't predict item availability.

< databricks

It's not just retailers that are impacted by OOS. Retailers, consumer goods

companies, distributors, brokers and other firms each invest in third-party audits,
which typically involve employees visiting stores to identify gaps on the shelf. On
any given day, tens of thousands of individuals are visiting stores to validate item

availability. Is this really the best use of time and resources?


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Why hasn't technology solved out-of-stocks yet?

Out-of-stock issues have been around for decades, so why hasn’t the retail
industry been able to solve an issue of this magnitude that impacts shoppers,
retailers and brands alike? The seemingly simple solution is to require employees
to manually count the items on hand. But with potentially hundreds of thousands
of individual SKUs distributed across a large format retail location that may be
servicing customers nearly 24 hours a day, this simply isn't a realistic task to

perform on a regular basis.

Individual stores do perform inventory counts periodically and then rely on point-
of-sale (POS) and inventory management software to track changes that drive unit
counts up and down. But with so much activity within a store location, some of the
day-to-day recordkeeping falls through the cracks, not to mention the impact of

shrinkage, which can be hard to detect, on in-store supplies.

So the industry falls back on modeling. But given fundamental problems in data
accuracy, these approaches can drive a combination of false positives and false
negatives that make model predictions difficult to employ. Time sensitivities
further exacerbate the problem, as the large volume of data that often must be
crunched in order to arrive at model predictions must be handled fast enough for
the results to be actionable. The problem of building a reliable system for stockout

prediction and alerting is not as straightforward as it might appear.

< databricks

16

Introducing the On-Shelf Availability Solution Accelerator

Our partners at Tredence approached us with the idea of publishing a Solution
Accelerator that they've created as the core of a broader Supply Chain Control
Tower offering. Tredence works with the largest retailers on the planet and
understands the nuances of modeling OOS and knew that Databricks’ processing

and their advanced data science capabilities were a winning combination.

While the OSA solution focuses on driving sales through improved stock availability
on the shelves, the broader Retail Supply Chain Control Tower solves for multiple
adjacent merchandising problems — inventory design for the stores, efficient store
replenishments, design of store network for omnichannel operations, etc. Knowing

how big a problem this is in retail, we immediately took them up on their offer.

The first step in addressing OSA challenges is to examine their occurrence in
the historical data. Past occurrences point to systemic issues with suppliers and

internal processes, which will continue to cause problems if not addressed.

To support this analysis, Tredence made available a set of historical inventory and
sales data. These data sets were simulated, given the obvious sensitivities any
retailer would have around this information, but were created in a manner that
frequently observed OSA challenges manifested in the data. These challenges were:

1. Phantom inventory 3. Zero-sales events

2. Safety stock violations 4. On-shelf availability


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Phantom inventory

In a phantom inventory scenario, the units reported to be on hand do not align

with units expected based on reported sales and replenishment.

160 Alert

140

120

100

80

Units

60

a0

20

TTIIT01]

T )

1

.
1-May 2-May 3-May 4-May 5-May 6-May 7-May 8-May 9-May 10-May 11-May 12-May 13-May 14-May 15-May

Replenished Units =0=0n-Hand Inventory ={=Sales Units <> Phantom Inventory

Figure 1: The misalignment of reported inventory, with inventory expected based on sales and
replenishment, creating phantom inventory

Poor tracking of replenishment units, unreported or undetected shrinkage,

and out-of-band processes coupled with infrequent and sometimes inaccurate
inventory counts create a situation where retailers believe they have more
units on hand than they actually do. If large enough, this phantom inventory
may delay or even prevent the ordering of replenishment units, leading to an

out-of-stock scenario.

< databricks

Safety stock violations

Most organizations establish a threshold for a given product’s inventory, below
which replenishment orders are triggered. If set too low, inadequate lead times or
even minor disruptions to the supply chain may lead to an out-of-stock scenario

while new units are moving through the replenishment pipeline.

120

Alert Alert
! | ¢—»
I

100

80

60

Units

40

20

1-May 2-May 3-May 4-May 5-May 6-May 7-May 8-May 9-May 10-May 11-May 12-May 13-May 14-May 15-May

Safety stock Replenished Units ~ =0O=0On-Hand Inventory

Figure 2: Safety stock levels not providing adequate lead time to prevent out-of-stock issues

The flip side of this is that if set too high, retailers risk overstocking products that
may expire, risk damage or theft, or otherwise consume space and capital that
may be better employed in other areas. Finding the right safety stock level for a

product in a specific location is a critical task for effective inventory management.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Zero-sales events

Phantom inventory and safety stock violations are the two most common
causes of out-of-stocks. Regardless of the cause, out-of-stock events manifest

themselves in periods when no units of a product are sold.

Not every occurrence of a zero-sales event reflects an out-of-stock concern.
Some products don't sell every day, and for some slow-moving products,
multiple days may go by within which zero units are sold while the product

remains adequately stocked.

90 . Alert . 0.35

Probability

|
1

S ————

1-May 2-May 3-May 4-May 5-May 6-May 7-May 8-May 9-May 10-May 11-May 12-May 13-May 14-May 15-May

Threshold (Probability) == Sales Units =4#= Cumulative Probablity of Zero Sales

Figure 3: Examining the cumulative probability of consecutive zero-sales events to identify potential
out-of-stock issues

The trick for scrutinizing zero-sales events at the item level is to understand the
probability of which at least one unit of a product sells on a given day and to then
set a cumulative probability threshold for consecutive days reflecting zero-sales.
When the cumulative probability of back-to-back zero-sales events exceeds the

threshold, it’s time for the inventory of that product to be examined.

< databricks

On-shelf availability

While understanding scenarios in which items are not in stock is critical, it’s
equally important to recognize when products are technically available for sale

but underperforming because of non-optimal inventory management practices.
These merchandising problems may be due to poor placement of displays within
the store, the stocking of products deep within a shelf, the slow transfer of product
from the backroom to shelves, or a myriad of other scenarios in which inventory

is adequate to meet demand but customers cannot easily view or access it.

(a) (b) (c) (d) (e) ()

Units

= Actual Sales ===+ Expected Sales Units = Replenishment Units <> Deviation below threshold <« Deviation above threshold

OSA alerts based on deviation observed between Actual and Expected Sales Units

Figure 4: Depressed sales due to poor product placement leading to an on-shelf availability problem

To detect these kinds of problemes, it is helpful to compare actual sales to
those forecasted for the period. While not every missed sales goal indicates
an on-shelf availability problem, a sustained miss might signal a problem that

requires further attention.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

How we approach out-of-stocks with the Databricks
Lakehouse Platform

The evaluation of phantom inventories, safety stock violations, zero-sales events
and on-shelf availability problems requires a platform capable of performing a
wide range of tasks. Inventory and sales data must be aggregated and reconciled
at a per-period level. Complex logic must be applied across these data to examine
aggregate and series patterns. Forecasts may need to be generated for a wide
range of products across numerous locations. And the results of all this work

must be made accessible to the business analysts responsible for scrutinizing the

findings before soliciting action from those in the field.

Databricks provides a single platform capable of all this work. The elastic
scalability of the platform ensures that the processing of large volumes of
data can be performed in an efficient and timely manner. The flexibility of its

development environment allows data engineers to pivot between common

languages, such as SQL and Python, to perform data analysis in a variety of modes.

Pre-integrated libraries provide support for classic time series forecasting
algorithms and techniques, and easy programmatic installations of alternative

libraries such as Facebook Prophet allow data scientists to deliver the right

< databricks

19

forecast for the business’s needs. Scalable patterns ensure data science tasks
are also tackled in an efficient and timely manner with little deviation from the

standard approaches data scientists typically employ.

And the SQL Analytics interface, as well as robust integrations with Tableau and
Power Bl, allows analysts to consume the results of the data scientists’ and data

engineers’ work without having to first port the data to alternative platforms.

Getting started

Be sure to check out and download the notebooks for out-of-stock modeling.
As with any of our Solution Accelerators, these are a foundation for a full solution.
If you would like help with implementing a full out-of-stock or supply chain

solution, go visit our friends at Tredence.

To see these features in action, please check out the following notebooks

demonstrating how Tredence tackled out-of-stocks on the Databricks platform:

OSA 1: Data Preparation >
OSA 2: Out-of-Stocks -
OSA 3: On-Shelf Availability -



https://www.databricks.com/product/production-ready
https://www.databricks.com/product/production-ready
https://docs.databricks.com/spark/latest/spark-sql/index.html
https://docs.databricks.com/languages/python.html
https://docs.databricks.com/runtime/index.html
https://docs.databricks.com/libraries/notebooks-python-libraries.html
https://www.databricks.com/blog/2021/04/06/fine-grained-time-series-forecasting-at-scale-with-facebook-prophet-and-apache-spark-updated-for-spark-3.html
https://www.databricks.com/product/databricks-sql
https://docs.databricks.com/integrations/bi/tableau.html
https://docs.databricks.com/integrations/bi/power-bi.html
https://www.tredence.com/
https://www.databricks.com/notebooks/osa-tredence/01_data-preparation.html
https://www.databricks.com/notebooks/osa-tredence/02_out-of-stock.html
https://www.databricks.com/notebooks/osa-tredence/03_on-shelf-availability.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 20

Using Dynamic Time
Warping and MLflow to
Detect Sales Trends

Part 1 of our Using Dynamic Time Warping

and MLflow to Detect Sales Trends series

By Ricardo Portilla, Brenner Heintz

and Denny Lee

Try this notebook in Databricks -

< databricks

Introduction

The phrase “dynamic time warping,” at first read, might evoke images of Marty McFly driving his DeLorean at
88 MPH in the “Back to the Future” series. Alas, dynamic time warping does not involve time travel; instead,
it's a technique used to dynamically compare time series data when the time indices between comparison

data points do not sync up perfectly.

As we'll explore below, one of the most salient uses of dynamic time warping is in speech recognition —
determining whether one phrase matches another, even if the phrase is spoken faster or slower than its
comparison. You can imagine that this comes in handy to identify the “wake words” used to activate your
Google Home or Amazon Alexa device — even if your speech is slow because you haven't yet had your daily

cup(s) of coffee.

Dynamic time warping is a useful, powerful technique that can be applied across many different domains.
Once you understand the concept of dynamic time warping, it's easy to see examples of its applications in

daily life, and its exciting future applications. Consider the following uses:

= Financial markets: comparing stock trading data over similar time frames, even if they do not match

up perfectly. For example, comparing monthly trading data for February (28 days) and March (31 days).

= Wearable fitness trackers: more accurately calculating a walker’s speed and the number of steps,

even if their speed varied over time

= Route calculation: calculating more accurate information about a driver’s ETA, if we know something
about their driving habits (for example, they drive quickly on straightaways but take more time than

average to make left turns)

Data scientists, data analysts and anyone working with time series data should become familiar with this
technique, given that perfectly aligned time series comparison data can be as rare to see in the wild as

perfectly “tidy” data.


https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.265630156.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

In this blog series, we will explore:
= The basic principles of dynamic time warping
= Running dynamic time warping on sample audio data
= Running dynamic time warping on sample sales data using MLflow

Dynamic time warping

The objective of time series comparison methods is to produce a distance metric
between two input time series. The similarity or dissimilarity of two time series
is typically calculated by converting the data into vectors and calculating the

Euclidean distance between those points in vector space.

Dynamic time warping is a seminal time series comparison technique that has
been used for speech and word recognition since the 1970s with sound waves
as the source; an often cited paper is “Dynamic time warping for isolated word

recognition based on ordered graph searching techniques.”

Background

This technique can be used not only for pattern matching, but also anomaly
detection (e.g., overlap time series between two disjoint time periods to
understand if the shape has changed significantly, or to examine outliers). For
example, when looking at the red and blue lines in the following graph, note the
traditional time series matching (i.e., Euclidean matching) is extremely restrictive.
On the other hand, dynamic time warping allows the two curves to match up
evenly even though the X-axes (i.e., time) are not necessarily in sync. Another way
to think of this is as a robust dissimilarity score where a lower number means the

series is more similar.

< databricks

21

|/ A\

EUCLIDEAN MATCHING

Source: Wikimedia Commons
DYNAMIC TIME WARP MATCHING File: Euclidean_vs_DTW.jpg

Two time series (the base time series and new time series) are considered similar
when it is possible to map with function f(x) according to the following rules so as

to match the magnitudes using an optimal (warping) path.
J(x)) maps to f(x;) when i < =j

J(x) maps to f(x)) only when (j — i) is within fixed range


https://ieeexplore.ieee.org/document/1171695
https://ieeexplore.ieee.org/document/1171695
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Sound pattern matching

Traditionally, dynamic time warping is applied to audio clips to determine the
similarity of those clips. For our example, we will use four different audio clips
based on two different quotes from a TV show called The Expanse. There are four
audio clips (you can listen to them below, but this is not necessary) — three of

them (clips 1, 2 and 4) are based on the quote
“Doors and corners, kid. That’s where they get you.”
And in one clip (clip 3) is the quote

“You walk into a room too fast, the room eats you.”

Clip1 Doors and corners, kid.
That’s where they get you. [Vv1]

Clip 2 Doors and corners, kid.
That’s where they get you. [v2]

» 0:00/0:06 == LDl » 0:00/0:.08 = D)

Clip 3  You walk into a room too fast,
the room eats you.

Clip 4 Doors and corners, kid.
That’s where they get you. [v3]

> 0.00/007 o= D) » 0:00/0:07 == B

Quotes are from “The Expanse”

< databricks

= Clip 1: This is our base time series based on the quote “Doors and corners,

kid. That's where they get you.”

Below are visualizations using matplotlib of the four audio clips:

22

= Clip 2: This is a new time series [v2] based on clip 1 where the intonation and

speech pattern are extremely exaggerated

= Clip 3: This is another time series that's based on the quote “You walk into a

room too fast, the room eats you.” with the same intonation and speed as clip 1

= Clip 4: This is a new time series [v3] based on clip 1 where the intonation and

speech pattern is similar to clip 1

Clip1 Doors and corners, kid.
That’s where they get you. [vI]

Clip 3  You walk into a room too fast,
the room eats you.

Clip 2 Doors and corners, kid.
That's where they get you. [v2]

Clip 4 Doors and corners, kid.
That's where they get you. [v3]


https://www.imdb.com/title/tt3230854/
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you-2.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid.wav
https://www.amazon.com/The-Expanse-Season-1/dp/B018BZ3SCM
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 23

The code to read these audio clips and visualize them using Matplotlib can be As noted below, the two clips (in this case, clips 1and 4) have different intonations

summarized in the following code snippet. (amplitude) and latencies for the same quote.

from scipy.io import wavfile
from matplotlib import pyplot as plt
from matplotlib.pyplot import figure

# Read stored audio files for comparison
fs, data = wavfile.read (“/dbfs/folder/clipl.wav”)

# Set plot style
plt.style.use (‘'seaborn-whitegrid’)

# Create subplots

ax = plt.subplot (2, 2, 1)
ax.plot (datal, color='#67A0DA’)

# Display created figure \\\:\;:::::\\\\\\\\\\

fig=plt.show () Doors and corners, kid. That’s where they get you.

display (fig)
The full code base can be found in the notebook Dynamic Time Warping /
Background.

< databricks


https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

24

If we were to follow a traditional Euclidean matching (per the following graph), even

With dynamic time warping, we can shift time to allow for a time series comparison
if we were to discount the amplitudes, the timings between the original clip (blue) between these two clips.
and the new clip (yellow) do not match.

EUCLIDEAN MATCHING

DYNAMIC TIME WARPING

: : : i corners ' viL
f Lo : where | they : P : ‘where,
doors and : kid R P

: doérsg : kid : E
: ‘ corners ! por i get :

: : v oW
and that_ s L get
. e A ' . o4 iiyou
¢ 6 o ¢ ¢ o H ¢ & & & 5 b o b

< databricks


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

For our time series comparison, we will use the fastdtw PyPilibrary; the

20000
instructions to install PyPi libraries within your Databricks workspace can be found
here: Azure | AWS. By using fastdtw, we can quickly calculate the distance between 15000

the different time series. 10000

5000 h
from fastdtw import fastdtw , | J‘ J
1 N ;‘“
r v

. l\ d
# Distance between clip 1 and clip 2 f' | 'r" ‘I
|’

distance = fastdtw(data clipl, data clip2) [0] ~5000 '
print (“The distance between the two clips is %s” % distance)

-10000

-15000
0 50000 100000 150000 200000 250000 300000 350000 400000 450000

The full code base can be found in the notebook Dynamic Time Warping

Background.
Some quick observations:
BASE QUERY DISTANCE
Clip1 Clip 2 480148446.0 = As noted in the preceding graph, clips 1and 4 have the shortest distance,
, as the audio clips have the same words and intonations
Clip 3 310038909.0
Clip 4 SRR e = The distance between clips 1and 3 is also quite short (though longer

than when compared to clip 4) — even though they have different words,

they are using the same intonation and speed
= Clips 1and 2 have the longest distance due to the extremely exaggerated

intonation and speed even though they are using the same quote

As you can see, with dynamic time warping, one can ascertain the similarity of

two different time series.

Next

Now that we have discussed dynamic time warping, let's apply this use case to

detect sales trends.

< databricks


https://pypi.org/project/fastdtw/
https://docs.azuredatabricks.net/user-guide/libraries.html#pypi-libraries
https://docs.databricks.com/user-guide/libraries.html?_ga=2.202207314.2112692442.1591844546-225663068.1585060489#pypi-libraries
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://www.databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
https://www.databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Using Dynamic Time
Warping and MLflow to
Detect Sales Trends

Part 2 of our Using Dynamic Time Warping

and MLflow to Detect Sales Trends series

By Ricardo Portilla, Brenner Heintz

and Denny Lee

Try this notebook series
(in DBC format) in Databricks ->

< databricks

Background

Imagine that you own a company that creates 3D printed products. Last year, you knew that drone
propellers were showing very consistent demand, so you produced and sold those, and the year before you
sold phone cases. The new year is arriving very soon, and you're sitting down with your manufacturing team
to figure out what your company should produce for next year. Buying the 3D printers for your warehouse
put you deep into debt, so you have to make sure that your printers are running at or near 100% capacity at

all times in order to make the payments on them.

Since you're a wise CEQ, you know that your production capacity over the next year will ebb and flow —
there will be some weeks when your production capacity is higher than others. For example, your capacity
might be higher during the summer (when you hire seasonal workers), and lower during the third week of
every month (because of issues with the 3D printer filament supply chain). Take a look at the chart below to

see your company'’s production capacity estimate:

Optimal Weekly Product Sales

35
30
25 [e

& N Al e NS

Sales
o
»
4
»
®
g
<
L=

Week


https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

< databricks

Your job is to choose a product for which weekly demand meets your production capacity as closely
as possible. You're looking over a catalog of products which includes last year’s sales numbers for each

product, and you think this year’s sales will be similar.

If you choose a product with weekly demand that exceeds your production capacity, then you'll have to
cancel customer orders, which isn't good for business. On the other hand, if you choose a product without
enough weekly demand, you won't be able to keep your printers running at full capacity and may fail to

make the debt payments.

Dynamic time warping comes into play here because sometimes supply and demand for the product you
choose will be slightly out of sync. There will be some weeks when you simply don't have enough capacity
to meet all of your demand, but as long as you're very close and you can make up for it by producing
more products in the week or two before or after, your customers won’t mind. If we limited ourselves to
comparing the sales data with our production capacity using Euclidean matching, we might choose a
product that didn’t account for this and leave money on the table. Instead, we'll use dynamic time warping

to choose the product that's right for your company this year.

27


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Load the product sales data set

We will use the weekly sales transaction data set found in the UCI Data Set
Repository to perform our sales-based time series analysis. (Source attribution:

James Tan, jamestansc@suss.edu.sg, Singapore University of Social Sciences)

import pandas as pd

# Use Pandas to read this data
sales pdf = pd.read csv(sales dbfspath, header='infer’)

# Review data
display (spark.createDataFrame (sales pdf))

Product_Code WO w1 W2 w3 w4 w5 Wé w7 w8 w9 w10 w11 w12 W13
P1 11 12 10 8 13 12 14 21 6 14 11 14 16 9
P2 7 6 3 2 7 1 6 3 3 3 2 2 6 2
P3 7 11 8 9 10 8 7 13 12 6 14 9 4 7
P4 12 8 13 5 9 6 9 13 13 11 8 4 5 4
P5 8 5 13 1 6 il 9 14 9 9 11 18 8 4
P6 3 3 2 7 6 3 8 6 6 3 1 1 5 4
P7 4 8 3 7 8 7 2 3 10 3 5 2 3 4
P8 8 6 10 9 6 8 7 5 10 10 8 8 15 9

Each product is represented by a row, and each week in the year is represented
by a column. Values represent the number of units of each product sold per week.

There are 811 products in the data set.

< databricks

28

Calculate distance to optimal time series by product code

# Calculate distance via dynamic time warping between product code and
optimal time series

import numpy as np

import ucrdtw

def get keyed values(s):
return(s[0], s[l:])

def compute distance (row) :
return(row[0], ucrdtw.ucrdtw(list(row[1][0:52]), list(optimal
pattern), 0.05, True) [1])

ts values = pd.DataFrame (np.apply along axis (get keyed values, 1,
sales pdf.values))

distances = pd.DataFrame (np.apply along axis (compute distance, 1, ts_
values.values))

distances.columns = [‘pcode’, ‘dtw dist’]

Using the calculated dynamic time warping “distances” column, we can view the

distribution of DTW distances in a histogram.

DTW Distances for Each Pairwise Product Sales Comparison

II|I|II‘|\|||||‘\“H‘\‘\“\ll"lllllll.."ll-—
6 7 8 9 10

Distances

90

Counts
] w - w [=2) ~
o o o o o o

—
o

0, N


https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
mailto:jamestansc%40suss.edu.sg?subject=
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

From there, we can identify the product codes closest to the optimal sales trend
(i.e., those that have the smallest calculated DTW distance). Since we're using
Databricks, we can easily make this selection using a SQL query. Let’s display those
that are closest.

%sqgl

-— Top 10 product codes closest to the optimal sales trend

select pcode, cast (dtw dist as float) as dtw dist from distances order
by cast (dtw dist as float) limit 10

6.0
5.5

5.
4.
4.
3.
3.
2.
2.
15
1.00
0.
0.00

P675 P703 P358 P697 P816 P601 P674 P372 P476 P694
pcode

o o o o

ditw_dist
o

o o

o
o

< databricks

29

After running this query, along with the corresponding query for the product codes
that are furthest from the optimal sales trend, we were able to identify the two
products that are closest and furthest from the trend. Let’s plot both of those

products and see how they differ.

35 Comparing Optimal Sales Trends With P675 and P716
—e— Optimal Sales Trend
a— P675

30 —— P716

25 e

2 /-
20 ao N ot - ° /
A / e X / \‘\‘ Te 4 e ¥/
R e ‘/ / o /7.‘ “\\‘ o o A "
/ - | \ ../
15 s F - e
— \ /
®
10 e A .
a A
/ A & A a—a a4
/ A A A A AA A
5 A—b /& B & / h—a—A F'S
A A { X a4 \ oy { B £
L A a / &
04 [ & R R &
0 10 20 30 40 50

As you can see, Product #675 (shown in the orange triangles) represents the
best match to the optimal sales trend, although the absolute weekly sales are
lower than we'd like (we'll remedy that later). This result makes sense since we'd
expect the product with the closest DTW distance to have peaks and valleys that
somewhat mirror the metric we're comparing it to. (Of course, the exact time
index for the product would vary on a week-by-week basis due to dynamic time
warping.) Conversely, Product #716 (shown in the green stars) is the product with

the worst match, showing almost no variability.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Finding the optimal product: Small DTW distance and
similar absolute sales numbers

Now that we've developed a list of products that are closest to our factory’'s
projected output (our “optimal sales trend”), we can filter them down to those that
have small DTW distances as well as similar absolute sales numbers. One good
candidate would be Product #202, which has a DTW distance of 6.86 versus the

population median distance of 7.89 and tracks our optimal trend very closely.

# Review P202 weekly sales
y p202 = sales pdf[sales pdf[‘Product Code’] == ‘P202’].values[0][1:53]

Comparing Optimal Sales Trends With Weekly Sales for P2

o— Optimal Sales Trend
+— P716

20 30 40 50

< databricks

30

Using MLflow to track best and worst products,
along with artifacts

MLflow is an open source platform for managing the machine learning lifecycle,
including experimentation, reproducibility and deployment. Databricks notebooks
offer afully integrated MLflow environment, allowing you to create experiments,
log parameters and metrics, and save results. For more information about

getting started with MLflow, take a look at the excellent documentation.

MLflow’s design is centered around the ability to log all of the inputs and
outputs of each experiment we do in a systematic, reproducible way. On every

pass through the data, known as a “run,” we're able to log our experiment’s:
= Parameters: The inputs to our model
= Metrics: The output of our model, or measures of our model’s success

= Artifacts: Any files created by our model — for example, PNG plots or
CSV data output

= Models: The model itself, which we can later reload and use to serve

predictions


https://mlflow.org/
https://www.mlflow.org/docs/latest/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

In our case, we can use it to run the dynamic time warping algorithm several times
over our data while changing the “stretch factor,” the maximum amount of warp
that can be applied to our time series data. To initiate an MLflow experiment, and
allow for easy logging using mlflow.log param(), mlflow.log metric (),
mlflow.log artifact(),and mlflow.log model (), we wrap our main function

using:

iwith mlflow.start run() as run:

as shown in the abbreviated code at right.

< databricks

31

import mlflow

def run DTW(ts stretch factor):
# calculate DTW distance and Z-score for each product
<strong>with mlflow.start run() as run:</strong>

# Log Model using Custom Flavor

dtw model = {‘stretch factor’
‘pattern’ optimal pattern}

<strong>mlflow custom flavor.log model (dtw model, artifact
path="model”)</strong>

float (ts_stretch factor),

# Log our stretch factor parameter to MLflow
<strong>mlflow.log param(“stretch factor”, ts stretch factor)</
strong>

# Log the median DTW distance for this run
<strong>mlflow.log metric (“Median Distance”, distance median)</
strong>

# Log artifacts - CSV file and PNG plot - to MLflow

<strong>mlflow.log artifact(‘zscore outliers ’ + str(ts stretch
factor) + ‘.csv’)

mlflow.log artifact (‘DTW dist histogram.png’)

return run.info</strong>

stretch factors to test = [0.0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5]
for n in stretch factors to test:
run_ DTW (n)

With each run through the data, we've created a log of the “stretch factor”
parameter being used, and a log of products we classified as being outliers based
upon the Z-score of the DTW distance metric. We were even able to save an
artifact (file) of a histogram of the DTW distances. These experimental runs are
saved locally on Databricks and remain accessible in the future if you decide to

view the results of your experiment at a later date.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Now that MLflow has saved the logs of each experiment, we can go back through
and examine the results. From your Databricks notebook, select the “Runs” icon in

the upper right-hand corner to view and compare the results of each of our runs.

www.youtube.com/watch?v=62PAPZo-2ZU

Not surprisingly, as we increase our “stretch factor,” our distance metric decreases.

Intuitively, this makes sense: as we give the algorithm more flexibility to warp the
time indices forward or backward, it will find a closer fit for the data. In essence,

we've traded some bias for variance.

Logging models in MLflow

MLflow has the ability to not only log experiment parameters, metrics and artifacts
(like plots or CSV files), but also to log machine learning models. An MLflow model
is simply a folder that is structured to conform to a consistent API, ensuring
compatibility with other MLflow tools and features. This interoperability is very
powerful, allowing any Python model to be rapidly deployed to many different

types of production environments.

MLflow comes pre-loaded with a number of common model “flavors” for many
of the most popular machine learning libraries, including scikit-learn, Spark MLIib,

PyTorch, TensorFlow, and others. These model flavors make it trivial to log and

< databricks

32

reload models after they are initially constructed, as demonstrated in this
blog post. For example, when using MLflow with scikit-learn, logging a model is

as easy as running the following code from within an experiment:

mlflow.sklearn.log model (model=sk model, artifact path="sk model path”)

MLflow also offers a “Python function” flavor, which allows you to save any
model from a third-party library (such as XGBoost or spaCy), or even a simple
Python function itself, as an MLflow model. Models created using the Python
function flavor live within the same ecosystem and are able to interact with other
MLflow tools through the Inference API. Although it's impossible to plan for every
use case, the Python function model flavor was designed to be as universal and
flexible as possible. It allows for custom processing and logic evaluation, which
can come in handy for ETL applications. Even as more “official” model flavors
come online, the generic Python function flavor will still serve as an important
“catchall,” providing a bridge between Python code of any kind and MLflow's

robust tracking toolkit.

Logging a model using the Python function flavor is a straightforward process.

Any model or function can be saved as a model, with one requirement: It

must take in a pandas DataFrame as input, and return a DataFrame or NumPy
array. Once that requirement is met, saving your function as an MLflow model
involves defining a Python class that inherits from PythonModel, and overriding the

.predict () method with your custom function, as described here.


https://www.youtube.com/watch?v=62PAPZo-2ZU

https://www.databricks.com/blog/2018/09/21/how-to-use-mlflow-to-reproduce-results-and-retrain-saved-keras-ml-models.html
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Loading a logged model from one of our runs

Now that we've run through our data with several different stretch factors,

the natural next step is to examine our results and look for a model that did
particularly well according to the metrics that we've logged. MLflow makes it easy
to then reload a logged model, and use it to make predictions on new data, using

the following instructions:
1. Click on the link for the run you'd like to load our model from
2. Copy the “Run ID”

3. Make note of the name of the folder the model is stored in. In our case,

it's simply named “model”

4. Enter the model folder name and Run ID as shown below:

import custom flavor as mlflow custom flavor

loaded model = mlflow custom flavor.load model (artifact path='model’,
run_id=’'e26961b25c4d4402a%a5a7a679£c8052")

To show that our model is working as intended, we can now load the model and
use it to measure DTW distances on two new products that we've created within

the variable new sales units :

# use the model to evaluate new products found in ‘new sales units’
output = loaded model.predict (new_sales units)
print (output)

< databricks

33

Next steps

As you can see, our MLflow model is predicting new and unseen values with ease.
And since it conforms to the Inference API, we can deploy our model on any
serving platform (such as Microsoft Azure ML or Amazon SageMaker), deploy it as
alocal REST API end point, or create a user-defined function (UDF) that can easily
be used with Spark SQL. In closing, we demonstrated how we can use dynamic
time warping to predict sales trends using the Databricks Unified Data Analytics
Platform. Try out the Using Dynamic Time Warping and MLflow to Predict Sales
Trends notebook with Databricks Runtime for Machine Learning today.


https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-microsoft-azure-ml
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-amazon-sagemaker
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-as-a-local-rest-api-endpoint
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://databricks.com/product/unified-analytics-platform
https://databricks.com/product/unified-analytics-platform
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://www.databricks.com/blog/2018/06/05/announcing-databricks-runtime-for-machine-learning.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Detecting Financial Fraud
at Scale With Decision
Trees and MLflow on
Databricks

By Elena Boiarskaia, Navin Albert

and Denny Lee

Try this notebook in Databricks -

< databricks

Detecting fraudulent patterns at scale using artificial intelligence is a challenge, no matter the use case.
The massive amounts of historical data to sift through, the complexity of the constantly evolving machine
learning and deep learning techniques, and the very small number of actual examples of fraudulent
behavior are comparable to finding a needle in a haystack while not knowing what the needle looks like. In
the financial services industry, the added concerns with security and the importance of explaining how

fraudulent behavior was identified further increase the complexity of the task.

# Rules to Identify Known Fraud-based ‘z ;!
df = df.withColumn(“label”,

F.when(

(
(df.oldbalanceOrg <= 56900) & (df.type == “TRANSFER”) & df.newbalanceDest <= 105)) |
— < —
0101

(df.oldbalanceOrg > 56900) & (df.newbalanceOrig <= 12)) |
(
. . (df.oldbalanceOrg > 56900) & (df.newbalanceOrig > 12) & (df.amount > 1160000)
Financial Data ), 1
) .otherwise(0))

# Rules to Identify Known Fraud-based & &
df = df.withColumn(“label”,
F.when (
(
(df.oldbalanceOrg <= 56900) & (df.type == “TRANSFER”) & — |
H ( 0101
(df.oldbalanceOrg > 56900) & (df.newbalanceOrig <= 12)) |
(

. . (df.oldbalanceOrg > 56900) & (df.newbalanceOrig > 12) & (df.amount > 1160000)
Financial Data ), 1
) .otherwise(0))

To build these detection patterns, a team of domain experts comes up with a set of rules based on how
fraudsters typically behave. A workflow may include a subject matter expert in the financial fraud detection
space putting together a set of requirements for a particular behavior. A data scientist may then take a
subsample of the available data and select a set of deep learning or machine learning algorithms using
these requirements and possibly some known fraud cases. To put the pattern in production, a data engineer

may convert the resulting model to a set of rules with thresholds, often implemented using SQL.


https://pages.databricks.com/rs/094-YMS-629/images/financial-fraud-detection-decision-tree.html?_ga=2.261331150.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

This approach allows the financial institution to present a clear set of characteristics
that lead to the identification of a fraudulent transaction that is compliant with

the General Data Protection Regulation (GDPR). However, this approach also poses
numerous difficulties. The implementation of a fraud detection system using a
hardcoded set of rules is very brittle. Any changes to the fraud patterns would take
a very long time to update. This, in turn, makes it difficult to keep up with and adapt
to the shift in fraudulent activities that are happening in the current marketplace.

Additionally, the systems in the workflow described above are often siloed, with
the domain experts, data scientists and data engineers all compartmentalized.

The data engineer is responsible for maintaining massive amounts of data and
translating the work of the domain experts and data scientists into production level
code. Due to a lack of a common platform, the domain experts and data scientists
have to rely on sampled down data that fits on a single machine for analysis. This

leads to difficulty in communication and ultimately a lack of collaboration.

< databricks

35

@

Data Engineer

@@@

Data Analyst Data Scientist

In this blog, we will showcase how to convert several such rule-based detection
use cases to machine learning use cases on the Databricks platform, unifying the
key players in fraud detection: domain experts, data scientists and data engineers.
We will learn how to create a machine learning fraud detection data pipeline and
visualize the data in real time, leveraging a framework for building modular features
from large data sets. We will also learn how to detect fraud using decision trees
and Apache Spark™ MLlIlib. We will then use MLflow to iterate and refine the model

to improve its accuracy.


https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Solving with machine learning

There is a certain degree of reluctance with regard to machine learning models in
the financial world, as they are believed to offer a “black box” solution with no way
of justifying the identified fraudulent cases. GDPR requirements, as well as financial
regulations, make it seemingly impossible to leverage the power of data science.
However, several successful use cases have shown that applying machine learning

to detect fraud at scale can solve a host of the issues mentioned above.

© |

The Databricks Lakehouse Platform

Financial Data

Data Engineering Data Analytics Machine Learning

Integration With
Data Sources

k2l Integrated é®& Data _

Workspace Democratization

Training a supervised machine learning model to detect financial fraud is very
difficult due to the low number of actual confirmed examples of fraudulent
behavior. However, the presence of a known set of rules that identify a particular
type of fraud can help create a set of synthetic labels and an initial set of features.
The output of the detection pattern that has been developed by the domain
experts in the field has likely gone through the appropriate approval process to

be put in production. It produces the expected fraudulent behavior flags and

may, therefore, be used as a starting point to train a machine learning model.

< databricks

36

This simultaneously mitigates three concerns:

1. The lack of training labels
2. The decision of what features to use

3. Having an appropriate benchmark for the model

Training a machine learning model to recognize the rule-based fraudulent behavior
flags offers a direct comparison with the expected output via a confusion matrix.
Provided that the results closely match the rule-based detection pattern, this
approach helps gain confidence in machine learning—based fraud prevention with
the skeptics. The output of this model is very easy to interpret and may serve as

a baseline discussion of the expected false negatives and false positives when

compared to the original detection pattern.

Furthermore, the concern with machine learning models being difficult to interpret
may be further assuaged if a decision tree model is used as the initial machine
learning model. Because the model is being trained to a set of rules, the decision
tree is likely to outperform any other machine learning model. The additional
benefit is, of course, the utmost transparency of the model, which will essentially
show the decision-making process for fraud, but without human intervention and
the need to hard code any rules or thresholds. Of course, it must be understood
that the future iterations of the model may utilize a different algorithm altogether
to achieve maximum accuracy. The transparency of the model is ultimately
achieved by understanding the features that went into the algorithm. Having

interpretable features will yield interpretable and defensible model results.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

The biggest benefit of the machine learning approach is that after the initial

modeling effort, future iterations are modular, and updating the set of labels,

features or model type is very easy and seamless, reducing the time to production.

This is further facilitated on the Databricks Collaborative Notebooks where the
domain experts, data scientists and data engineers may work off the same data set

at scale and collaborate directly in the notebook environment. So let’s get started!

Ingesting and exploring the data

We will use a synthetic data set for this example. To load the data set yourself,
please download it to your local machine from Kaggle and then import the data via
Import Data — Azure and AWS.

The PaySim data simulates mobile money transactions based on a sample of real
transactions extracted from one month of financial logs from a mobile money
service implemented in an African country. The below table shows the information

that the data set provides:

Column Name Description

step maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).
type CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.

amount amount of the transaction in local currency.

nameQrig customer who started the transaction

oldbalanceCrg initial balance before the transaction

newbalanceOrig new balance after the transaction

nameDest customer who is the recipient of the transaction

oldbalanceDest initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).
newbalanceDest new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).

< databricks

37

Exploring the data

Creating the DataFrames: Now that we have uploaded the data to Databricks File

System (DBFS), we can quickly and easily create DataFrames using Spark SQL.

# Create df DataFrame which contains our simulated financial fraud
detection dataset

df = spark.sqgl (“select step, type, amount, nameOrig, oldbalanceOrg,
newbalanceOrig, nameDest, oldbalanceDest, newbalanceDest from sim fin
fraud detection”)

Now that we have created the DataFrame, let’s take a look at the schema and the

first thousand rows to review the data.

# Review the schema of your data
df.printSchema ()

root

| -— step: integer (nullable = true)

|-— type: string (nullable = true)

| -—— amount: double (nullable = true)

| -— nameOrig: string (nullable = true)

| -— oldbalanceOrg: double (nullable = true)

| -— newbalanceOrig: double (nullable = true)

| -— nameDest: string (nullable = true)

| -— oldbalanceDest: double (nullable = true)

| —— newbalanceDest: double (nullable = true)

1 PAYMENT Q777 C154988899 183195 176087.23 M408069119 0
PAYMENT 7861.64 C1912850431 176087.23 168225.59 M633326333 0

PO

PAVARCRIT ann4 no r4ncen4nnng ne7 n Aa447EnANAnA n


https://databricks.com/product/collaborative-notebooks
https://www.kaggle.com/
https://learn.microsoft.com/en-us/azure/databricks/data/data-tab#import-data
https://docs.databricks.com/user-guide/importing-data.html?_ga=2.224810073.2112692442.1591844546-225663068.1585060489#import-data
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://databricks.com/glossary/what-are-dataframes
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Types of transactions

Let’s visualize the data to understand the types of transactions the data captures
and their contribution to the overall transaction volume.
%sqgl

-—- Organize by Type
select type, count(l) from financials group by type

1%

type

[ TRANSFER

[ CASH_IN

I caAsH_out

B PAYMENT
DEBIT

To get an idea of how much money we are talking about, let’s also visualize the

data based on the types of transactions and on their contribution to the amount of

cash transferred (i.e., sum(amount)).

$sqgl
select type, sum(amount) from financials group by type

< databricks

38

500G
450G
400G
350G
300G
250G

200G

sum(amount)

150G

100G

50G

TRANSFER CASH_IN CASH_OUT PAYMENT DEBIT

0.00

Rule-based model

We are not likely to start with a large data set of known fraud cases to train our
model. In most practical applications, fraudulent detection patterns are identified
by a set of rules established by the domain experts. Here, we create a column
called 1abel based on these rules.

# Rules to Identify Known Fraud-based
df = df.withColumn (“label”,

F.when (

(
(df .oldbalanceOrg 56900) & (df.newbalanceOrig
56900) & (df.newbalanceOrig > 12) & (df.amount > 1160000)
)y, 1
) .otherwise (0))


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Visualizing data flagged by rules

These rules often flag quite a large number of fraudulent cases. Let's visualize the
number of flagged transactions. We can see that the rules flag about 4% of the
cases and 11% of the total dollar amount as fraudulent.

$sqgl

select label, count(l) as ‘Transactions’, sun(amount) as ‘Total Amount’
from financials labeled group by label

Transactions Total Amount

4%

label
B
[ e]

< databricks

39

Selecting the appropriate machine learning models

In many cases, a black box approach to fraud detection cannot be used. First, the
domain experts need to be able to understand why a transaction was identified
as fraudulent. Then, if action is to be taken, the evidence has to be presented

in court. The decision tree is an easily interpretable model and is a great starting
point for this use case.

4.0 +
. e ® o
. °
°
o " .-r' a2 ° °
3.0 L °
. . A0 -
I o A&
i . " ° o‘
| ] N . 'y
2.0 R O
X, e = -l e LA
i3 * efla e A A L
4 d8+ .dﬁ ".-. A a,
vV 4 A
10[vadvi o S lgral a4 4
v L] A A
s ¢ a3,
. * e
dgie” o 4 A
: ° eeds® ¢ 4
(3

Creating the training set

To build and validate our ML model, we will do an 80/20 split using
.randomSplit. This will set aside a randomly chosen 80% of the data for
training and the remaining 20% to validate the results.

# Split our dataset between training and test datasets
(train, test) = df.randomSplit([0.8, 0.2], seed=12345)


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Creating the ML model pipeline

To prepare the data for the model, we must first convert categorical variables to

numeric using .StringIndexer. We then must assemble all of the features

we would like for the model to use. We create a pipeline to contain these feature

preparation steps in addition to the decision tree model so that we may repeat

these steps on different data sets. Note that we fit the pipeline to our training data

first and will then use it to transform our test data in a later step.

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler

Visualizing the model

Calling display () on the last stage of the pipeline, which is the decision
tree model, allows us to view the initial fitted model with the chosen decisions
at each node. This helps us to understand how the algorithm arrived at the

resulting predictions.

display (dt model.stages[-1])

feature’ 6

>5 e~

from

pyspark.

.classification import DecisionTreeClassifier

# Encodes a string column of labels to a column of label indices
indexer = StringIndexer (inputCol = “type”, outputCol = “typelndexed”)

# VectorAssembler 1is a transformer that combines a given list of
columns into a single vector column
va = VectorAssembler (inputCols = [“typelndexed”, “amount”,

“oldbalanceOrg”, “newbalanceOrig”, “oldbalanceDest”, “newbalanceDest”,

“orgDiff”, “destDiff”], outputCol = “features”)

# Using the DecisionTree classifier model
dt = DecisionTreeClassifier (labelCol = “label”, featuresCol =
“features”, seed = 54321, maxDepth = 5)

# Create our pipeline stages
pipeline = Pipeline (stages=[indexer, va, dt])

# View the Decision Tree model (prior to CrossValidator)
dt model = pipeline.fit (train)

< databricks

<=5328e:4

fearare’ 5

feaiure’ 6

® Q
NS
>4 72e+1 >3.81e
<=/ 72+ <=3 Ble+-
feauie: 2 lgaiure 2 ) feature’ 0
Q 9 ) 0o
/ N
_ >5,0/e+4 e0," 2,4
o
g <=5 0ies elo” 24
‘eawre: 1 b feauie: 1 feawure: 5 fearure’ 5
e o ® Q Q ©
0
>68,72e+5 >87ze+5 >4, 60841 >4,60e+1
<=£72e+5 <=E 72e+5 <=A4.6%+1 <=1 6%e+1
feaiure' 2 feature: 4 feature’ 0 feature' 2
O © O © © 9 ® Q
>2 36 > <5e<5 €[0,7) >5,0de~
<=2 Ze46 <=7 45¢+5 €10,1] <=8 C4e~
Q O Q  Q 0 Qo Q

Visual representation of the decision tree model


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Model tuning

To ensure we have the best-fitting tree model, we will cross-validate the model
with several parameter variations. Given that our data consists of 96% negative
and 4% positive cases, we will use the Precision-Recall (PR) evaluation metric to

account for the unbalanced distribution.

<b>from</b> pyspark.ml.tuning <b>import</b> CrossValidator,
ParamGridBuilder

# Build the grid of different parameters
paramGrid = ParamGridBuilder () \
.addGrid (dt.maxDepth, [5, 10, 15]) \
.addGrid (dt.maxBins, [10, 20, 3071) \
.build()

# Build out the cross validation

crossval = CrossValidator (estimator = dt,
estimatorParamMaps = paramGrid,
evaluator = evaluatorPR,
numFolds = 3)

# Build the CV pipeline

pipelineCV = Pipeline (stages=[indexer, va, crossvall])

# Train the model using the pipeline, parameter grid, and preceding

BinaryClassificationEvaluator
cvModel u = pipelineCV.fit (train)

< databricks

41

Model performance

We evaluate the model by comparing the Precision-Recall (PR) and area under the
ROC curve (AUC) metrics for the training and test sets. Both PR and AUC appear to
be very high.

# Build the best model (training and test datasets)
train pred = cvModel u.transform(train)
test pred = cvModel u.transform(test)

# Evaluate the model on training datasets
pr train = evaluatorPR.evaluate (train pred)
auc_train = evaluatorAUC.evaluate(train pred)

# Evaluate the model on test datasets
pr_test = evaluatorPR.evaluate (test pred)
auc_test = evaluatorAUC.evaluate (test pred)

# Print out the PR and AUC values
print (“PR train:”, pr train)
print ("AUC train:”, auc_ train)
print ("PR test:”, pr test)

print ("AUC test:”, auc_test)

# Output:

# PR train: 0.9537894984523128
# AUC train: 0.998647996459481
# PR test: 0.9539170535377599

# AUC test: 0.9984378183482442


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

To see how the model misclassified the results, let’'s use Matplotlib and pandas to

visualize our confusion matrix.

Confusion Matrix (Unbalanced Test)
T T 1200000

1050000

Fraud 50717 58 E 900000

750000

600000

4 450000

No Fraud 2421 1219030 | 300000

4 150000

Fraud No Fraud
Predicted label

Balancing the classes

We see that the model is identifying 2,421 more cases than the original rules
identified. This is not as alarming, as detecting more potential fraudulent cases
could be a good thing. However, there are 58 cases that were not detected by
the algorithm but were originally identified. We are going to attempt to improve
our prediction further by balancing our classes using undersampling. That is,
we will keep all the fraud cases and then downsample the non-fraud cases to
match that number to get a balanced data set. When we visualize our new

data set, we see that the yes and no cases are 50/50.

< databricks

42

# Reset the DataFrames for no fraud ('dfn’) and fraud ( dfy’)
dfn = train.filter (train.label == 0)
dfy = train.filter(train.label == 1)

Calculate summary metrics
= train.count ()

= dfy.count ()

y/N

T < 2 %

# Create a more balanced training dataset
train b = dfn.sample (<b>False</b>, p, seed = 92285) .union (dfy)

# Print out metrics
print (“Total count: %$s, Fraud cases count: %s, Proportion of fraud

cases: %s” % (N, vy, p))
print (“Balanced training dataset count: %s” % train b.count())

# Output:

# Total count: 5090394, Fraud cases count: 204865, Proportion of fraud
cases: 0.040245411258932016

# Balanced training dataset count: 401898

# Display our more balanced training dataset
display(train b.groupBy (“label”) .count())

label
LB
mo


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Updating the pipeline

Now let's update the ML pipeline and create a new cross validator. Because we are

using ML pipelines, we only need to update it with the new data set and we can

quickly repeat the same pipeline steps.

# Re-run the same ML pipeline (including parameters grid)
crossval b = CrossValidator (estimator = dt,
estimatorParamMaps = paramGrid,

evaluator = evaluatorAUC,

numFolds = 3)

pipelineCV_b = Pipeline (stages=[indexer, va, crossval Db])

# Train the model using the pipeline, parameter grid, and
BinaryClassificationEvaluator using the “train b’ dataset
cvModel b = pipelineCV _b.fit (train b)

# Build the best model (balanced training and full test datasets)

train pred b = cvModel b.transform(train b)
test pred b = cvModel b.transform(test)

# Evaluate the model on the balanced training datasets
pr_train b = evaluatorPR.evaluate (train pred b)
auc_train b = evaluatorAUC.evaluate (train pred b)

# Evaluate the model on full test datasets
pr _test b = evaluatorPR.evaluate (test pred b)
auc_test b = evaluatorAUC.evaluate (test pred b)

# Print out the PR and AUC values
print ("PR train:”, pr train b)
print ("AUC train:”, auc_ train b)
print ("PR test:”, pr test b)
print ("AUC test:”, auc_test b)

# Output:

# PR train: 0.999629161563572

# AUC train: 0.9998071389056655
# PR test: 0.9904709171789063

# AUC test: 0.9997903902204509

< databricks

43

Review the results

Now let’s look at the results of our new confusion matrix. The model misidentified

only one fraudulent case. Balancing the classes seems to have improved the model.

Confusion Matrix (Balanced Test)
: . 1200000

1050000

Fraud 50774 1 e 900000

750000

4 600000

4 450000

No Fraud [ 488 1220963 jj 200000

4 150000

Fraud No Fraud
Predicted label

Model feedback and using MLflow

Once a model is chosen for production, we want to continuously collect feedback
to ensure that the model is still identifying the behavior of interest. Since we are
starting with a rule-based label, we want to supply future models with verified true
labels based on human feedback. This stage is crucial for maintaining confidence
and trust in the machine learning process. Since analysts are not able to review
every single case, we want to ensure we are presenting them with carefully chosen
cases to validate the model output. For example, predictions, where the model has
low certainty, are good candidates for analysts to review. The addition of this type
of feedback will ensure the models will continue to improve and evolve with the

changing landscape.


https://databricks.com/glossary/what-are-ml-pipelines
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

MLflow helps us throughout this cycle as we train different model versions.

We can keep track of our experiments, comparing the results of different model
configurations and parameters. For example here, we can compare the PR and AUC
of the models trained on balanced and unbalanced data sets using the MLflow Ul.
Data scientists can use MLflow to keep track of the various model metrics and any
additional visualizations and artifacts to help make the decision of which model
should be deployed in production. The data engineers will then be able to easily
retrieve the chosen model along with the library versions used for training as a .jar
file to be deployed on new data in production. Thus, the collaboration between
the domain experts who review the model results, the data scientists who update
the models, and the data engineers who deploy the models in production will be

strengthened throughout this iterative process.

www.youtube.com/watch?v=x_4S9r-Kks8

www.youtube.com/watch?v=BVISypymHzw

< databricks

44

Conclusion

We have reviewed an example of how to use a rule-based fraud detection

label and convert it to a machine learning model using Databricks with MLflow.
This approach allows us to build a scalable, modular solution that will help us
keep up with ever-changing fraudulent behavior patterns. Building a machine
learning model to identify fraud allows us to create a feedback loop that helps
the model to evolve and identify new potential fraudulent patterns. We have seen
how a decision tree model, in particular, is a great starting point to introduce
machine learning to a fraud detection program due to its interpretability and

excellent accuracy.

A major benefit of using the Databricks platform for this effort is that it allows
for data scientists, engineers and business users to seamlessly work together
throughout the process. Preparing the data, building models, sharing the results
and putting the models into production can now happen on the same platform,
allowing for unprecedented collaboration. This approach builds trust across

the previously siloed teams, leading to an effective and dynamic fraud
detection program.

Try this notebook by signing up for a free trial in just a few minutes and get

started creating your own models.


https://www.youtube.com/watch?v=x_4S9r-Kks8

https://www.youtube.com/watch?v=BVISypymHzw

https://d1r5llqwmkrl74.cloudfront.net/notebooks/FSI/fraud_orchestration/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

CHAPTER 6:

Al Drug Discove ry Made Did you know that Al was successfully used to discover a novel antibiotic, halicin, in 2020? This was
. . noteworthy because halicin was structurally unique, highly differentiated from conventional antibiotics like
Easy: Your Guide to

Chemprop on Databricks

penicillins, and unlocked a new direction in countering growing antibiotic resistance (Stokes et al., 2020).

N
-
8o )
~N S ——N

\ \
c\:) SN

HoN

Fig 1. Halicin, a structurally unique and novel antibiotic, discovered using Chemprop

Halicin was discovered using Chemprop (git repo). You can do the same to discover a new drug or a new
disease indication for an existing drug (aka drug repurposing) using Chemprop and other open source Al
tools on Databricks. This blog shows how highly specialized libraries like Chemprop can be easily integrated
into Databricks for drug discovery.

< databricks

45


https://www.cell.com/cell/fulltext/S0092-8674(20)30102-1
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250
https://github.com/swansonk14/chemprop
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Why do Al drug design on Databricks?

Databricks facilitates production-grade research by providing a unified platform

for data processing, model training and deployment.

Its Unity Catalog, which manages data and model assets, promotes discovery
and collaboration, making it easy to search and reuse large and complex datasets

and models.

MLflow, while open source, is a first-class citizen on Databricks, allowing both
no-code and SDK options for experiment tracking, model registration, serving
and monitoring. MLflow simplifies MLOps so research scientists can focus on

developing models and results interpretation.

Why use Chemprop?

Chemprop is a suite of Al tools based on a directed message-passing neural
network (MPNN), which treats molecules as graphs (atoms as nodes and bonds as
edges). The model applies a series of message-passing steps where it aggregates
information from neighboring atoms and bonds to build an understanding of local
chemistry. This learned fingerprint representation is fed into a feed-forward neural
network (FFN) that outputs a molecular property such as toxicity, or in halicin’s

case, the ability to inhibit bacterial growth.

< databricks

46

molecule property
embedding prediction
molecule ®
s 8888~ 380~
D-MPNN FFN

Fig 2. Chemprop treats molecules as graph structures and uses a message-passing neural network (MPNN)
to learn feature representation. The MPNN is coupled with a feed-forward neural network (FFN) for property
prediction. Source: Held et al., 2023

In the high-stakes race to develop much-needed drugs, such fast and accurate
molecular property prediction by Al is key. Besides being utilized to discover
halicin, Chemprop has been successfully used by many pharma researchers

to predict drug potency, IR spectra, combination drug synergy, etc. Below are

a few example workflows to show how you can reuse existing models or train
new ones to predict drug properties so you can find good drug candidates with

desirable ones.

Example 1: Load existing models for inferencing, e.g., solubility prediction

Chemprop relies on the PyTorch framework so one can utilize existing models

loaded from checkpoint files.

Example 2: Train a new model to specific chemical libraries or properties, e.g., a

toxicity classifier

Sometimes, existing models are inadequate as they may be nonexistent for a
particular molecular property or may not be applicable to the chemical space of

interest. Thus, it may be necessary to train a new custom model.


https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250#tbl1
https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.ffgn4pz80md5
https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.5itwq93q36ob
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Example 3: Load a newly trained model registered on Databricks MLflow for

inferencing, e.g., toxicity prediction

After one trains a model (Example 2), MLflow logs the model metrics and saves
the model artifacts. The model can be reloaded on a notebook for prediction. It
can also be registered and served so others can search and reuse it via a REST API

provided by Databricks Model Serving.
Example 4: Multitask training, e.g., ADMET regression model

For a compound to be considered a good drug candidate, it must possess
several desirable ADMET (absorption, distribution, metabolism, excretion, toxicity)
properties such that it can be readily absorbed into the body and distributed

to the target site, as well as being safely metabolized and excreted out of the
body. As there may be as many as hundreds to thousands of ADMET properties
to predict, it is common to do multitask training and inferencing to find good
candidates possessing many of them. Multitask training is advantageous as the
predicted properties are highly correlated and the joint data analysis allows

knowledge gained from one task to improve another task.

Setup

Setup is straightforward as Chemprop is available as a Python package on PyPI or

on GitHub. You will also need to install its dependency, rdkit-pypi

pip install chemprop rdkit-pypi

< databricks

47

Example 1: Load existing solubility model for inference

If you already have models as PyTorch checkpoint files (*.ckpt), you can load them

directly with Chemprop and use them for inferencing.

import torch
from lightning.pytorch import Trainer
from chemprop import data, featurizers, models

# Load model as mpnn
checkpoint path = <ckpt file path>
mpnn = models.MPNN.load from checkpoint (checkpoint path)

# Predict with the loaded mpnn
with torch.inference mode () :
trainer = Trainer (
logger=None,
enable progress bar=True,
accelerator="cpu”,
devices=1

)

test preds = trainer.predict (mpnn, data loader)

See example NB, which uses a multicomponent regressor (source: Chemprop
repo) to predict if a compound would dissolve in a solvent. It expects two columns
in Simplified Molecular Input Line Entry System (SMILES), a text representation

of molecule structures: one for the compound to be dissolved and another
representing the solvent dissolving the compound (see dataset for inferencing).

The output is solubility as measured by UV-Vis spectroscopy.


https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.zga3mz5a735n
https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.qg45dnti8wp7
https://pypi.org/project/chemprop/
https://github.com/chemprop/chemprop
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/1_load_model_inference_solubility.ipynb
https://github.com/chemprop/chemprop/raw/846340dfc41eb849ee8ed412ab559ff02a18d956/tests/data/example_model_v2_regression_mol+mol.ckpt
https://github.com/chemprop/chemprop/raw/846340dfc41eb849ee8ed412ab559ff02a18d956/tests/data/example_model_v2_regression_mol+mol.ckpt
https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System
https://raw.githubusercontent.com/chemprop/chemprop/846340dfc41eb849ee8ed412ab559ff02a18d956/tests/data/regression/mol%2Bmol/mol%2Bmol.csv
https://www.solubilityofthings.com/instrumentation-uv-vis-spectroscopy
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

COMPOUND SOLVENT

CCCCNIC(=0)C(=C/C=C/C=C/C=C2N(CCCC)c3ccccc3N2CCCC)C(=0) CICCI
N(CCCC)C1=S

C(=C/clencent)\clece(N(c2cceec2)c2cece(/C=C/c3cncen3)cc2)ccl CIccClI
CN(C)clccc2e(-c3cee(N)eec3C(=0)[0O-])c3cce(=[N+](C)C)cc-3oc2cl O

Example 2: Train a single-task classifier

If there are no satisfactory existing models, one can train a model on specific
chemical libraries or prediction properties. For example, we can train a classifier
on the ClinTox database (Wu et al.), which consists of 1,491 drugs labeled if

they exhibited toxicity during clinical trials (source: Huggingface). See

accompanying NB.

Define model architecture

Generally, chemprop MPNN models consist of a message-passing module,
an aggregation module and a final feed-forward network (FFN) module.
These modules should be configured to fit the task at hand. For example, use
a BinaryClassificationFFN as the output layer for binary classification and

RegressionFFN for regression of continuous properties.

< databricks

from chemprop import models, nn

mp = nn.BondMessagePassing ()
agg = nn.MeanAggregation ()

# If classification

ffn = nn.BinaryClassificationFEN ()

metric list = [nn.metrics.BinaryAUROC(),
nn.metrics.BinaryAUPRC (),
nn.metrics.BinaryAccuracy (),
nn.metrics.BinaryFlScore ()]

# If regression

# ffn = nn.RegressionFFN ()

# metric list = [nn.metrics.R2Score(),
# nn.metrics.RMSE () ]

mpnn = models.MPNN (mp, agg, ffn, batch norm=True, metrics=metric list)

Data preparation

Chemprop expects molecules to be represented as SMILES (cite) text strings. It

48

converts SMILES into its MoleculeDatapoint class, which tracks the target property,

the atoms and bonds as nodes and edges, respectively, and any additional
molecular descriptors.
# Convert SMILES -> MoleculeData

all data = [data.MoleculeDatapoint.from smi(smi, y) for smi, y in
zip (smis, ys)]


https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://huggingface.co/datasets/scikit-fingerprints/MoleculeNet_ClinTox
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/2_singletask_classifier_clintox.ipynb
https://chemprop.readthedocs.io/en/latest/autoapi/chemprop/nn/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Data splitting

As per best practices, split the data into train, validation and test datasets.
Chemprop has a data module with many splitting helper functions to make this
easy. However, it expects molecules as RDKit Mol objects, so we convert them

accordingly as follows:

from chemprop import data

# MoleculeDatapoint -> RDKit Mol

mols = [d.mol for d in all data]
train indices, val indices, test indices = data.make split
indices (mols, “random”, (0.8, 0.1, 0.1))

train data, val data, test data = data.split data by indices(
all data, train indices, val indices, test indices

Once split, generate graph descriptors using an appropriate featurizer and then

finally convert to a PyTorch DatalLoader.

from chemprop import data, featurizers
# Featurization: MoleculeDatapoint -> graph descriptors
featurizer = featurizers.SimpleMoleculeMolGraphFeaturizer ()

train dset = data.MoleculeDataset (train data[0], featurizer)
val dset = data.MoleculeDataset (val data[0], featurizer)
test dset = data.MoleculeDataset (test data[0], featurizer)

train locader = data.build dataloader(train dset, num workers=num
workers)
val loader = data.build dataloader(val dset, num workers=num workers)

test loader = data.build dataloader (test dset, num workers=num workers)

< databricks

Training
Once the above model architecture and datasets are defined, you can start

training with the following few lines.

from lightning.pytorch import Trainer

trainer = Trainer(
logger=False,
enable checkpointing=True,
enable progress bar=True,
accelerator="auto”,
max_epochs=20
)

trainer.fit (mpnn, train loader, val loader)

Testing

Users can also test the model with the test holdout set.

# To get test statistics
test stats = Trainer (logger=False) .test (mpnn, test loader)

# Inference to get prediction values
test preds = Trainer (logger=False) .predict (mpnn, test loader)

49


https://archive.ics.uci.edu/ml/index.php
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Manage your trained models with MLflow

As Databricks has MLflow for model lifecycle management, it is highly
recommended to log, register and serve your trained models using MLflow. Just
add a couple of MLflow commands to the trainer.fit function call.

Log and register models (also autosaves models)
import mlflow.pytorch
mlflow.pytorch.autolog(registered model name=<some model name>)
with mlflow.start run() as run:

trainer.fit (mpnn, train loader, val loader)
mlflow.end run ()

Optionally, save model artifacts to a volume on Unity Catalog

You can optionally save the model files to a desired volume path on Unity Catalog,

although Model Registry will have already saved the files upon registration.

mlflow.artifacts.download artifacts(
run_id=run.info.run id,
artifact path="some artifact path”,
dst path="some vol path”)

See NB for the end-to-end execution of Example 2.

< databricks

Example 3: Load model from MLflow for inferencing

If you have registered the model using MLflow, you can load it for inference with

simply the following:
from lightning.pytorch import Trainer

model uri = “models:/registered model name/model version”

model = mlflow.pytorch.load model (model uri)

test preds reloaded = Trainer (logger=False) .predict (model, drugbank
loader)

To get the model_uri, check out these options.

This example NB shows how the model trained in Example 2 was loaded from
MLflow and used to predict the clinical toxicity using DrugBank, a database
of over 2,000 FDA-approved small molecule drugs (source: doi.org/10.5281/
zenodo.10372418).

50


https://mlflow.org/docs/latest/api_reference/python_api/mlflow.models.html#mlflow.models.Model.log
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/2_singletask_classifier_clintox.ipynb
https://docs.databricks.com/aws/en/mlflow/models
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/3_singletask_inference_clintox.ipynb
https://doi.org/10.5281/zenodo.10372418
https://doi.org/10.5281/zenodo.10372418
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

< databricks

Example 4: Train multitask ADMET regression model

51

For a compound to be considered a good drug candidate, it must possess several desirable ADMET properties

such as bioavailability, high potency and low toxicity. In this example, we trained a multitask regression model

on 10 continuous ADMET properties from the Therapeutics Data Commons simultaneously (doi.org/10.5281/

zenodo.10372418). It is advantageous to do multitask training as the predicted properties are highly correlated

and the joint data analysis facilitates knowledge gained from one task to improve another task.

Table 1: Sample training data with 10 continuous ADMET properties for multitask regression

SMILES

Caco2_Wang

Clearance_
Hepatocyte_AZ

Clearance_
Microsome_AZ

Half_Life_Obach

HydrationFreeEnergy_
FreeSolv

LD50_Zhu
Lipophilicity_
AstraZeneca
PPBR_AZ

Solubility_AqSolDB

VDss_Lombardo

C=C[C@H]ICN2CC[C@H]IC[C@@H]2[C@@H]
(O)cleenc2ccc(0OC)ccl12
-4.6900001

6.17

null

null

null

2.21

85.48

-2.81214297

null

CC(=O)Nclcece(O)ccl

-4.4400001

6.31

25

null

1.799

0.25

26.64

-1.033323213

C#Cclccec(Ne2nene3cc(OCCOC)
c(OCCOC)cc23)cl

-4.4699998

7.41

18.62

null

null

null

3.35

95.82

null

0.77


https://doi.org/10.5281/zenodo.10372418
https://doi.org/10.5281/zenodo.10372418
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 52

< databricks

The code is similar to single-task training (Example 2), except that the final FFN has to accommodate the 10

targets that are co-trained. Thus, we define the FFN with 10 tasks as follows:

ffn = nn.RegressionFFN (n_ tasks=10)

Once trained, the multitask regressor can be used to predict the 10 ADMET properties of DrugBank loaded for

inferencing in Example 3.

See these links for the end-to-end execution for multitask training and multitask inferencing.

Conclusions

This blog provides a quickstart guide for how to use Chemprop to load existing models to train new models
and perform a variety of single-/multitask molecular property predictions. To learn more, check out the official

tutorials from Chemprop.


https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.5itwq93q36ob
https://docs.google.com/document/d/1_iZPss2I3KNUgfWXPlicO_xtSB1Bjq1C3qZfiRTjKCo/edit?tab=t.0#heading=h.zga3mz5a735n
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/4_multitask_regressor_admet.ipynb
https://github.com/yenlow/databricks-blogposts/blob/yenlow-chemprop/chemprop/5_multitask_inference_admet.ipynb
https://chemprop.readthedocs.io/en/latest/tutorial/python/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 53

Applying Image
Classification With PyTorch
Lightning on Databricks

< databricks

Traditionally, power grids have been sized with large safety margins to consider low-probability events.
Thus, there can be limits imposed on generation even when the low-probability events do not occur.
Generation and load forecasting coupled with power-flow analysis will allow E-REDES to estimate the power
flowing in each line of the HV and MV grid. Thus, E-REDES can allow for increased generation in the grid using
the existing infrastructure. It is possible that the grid generation hosting capacity can be increased by 20%,

or even more, depending on the particular case.

PREDIS is a big data time series forecasting project whose goal is to predict 200K load diagrams, each
with a 15-minute granularity, and daily for all medium- and high-voltage installations of the Portuguese

electrical grid.

To tackle this ambitious task, the PREDIS daily inference pipeline relies on an ensemble of three
state-of-the-art forecasting models — Elastic Net, LightGBM and Prophet — together with a baseline model
that outputs the previous day’s load data. Each day, the individual model whose inference on the previous
day over a given time series performed better (with respect to the MAE metric) is chosen to infer the next
three days.

Both training and inference pipelines are heavily data-dependent. The former used two years of historical
data (comprising 14.5B records), while the latter uses every day, and for each individual time series,

a year's worth of historical data to fit the series and infer it. This compute-intensive workload is leveraged
exclusively by Databricks and Spark.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

< databricks

Architecture and tech stack

Data Lake
Corporative EDPD

LA

SIT4Anakytics

Eiserverd Analytics

PREDIS 3.0 Architecture
Serve Store Process Serve
A
Mount Boints Delta Lake Delﬁéﬂke . n

Data Lake Databricks

Notebooks
Orchesiration

Databricks
workflow

High-level Orchestration

Data Factory

Data Lake

54


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 55

Here's a summary of our tech stack: Data sources

= Cloud provider: Azure = Load diagrams

= Data storage: Corporate and project data are stored in a dedicated data This main data source provides meter data from all high- and medium-

lake with Delta tables voltage installations across the Portuguese electrical grid. Every day, PREDIS

) ) ) ) ingests a staggering 60 million new records. The input dataset encompasses
= Development environment: Fully developed in Databricks Notebooks using
. 96 measurements per asset for 100,000 installations and six types of
PySpark, Python and vectorized UDFs
energy consumption, comprising the core of our load forecasting efforts.

= Notebooks orchestration: Both training and inference pipelines are
o = Grid technical information
orchestrated through Lakeflow Jobs and running in job clusters

This data source provides essential registry and geographic information for

= Resource orchestration: High-level orchestration through Azure Data . . . .
all electrical grid assets and installations.

Factory triggering Lakeflow Jobs via API
= Weather forecasts

= Forecast access: Forecasts written to an Oracle database and accessed by The IPMA (Portuguese Institute for Sea and Atmosphere) source supplies

the network planning and optimization E-REDES system

Data loading: Outputs are written into an Oracle database through Azure

Data Factory

DevOps: CI/CD pipelines managed with Azure DevOps. Model training is
performed in the development environment, while inference runs daily in

the production environment.

< databricks

weather forecasts up to three days in advance, which are incorporated as
exogenous variables in our models. These weather forecasts are pivotal

for creating external factors that influence energy demand, such as
temperature fluctuations and precipitation, thereby enhancing the accuracy

of our predictions.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

ETL workflow

Task name
Inmit
import_data
sweg
Ipma
sitda
nNjoin_sweq_ipma
masterdata
channel_aggregation
timeseries reindex
forecast_honzon index

base_inference_dataset

< databricks

0016 AM GiAA1E Al 7:06:20 AM

L&m 465
IEm 12

[436s
B2m12e
Ls.7s
L:0.1s

[s17:

[En 22«
[En 145

[Ern T4z

Em 535

56

Our ETL (extract, transform, load) comprises several Databricks notebooks, each
playing a specific role in transforming the raw data. Below is an overview of the

data transformations that form the backbone of PREDIS.

= Dataingestion and initial processing
All data sources are first imported into the Bronze database (notebook
import_data). Each source undergoes an individual processing before
combining all sources in a single master data table (this time persisted

in the Silver database).

= Weather forecast integration
To incorporate weather data into our forecasts, we perform a nearest
neighbor join (notebook nnjoin_sweg_ipma) to determine the closest
weather forecast grid point for each installation. This step ensures that

weather data is accurately aligned with the specific locations of our assets.

= Master data table
A master data table is created to maintain a comprehensive record of all
installation keys and static attributes. This table serves as a reference for

linking dynamic data with static installation information.

= Data aggregation
The raw meter data, which is reported in six separate channels, is
aggregated into two main channels: active and reactive energy. This
aggregation simplifies the dataset and focuses the forecasting models

on the data most relevant to the business.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

= Handling missing data
Data points missing due to communication failures or other issues are
addressed by reindexing the time series (notebook timeseries_reindexed).
This process involves adding missing time steps according to a fixed start

and end date, ensuring continuity in the time series data.

= Inference dataset creation
Finally, we compile the inference dataset by joining all processed data
sources, including weather forecast parameters required for accurate
predictions (notebooks forecast_horizon_index and base_inference_
dataset). This dataset forms the basis for generating forecasts and is used to

train and validate the forecasting models.

Scalability

The ETL and preprocessing pipeline is scalable by design. The process manages
huge amounts of data by leveraging Databricks and Apache Spark with pandas
UDFs for distributed data processing.

= Training pipeline: Processed two years of historical data, resulting in a

dataset with 14.5 billion records

= Inference pipeline: Processes one year of historical data every day to fit the
models and generate forecasts

< databricks

57

Time series forecasting
For each load diagram, we daily fit three local time series models, namely:

= Elastic Net Regression: This model employs an autoregressive approach

which assumes that the current value of a time series is influenced by its
past values. Elastic Net Regression enhances the basic linear regression
model by incorporating regularization to manage overfitting and model
complexity. Specifically, L2 regularization increases the model’s resilience to
multicollinearity, while L1 regularization aids in excluding irrelevant features.
To extend forecasts beyond t+1, a recursive strategy is employed, where the
model’s previous forecast is used as an input feature to predict subsequent

time steps.

= Combines the best of both worlds: Elastic Net merges the strengths
of Ridge and Lasso regression techniques. It helps in picking
out important features like Lasso and stabilizes the model with

regularization like Ridge.

= Handles multicollinearity: Elastic Net is great at dealing with
multicollinearity, which means it can manage situations where

features are highly correlated, thanks to its Ridge regularization

= Selects key features: If you have lots of predictors and suspect many
might be irrelevant, Elastic Net can help select the most important

ones thanks to the Lasso regularization


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

= LightGBM: This gradient boosting tree-based model includes built-in
feature importance and constructs decision trees sequentially. Each tree
is designed to correct the errors of its predecessor, allowing the model
to effectively capture seasonality and complex patterns in time series
data. Similar to Elastic Net Regression, LightGBM (Light Gradient Boosting

Machine) extends forecasts using a recursive strategy.

= Handles complex relationships: LightGBM excels at capturing
complex, nonlinear patterns in your data that simpler models
might miss

= Efficient and fast: It's designed to be quick and efficient with memory,

making it ideal for large datasets

= High accuracy: LightGBM often outperforms traditional machine
learning models in terms of accuracy due to its ability to capture

intricate patterns

= Seasonality and trends: Although not specifically for time series,
LightGBM can incorporate time-based features (like month, day, hour)

to help capture seasonal and trend patterns

< databricks

58

= Prophet: Developed by Facebook, Prophet is a forecasting model
that identifies seasonal patterns in time series data. Known for its
intuitive approach, Prophet typically yields good results with minimal

tuning and effort.

= Built for time series: Prophet, developed by Facebook, is specifically
designed for forecasting time series data. It handles seasonality,

holidays and trend changes effectively.

= User-friendly: It is easy to use and allows for intuitive parameter
tuning, making it accessible even to those without deep expertise in

time series analysis

= Seasonality: Prophet can handle multiple seasonalities (daily, weekly,
yearly) and even custom seasonal patterns, leveraging its built-in

capabilities for handling various seasonal effects and holidays

= Trends and anomalies: Prophet can detect and model long-term

trends and identify anomalies or change points in your data

In all three models, weather forecast variables and holidays are incorporated as
exogenous variables to enhance the accuracy of the predictions. This approach
ensures you can capture a wide range of patterns and trends in your time series

data, leading to more accurate and robust forecasts.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Cross-validation

A sliding window approach was employed for cross-validation. The two-year
training dataset was evenly split into seven segments, each based on a 60-day
interval. The models were trained using the training set to predict the validation
set up to five days ahead, and error metrics were estimated. The average of all
metric scores across these folds provided the final validation score, which was

used to determine the optimal hyperparameters.

Given the impracticality of an exhaustive hyperparameter tuning strategy for this
big data problem, we adopted a Bayesian optimization approach implemented
through the Optuna library, instead of a brute-force method like grid search.
Optuna leverages past experiments to suggest new hyperparameters, aiming to

find the optimal solution by minimizing an error metric.

The training process was optimized by conducting 20 Optuna tuning experiments
for both Prophet and LightGBM models. Due to the faster adjustment time of

Elastic Net Regression, it was trained with 28 tuning experiments per time series.
The metrics used include:

= Mean Squared Error (MSE): Used for minimizing error during optimization

= Normalized Mean Absolute Error (NMAE) and Normalized Mean Squared
Error (NMSE): Used for reporting metrics to business stakeholders. The

installed power of each installation was used to normalize these metrics.

< databricks

59

Considering the large-scale time series inference dataset, we used pandas UDFs
to parallelize the training across the entire universe of time series. This process
took approximately six days per model for the 200K time series. A key optimization
tip from Databricks was to turn off Adaptive Query Execution (AQE) and manually

repartition by the distinct number of time series.

Cross validation with hyperparameters optimization

main pipeline

......
UDF macro function

UDF macro function
Q @ python

Optuna objective Optuna objective (ol pL_IlhOl‘l
Spark

applyinPandas function function
pply ;. & python @ python A
Optuna optimize UDF micro function

@ python A

ho cle
Python for.cy model fit and predict
______
1 timeseries with 2 years +  1timeseries with 2 years = 1timeseries with 2 *  Average metrics = Sort best metric over
llrneseﬂes with train data train data years train data over all validation the subset of

Scope: 2 years train *  All combinations of *  A(wise) subset of * 1 combination of folds combinations of
data each hyperparameters combinations of hyperparameters hyperparameters for

= Allvalidation folds hyperparameters » 1 validation fold each timeseries

= All validation folds


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Inference

Based on the optimized hyperparameters for each time series model, the
inference pipeline includes the ETL processes described previously, followed by
model inference. Given the substantial volume of data, we once again used pandas
UDFs to evenly distribute the inference workload. The pipeline incorporates three
machine learning models along with a baseline model that predicts the previous
day’s values. The final model chosen for inference each day is the one that

performed best on the previous day, as exemplified below.

PREDIS — Example of daily ensemble

Best model from yesterday metrics
will be called to infer today

MAE Baseline: 2.18 MAE LinReg: 2.09

MAE LightGBM: 2.27 MAE Prophet: 2.33

< databricks

60

While the Linear Regression model performed better in this specific instance,
all models are generally used for inference. As anticipated, the inference results
were slightly less accurate compared to the training phase. This discrepancy
arises because the models were trained with data from 2022 and 2023, and
the distribution of each time series could have changed in the meantime.

To maintain model accuracy, we plan to retrain the models annually to update
the optimized hyperparameters.

The inference process takes approximately three hours to execute using

a dedicated cluster with 40 nodes.
Test dataset

A daily metrics pipeline runs after the inference pipeline, in a separate Databricks
workflow with lighter compute infrastructure. The objective is to calculate

daily error metrics for all time series and all models by comparing the real
measurements with the past forecasted values. In this case only MAE (mean
absolute error) and MSE (mean normalized error) are recorded for up to two years
of history. Later, these values are used to report the official PREDIS test metrics, by
normalizing each metric by the installation’s nominal power and creating different

aggregations — for example, “Normalized RMSE by Model, Installation and Channel.”

This metrics history will be used to create a “Model Monitoring” dashboard where
business users can inspect the quality of the forecasts at both an individual and

aggregated level.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Snippets of code

def prophet hyperparameter optimization(df, df folds):

# df: Pandas dataframe with a full timeseries

# df folds: dataframe with crossvalidation folds to run (start date
and end date of each fold)

# save key values
key = df[“key”].iloc[0]

# create timeseries, set time index, sort index
df = (
df[[“timestamp utc”, “value”, *exog columns]]
.set_index (“timestamp utc”)
.sort_index()
)

df.index.freq = “15min”

# use Optuna library to find the combination of hyperparameters that
minimizes the validation metric (MSE)
study = optuna.create_study (
direction="minimize”,
sampler=optuna.samplers.TPESampler (
n_startup_trials=n_startup_ trials, multivariate=True

),

# optuna optimize ()
study.optimize (
lambda trial: prophet crossvalidation(trial, df, df folds), n_
trials=n_trials

)

< databricks

# get best metrics
study scores = {**study.best_trial.user_ attrs}
study scores[“key”] = key

# add hyperparameters
study scores|[“hyperparameters”] = json.dumps (study.best params)

# add training time of best trial
study scores[“duration”] = (

study.best_trial.datetime complete - study.best trial.datetime

start
) .seconds

# convert to pandas
study scores = pd.DataFrame ([study scores])

return study scores]|

[“key”, “hyperparameters”, “mean_score mae”, “mean_score mse”,
“duration”]

1

Figure 1. Example of a Python function that performs Bayesian hyperparameter optimization with Optuna.

61


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

# disable spark AQE config, to avoid incompatibility with UDFs
# AQE might overwrite the repartition operation defined below
spark.conf.set(“spark.sql.adaptive.enabled”, “false”)

# repartition by distinct number of timeseries and key columns
# groupby key columns and use applyInPandas to execute the
crossvalidation UDF
# the “df parameters” is a dictionary with all validation sets to run
# this means each core of each worker/executor will run its own task/
crossvalidation
key columns = [“key”]
df = (

df .repartition(df.select(*key columns) .distinct() .count(), *key
columns)

.groupBy (*key_ columns)

.applyInPandas (

lambda df: prophet hyperparameter optimization(df, df

parameters), schema

)

Figure 2. Example of distributed training using pandas UDF and manually repartitioning by distinct
number of time series keys. Adaptive Query Execution (AQE) must be disabled to ensure that the repartition

takes effect.

Final thoughts and future work

The PREDIS project represents a significant achievement for E-REDES in time series

forecasting for energy demand and supply.

< databricks

62

Achievements

1. Advanced forecasting capabilities: Implementing Elastic Net Regression,
LightGBM and Prophet models alongside a baseline model has enabled
accurate daily forecasts for approximately 200K load diagrams, providing
precise and actionable predictions for medium- and high-voltage

installations in the Portuguese grid.

2. Scalable and efficient pipeline design: Our ETL and preprocessing
pipeline, developed using Databricks and Apache Spark with pandas UDFs,
has effectively managed large-scale data demands. Bayesian optimization

with Optuna has enhanced model performance in big data environments.

3. Effective inference process: A high-performance inference pipeline,
run on a 40-node cluster, enables daily forecasts and model selection,
demonstrating the capacity to handle large datasets and generate

timely predictions.


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Lessons learned

1. Model selection and ensemble methods: The importance of selecting
the most effective model for each time series has been emphasized. Future
work will refine ensemble methods and integrate new models to enhance

forecast accuracy.

2. Adaptation to data changes: Regular retraining is crucial for maintaining
high forecast accuracy, given the observed degradation in model
performance over time. Annual updates to the models are planned to adapt

to evolving data distributions.

3. Optimization strategies: Effective use of pandas UDFs and manual
repartitioning has improved the efficiency of cross-validation and inference
processes. Future efforts will explore further optimization techniques to
streamline these processes.

Future work

= Exploration of global models: Investigating global models as alternatives to

current local models could improve forecasting accuracy

= Development of automated model selection mechanisms: Creating
automated model selection methodology based on historical performance

patterns could enhance the efficiency of the inference pipeline

< databricks

63

= Expansion of model ensemble techniques: Adding new models to
the existing ensemble to target different data patterns and forecasting

challenges may yield more robust and accurate solutions

= Enhancement of hyperparameter optimization: Continued refinement
of hyperparameter optimization strategies will further improve model

performance and forecasting accuracy

= MLflow integration with Optuna: Record and track all Optuna trials during

future retrainings with MLflow

In conclusion, the PREDIS project has successfully demonstrated the application
of state-of-the-art forecasting models and advanced data processing techniques.
The insights gained pave the way for future innovations in time series forecasting

and energy management for E-REDES.
About E-REDES

E-REDES is a Distribution System Operator (DSO) supplying electricity to all

connected consumers across Portugal.

Mission: supply electricity to all consumers, ensuring quality, security and
efficiency while promoting a sustainable grid development that supports the
energy transition and is able to provide, in a neutral way, services to the

market agents.

= One high-/medium-voltage concession granted by the government

= 278 low-voltage concessions granted by municipalities


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

CHAPTER 8:

Processing Geospatial
Data at Scale With
Databricks

The evolution and convergence of technology has fueled a vibrant marketplace for timely and accurate
geospatial data. Every day, billions of handheld and loT devices along with thousands of airborne and
satellite remote sensing platforms generate hundreds of exabytes of location-aware data. This boom of
geospatial big data combined with advancements in machine learning is enabling organizations across

industries to build new products and capabilities.

FRAUD AND ABUSE RETAIL FINANCIAL SERVICES HEALTHCARE
A £ "
=i peaes [ = il T fa .
L4 = N\ Rl 22 S ESE: rtectnl .
. ; “__A ‘._'-_ £ - !' e T T B e o e I . a
o YL "'—1 il Rawn e | A TERI N

Detect patterns of fraud and
collusion (e.g., claims fraud,
credit card fraud)

Site selection, urban planning,
foot traffic analysis

DEFENSE AND INTEL

Economic distribution, loan risk
analysis, predicting sales at
retail, investments

Identifying disease epicenters,
environmental impact on
health, planning care

ENERGY

DISASTER RECOVERY

INFRASTRUCTURE

- N
i 't Y
¥

By Nima Razavi and Michael Johns

Climate change analysis, energy
asset inspection, oil discovery

Transportation planning,
agriculture management,
housing development

Reconnaissance, threat
detection, damage assessment

Flood surveys, earthquake
mapping, response planning

Maps leveraging geospatial data For example, numerous companies provide localized drone-based services such as mapping and site

are used widely across industries, inspection (reference Developing for the Intelligent Cloud and Intelligent Edge). Another rapidly growing

spanning multiple use cases, including . . . . . . X .
. : industry for geospatial data is autonomous vehicles. Startups and established companies alike are amassing
disaster recovery, defense and intel,

infrastructure and health services. large corpuses of highly contextualized geodata from vehicle sensors to deliver the next innovation in self-

driving cars (reference Databricks fuels wejo’s ambition to create a mobility data ecosystem). Retailers
and government agencies are also looking to make use of their geospatial data. For example, foot-traffic
analysis (reference Building Foot-Traffic Insights Data Set) can help determine the best location to open a
new store or, in the public sector, improve urban planning. Despite all these investments in geospatial data, a

number of challenges exist.

< databricks


https://databricks.com/session/azure-databricks
https://databricks.com/company/newsroom/press-releases/databricks-fuels-wejos-ambition-to-create-a-mobility-data-ecosystem
https://databricks.com/blog/2019/08/25/building-foot-traffic-insights-dataset.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Challenges analyzing geospatial at scale

The first challenge involves dealing with scale in streaming and batch applications.
The sheer proliferation of geospatial data and the SLAs required by applications
overwhelms traditional storage and processing systems. Customer data has been
spilling out of existing vertically scaled geodatabases into data lakes for many
years now due to pressures such as data volume, velocity, storage cost and strict
schema-on-write enforcement. While enterprises have invested in geospatial data,
few have the proper technology architecture to prepare these large, complex data
sets for downstream analytics. Further, given that scaled data is often required for
advanced use cases, the majority of Al-driven initiatives are failing to make it from

pilot to production.

< databricks

65

Compatibility with various spatial formats poses the second challenge. There are
many different specialized geospatial formats established over many decades as
well as incidental data sources in which location information may be harvested:

= Vector formats such as GeoJSON, KML, shapefile and WKT

= Raster formats such as ESRI Grid, GeoTIFF, JPEG 2000 and NITF

= Navigational standards such as used by AIS and GPS devices

Geodatabases accessible via JDBC/ODBC connections such as
PostgreSQL/PostGIS

= Remote sensor formats from hyperspectral, multispectral, lidar

and radar platforms
= OGC web standards such as WCS, WFS, WMS and WMTS
= Geotagged logs, pictures, videos and social media

= Unstructured data with location references

In this blog post, we give an overview of general approaches to deal with the two
main challenges listed above using the Databricks Unified Data Analytics Platform.
This is the first part of a series of blog posts on working with large volumes of

geospatial data.


https://en.wikipedia.org/wiki/GIS_file_formats
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Scaling geospatial workloads with Databricks

Databricks offers a unified data analytics platform for big data analytics and
machine learning used by thousands of customers worldwide. It is powered by
Apache Spark™, Delta Lake and MLflow with a wide ecosystem of third-party and
available library integrations. Databricks UDAP delivers enterprise-grade security,
support, reliability and performance at scale for production workloads. Geospatial
workloads are typically complex, and there is no one library fitting all use cases.
While Apache Spark does not offer geospatial Data Types natively, the open
source community as well as enterprises have directed much effort to develop

spatial libraries, resulting in a sea of options from which to choose.

There are generally three patterns for scaling geospatial operations such as spatial

joins or nearest neighbors:

1. Using purpose-built libraries that extend Apache Spark for geospatial
analytics. GeoSpark, GeoMesa, GeoTrellis and RasterFrames are a few of
such libraries used by our customers. These frameworks often offer
multiple language bindings and have much better scaling and performance

than non-formalized approaches, but can also come with a learning curve.

< databricks

66

2. Wrapping single-node libraries such as GeoPandas, Geospatial Data

Abstraction Library (GDAL) or Java Topology Suite (JTS) in ad hoc user-
defined functions (UDFs) for processing in a distributed fashion with Spark
DataFrames. This is the simplest approach for scaling existing workloads
without much code rewrite; however, it can introduce performance

drawbacks as it is more lift-and-shift in nature.

. Indexing the data with grid systems and leveraging the generated index to

perform spatial operations is a common approach for dealing with very
large-scale or computationally restricted workloads. S2, GeoHex and Uber's
H3 are examples of such grid systems. Grids approximate geo features such
as polygons or points with a fixed set of identifiable cells, thus avoiding
expensive geospatial operations altogether, and thus offer much better
scaling behavior. Implementers can decide between grids fixed to a single
accuracy that can be somewhat lossy yet more performant or grids with

multiple accuracies that can be less performant but mitigate against lossines.


https://databricks.com/glossary/big-data-analytics
https://databricks.com/product/unified-analytics-platform
https://spark.apache.org/docs/latest/sql-ref.html
https://github.com/locationtech/geomesa
https://geotrellis.io/
https://rasterframes.io/
http://geopandas.org/
https://gdal.org/
https://gdal.org/
https://github.com/locationtech/jts
https://s2geometry.io/
http://www.geohex.org/
https://eng.uber.com/h3/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

The following examples are generally oriented around a New York City taxi
pickup/drop-off data set found here. NYC Taxi Zone data with geometries will
also be used as the set of polygons. This data contains polygons for the five
boroughs of NYC as well the neighborhoods. This notebook will walk you through
preparations and cleanings done to convert the initial CSV files into Delta Lake

tables as a reliable and performant data source.

Our base DataFrame is the taxi pickup/drop-off data read from a Delta Lake Table

using Databricks.

%$scala

val dfRaw = spark.read.format (“delta”) .load(“/ml/blogs/geospatial/
delta/nyc-green”)

display (dfRaw) // showing first 10 columns

vendor_id pickup_datetime dropoff_datetime store_and_forward rate_code_id pickup_longitude pickup_latitude dropoff_longitude dropofit_latitude passener_count

2 2017-09-30 2017-09-30 23:57:43 N 1 a2 7 2 1.89 9

23:48:04

2 2017-09-30 2017-09-30 23:55:30 N 1 25 181 6 1.26 B8
23:50:24

2 2017-09-30 2017-09-3023:37:29 N 1 41 159 1 2.28 9
23:28:29

2 2017-09-30 2017-09-30 23:54:59 N 1 42 41 1 1.09 7

23:46:44

2 2017-09-30 2017-09-30 23:31:49 N 1 33 189 1 2.35 10

Showing the first 1000 rows.

Figure 1: Geospatial data read from a Delta Lake table using Databricks

< databricks

67

Geospatial operations using geospatial
libraries for Apache Spark

Over the last few years, several libraries have been developed to extend the
capabilities of Apache Spark for geospatial analysis. These frameworks bear the
brunt of registering commonly applied user-defined types (UDT) and functions
(UDF) in a consistent manner, lifting the burden otherwise placed on users and
teams to write ad hoc spatial logic. Please note that in this blog post, we use
several different spatial frameworks chosen to highlight various capabilities. We
understand that other frameworks exist beyond those highlighted, which you might

also want to use with Databricks to process your spatial workloads.

Earlier, we loaded our base data into a DataFrame. Now we need to turn the
latitude/longitude attributes into point geometries. To accomplish this, we will
use UDFs to perform operations on DataFrames in a distributed fashion. Please
refer to the provided notebooks at the end of the blog for details on adding these
frameworks to a cluster and the initialization calls to register UDFs and UDTs. For
starters, we have added GeoMesa to our cluster, a framework especially adept
at handling vector data. For ingestion, we are mainly leveraging its integration of
JTS with Spark SQL, which allows us to easily convert to and use registered JTS
geometry classes. We will be using the function st_makePoint that, given a latitude
and longitude, create a Point geometry object. Since the function is a UDF, we can
apply it to columns directly.
%scala
val df = dfRaw
.withColumn (“pickup point”, st makePoint (col (“pickup longitude”),
col (“pickup latitude”)))
.withColumn (“dropoff point”, st makePoint (col (“dropoff

longitude”), col (“dropoff latitude”)))
display (df.select (“dropoff point”,”dropoff datetime”))


https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/user-guide/libraries.html?_ga=2.232627548.2112692442.1591844546-225663068.1585060489
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

» (2) Spark Job . .
park Jobs Figure 2: Using UDFs to perform

dropoff_point dropofi_datetime

operations on DataFrames in

POINT (-73.98411560058594 40.695980072021484) 2016-04-01 00:05:53

a distributed fashion to turn

POINT (-73.8504400790039 40.724143981933584) 2016-04-01 00:05:55

geospatial data latitude/longitude

Showing the first 1000 rows.

attributes into point geometries.

We can also perform distributed spatial joins, in this case using GeoMesa's
provided st_contains UDF to produce the resulting join of all polygons against
pickup points.

%scala

val joinedDF = wktDF.join(df, st contains($”the geom”, $”pickup point”)

display (joinedDF.select (“zone”, "borough”, “pickup point”, “pickup
datetime”))

» (2) Spark Jobs

zone borough pickup_point pickup_datetime

Fort Greene Brooklyn POINT (-73.98096466064453 40.689029693603516) 2016-06-09 10:35:08
Crown Heights North Brooklyn POINT (-73.95674896240234 40.67413330078125) 2016-06-09 10:42:15
Brooklyn Heights Brooklyn POINT (-73.9929428100586 40.69749069213867) 2016-06-09 10:47:38
Brooklyn Heights Brooklyn POINT (-73.99117279052734 40.6959114074707) 2016-06-09 10:46:09
Williamsburg (South Side) Brooklyn POINT (-73.96204376220703 40.70991516113281) 2016-06-09 10:06:12
East Harlem North Manhattan POINT (-73.93933868408203 40.80525207519531) 2016-06-09 10:58:19
Steinway Queens POINT (-73.9175796508789 40.769954681396484) 2016-06-09 10:45:41
Morningside Heights Manhattan POINT (-73.96385192871094 40.80808639526367) 2016-06-09 10:36:34

Anwminmnica Lnimkén AMambnddan PAIMT {70 ASLANNE47NO0N0A AN DNACOANANESNELY Ande Ne N 4Anan.nc

Showing the first 1000 rows.

Figure 3: Using GeoMesa's provided st_contains UDF, for example, to produce the resulting join
of all polygons against pickup points

< databricks

68

Wrapping single-node libraries in UDFs

In addition to using purpose-built distributed spatial frameworks, existing single-
node libraries can also be wrapped in ad hoc UDFs for performing geospatial
operations on DataFrames in a distributed fashion. This pattern is available to

all Spark language bindings — Scala, Java, Python, R and SQL — and is a simple
approach for leveraging existing workloads with minimal code changes. To
demonstrate a single-node example, let's load NYC borough data and define
UDF find_borough(...) for point-in-polygon operation to assign each GPS location
to a borough using geopandas. This could also have been accomplished with a

vectorized UDF for even better performance

$python
# read the boroughs polygons with geopandas
gdf = gdp.read file(“/dbfs/ml/blogs/geospatial/nyc boroughs.geojson”)

b gdf = sc.broadcast (gdf) # broadcast the geopandas dataframe to all
nodes of the cluster
def find borough (latitude, longitude) :

mgdf = b gdf.value.apply(lambda x: x[“boro name”] if x[“geometry”].
intersects (Point (longitude, latitude))

idx = mgdf.first valid index ()

return mgdf.loc[idx] if idx is not None else None

find borough udf = udf (find borough, StringType())


https://en.wikipedia.org/wiki/Point_in_polygon
https://docs.databricks.com/spark/latest/spark-sql/udf-python-pandas.html?_ga=2.232789213.2112692442.1591844546-225663068.1585060489#pandas-user-defined-functions
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 69

Now we can apply the UDF to add a column to our Spark DataFrame, which assigns Grid systems for spatial indexing
a borough name to each pickup point.

oot Geospatial operations are inherently computationally expensive. Point-in-polygon,
%python

# read the coordinates from delta
df = spark.read.format (“delta”) .load(“/ml/blogs/geospatial/delta/nyc-
green’”)
df with boroughs = df.withColumn (“pickup borough”, find borough
udf (col (“pickup latitude”),col (pickup longitude)))
display (df with boroughs.select (
“pickup datetime”,”pickup latitude”,”pickup longitude”, “pickup
borough”)) Scaling spatial operations with H3 is essentially a two-step process. The first step

spatial joins, nearest neighbor or snapping to routes all involve complex operations.
By indexing with grid systems, the aim is to avoid geospatial operations altogether.
This approach leads to the most scalable implementations with the caveat of

approximate operations. Here is a brief example with H3.

is to compute an H3 index for each feature (points, polygons, ..) defined as UDF

geoToH3(..). The second step is to use these indices for spatial operations such

 (2) Spark Jobs as spatial join (point-in-polygon, k-nearest neighbors, etc.), in this case defined as
pickup_datetime pickup_latitude pickup_longitude pickup_borough UDF mU|t|PO|yg0nTOH3()

2016-04-01 00:06:39 40.718135833740234 -73.95951080322266 Manhattan

2016-04-01 00:06:28 40.86066818237305 -73.88964080810547 Manhattan

2016-04-01 00:07:25 40.73863983154297 -73.88591766357422 Manhattan

2016-04-01 00:09:44 40.69947814941406 -73.92366790771484 Manhattan

2016-04-01 00:16:02 40.691192626953125 -73.9872055053711 Manhattan

2016-04-01 00:14:52 40.761085510253906 -73.92341613769531 Manhattan

2016-04-01 00:11:00 40.686092376708984 -73.97399139404297 Manhattan

2016-04-01 0017:17 40.79181671142578 -73.944580078125 Manhattan

ARd S N4 N4 Anan.an

AR BAASTEoACAAAS

A ACCAZA4n4TECEn

¥ PRI,

Showing the first 1000 rows.

Figure 4: The result of a single-node example, where GeoPandas is used to assign each GPS location to an
NYC borough

< databricks


https://en.wikipedia.org/wiki/Grid_(spatial_index)
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Fscala

import com.uber.h3core.H3Core

import com.uber.h3core.util.GeoCoord
import scala.collection.JavaConversions.
import scala.collection.JavaConverters.

object H3 extends Serializable {
val instance = H3Core.newlInstance ()

val geoToH3 = udf{ (latitude: Double, longitude: Double, resolution:

Int) =>
H3.instance.geoToH3 (latitude, longitude, resolution)

val polygonToH3 = udf{ (geometry: Geometry, resolution: Int) =>
var points: List[GeoCoord] = List ()
var holes: List[java.util.List[GeoCoord]] = List ()
if (geometry.getGeometryType == “Polygon”) {
points = List(
geometry
.getCoordinates ()
.tolList
.map (coord => new GeoCoord(coord.y, coord.x)): *)
}

H3.instance.polyfill (points, holes.asJava, resolution).tolList

< databricks

val multiPolygonToH3 = udf{ (geometry: Geometry, resolution: Int)

var points: List[GeoCoord] = List ()

var holes: List[java.util.List[GeoCoord]] = List ()

if (geometry.getGeometryType == “MultiPolygon”) {
val numGeometries = geometry.getNumGeometries ()

if (numGeometries > 0) {
points = List (
geometry
.getGeometryN (0)
.getCoordinates ()
.toList
.map (coord => new GeoCoord(coord.y, coord.x)): _*)
t
if (numGeometries > 1) {
holes = (1 to (numGeometries - 1)) .toList.map(n => {
List (
geometry
.getGeometryN (n)
.getCoordinates ()
.toList
.map (coord => new GeoCoord (coord.y, coord.x)):

}

H3.instance.polyfill (points, holes.asJava, resolution).tolList

=>

_*).asJava

70


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

We can now apply these two UDFs to the NYC taxi data as well as the set of
borough polygons to generate the H3 index.

%scala
val res = 7 //the resolution of the H3 index, 1.2km
val dfH3 = df.withColumn (

“h3index”,

geoToH3 (col (“pickup latitude”), col(“pickup longitude”), 1lit(res))
)
val wktDFH3 = wktDF

.withColumn (“*h3index”, multiPolygonToH3 (col (“the geom”),

.withColumn (“*h3index”, explode ($”h3index”))

lit (res)))

Given a set of lat/lon points and a set of polygon geometries, it is now possible

to perform the spatial join using h3index field as the join condition. These
assignments can be used to aggregate the number of points that fall within each
polygon, for instance. There are usually millions or billions of points that have to
be matched to thousands or millions of polygons, which necessitates a scalable
approach. There are other techniques not covered in this blog that can be used for

indexing in support of spatial operations when an approximation is insufficient.

< databricks

$scala
val dfWithBoroughH3 = dfH3.join (wktDFH3,”h3index”)

display (df with borough h3.select (“zone”, “borough”, “pickup
point”, “pickup datetime”, ”h3index”))

» (1) Spark Jobs

zone borough pickup_point pickup_datetime

Morningside Heights Manhattan  POINT (-73.95296478271484 40.80758285522461)  2016-06-09 10:14:34
Central Harlem Manhattan  POINT (-73.94908905029297 40.80293655395508)  2016-06-09 10:04:08
Erooklyn Heights Erooklyn POINT (-73.99422454833984 40.69488525390625) 2016-06-09 10:52:24
Van Nest/Morris Park Bronx POINT (-73.84475708007812 40.847774505615234) 2016-06-09 10:23:52
Astoria Queens POINT (-73.9139633178711 40.76524353027344) 2016-06-09 10:25:38
Morningside Heights Manhattan ~ POINT (-73.95944213867188 40.80912399291992)  2016-06-09 10:42:56
Park Slope EBrooklyn POINT (-73.98164367675781 40.66694641113281)  2016-06-09 10:29:28
Park Slope Brooklyn POINT (-73.97588348388672 40.67397689819336)  2016-06-09 10:53:01

Emmt Ll mmn Klmwbb AAILT { 72 NECAGONEOTANANA AN TATEANSANACA CCY AN S AE AN AMNNNaT

Showing the first 1000 rows.

RAmmbnmbbmn

Figure 5: DataFrame table representing the spatial join of a set of lat/lon points and
polygon geometries, using a specific field as the join condition

h3index

613229523000885247
613229523028148223
613229551411003391
613229520937287679
613229524726841343
613229523000885247
613229552660905983
613229552669294591

c4nnAnCANNd CECEA44

71


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Here is a visualization of taxi drop-off locations, with latitude and longitude
binned at a resolution of 7 (1.22km edge length) and colored by aggregated

counts within each bin.

Figure 6: Geospatial visualization of taxi drop-off locations, with latitude and longitude binned
at a resolution of 7 (1.22km edge length) and colored by aggregated counts within each bin

< databricks

72

Handling spatial formats with Databricks

Geospatial data involves reference points, such as latitude and longitude, to physical
locations or extents on the Earth along with features described by attributes.
While there are many file formats to choose from, we have picked out a handful of

representative vector and raster formats to demonstrate reading with Databricks.
Vector data

Vector data is a representation of the world stored in x (longitude), y (latitude)
coordinates in degrees, and also z (altitude in meters) if elevation is considered.
The three basic symbol types for vector data are points, lines and polygons.
Well-known-text (WKT), GeoJSON and shapefile are some popular formats for

storing vector data we highlight below.

Let’s read NYC Taxi Zone data with geometries stored as WKT. The data structure
we want to get back is a DataFrame that will allow us to standardize with other APIs
and available data sources, such as those used elsewhere in the blog. We are able
to easily convert the WKT content found in field the_geom into its corresponding

JTS Geometry class through the st_geomFromWKT(...) UDF call.

%scala
val wktDFText = sglContext.read.format (“csv”)
.option (“header”, “true”)

.option (“inferSchema”, “true”)
.load (“/ml/blogs/geospatial/nyc_taxi zones.wkt.csv”)

val wktDF = wktDFText.withColumn (“the geom”, st geomFromWKT (col (“the
geom”) ) ) .cache


https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/GeoJSON
https://en.wikipedia.org/wiki/Shapefile
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

GeoJSON is used by many open source GIS packages for encoding a variety of

geographic data structures, including their features, properties and spatial extents.

For this example, we will read NYC Borough Boundaries with the approach taken
depending on the workflow. Since the data is conforming to JSON, we could use
the Databricks built-in JSON reader with .option(“multiline”,"true”) to load the data

with the nested schema.

%python
json _df = spark.read.option(™multiline”,”true”) .json(“nyc boroughs.
geojson”)

»* = |son_df: pyspark.sgl.dataframe.DataFrame
= features: array
= element: struct
= geometry: struct
* coordinates: array
= element: array
= element: array
= element: array
element: double
type: string
* properties: struct
boro_code: string
boro_name: string
shape_area: string
shape_leng: string
type: string
type: string

Figure 7: Using the Databricks built-in JSON reader
.option("multiline”,"true”) to load the data with the nested schema

1

< databricks

73

From there, we could choose to hoist any of the fields up to top level columns using
Spark’s built-in explode function. For example, we might want to bring up geometry,
properties and type and then convert geometry to its corresponding JTS class, as

was shown with the WKT example.

$python
from pyspark.sqgl import functions as F
json explode df = ( json df.select(
“features”,
“type”,
F.explode (F.col (“features.properties”)) .alias (“properties”)
) .select (“"*”,F.explode (F.col (“features.geometry”)) .alias (“geometry”)) .
drop (“features”))

display(json explode df)

type properties geometry
FeatureCollection + object  object
boro_code: 2 » coordinates: [[[[-73.89680883223774,40.79580844515979),[-73.89693872998792,40.79563587285357],

[-73.89723603843939,40.79572003753707],[-73.89796839783742,40.795644839161994],
[-73.89857332665558,40.7960691402596],[-73.8989526 1832527 ,40.796227852579634],
[-73.89919434249981,40.79650245601821),[-73.89852052071471,40.796936194189776],
[-73.89788253240185,40.79711653214705],[-73.89713149795642,40.79679807772831],
[-73.89678526341234,40.796329166487105).[-73.89680883223774,40.79580844515979]]],
[[[-73.88885148496334,40.798706328958765],[- 73.88860021869873,40.798650985918705],
[-73.8885856250733,40.798706072297094],[-73.88821348851279,40.798665304638554],
[-73.88821415282712,40.79866379621751),[-73.88825230744402,40.7985771803983],
[-73.88837251379924,40.79858745625632),[-73.88839250519693,40.79856629726933],

boro_name: Bronx
shape_area: 1186612476.97
shape_leng: 462858.186921

Figure 8: Using the Spark’s built-in explode function to raise a field
to the top level, displayed within a DataFrame table


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

We can also visualize the NYC Taxi Zone data within a notebook using an existing
DataFrame or directly rendering the data with a library such as Folium, a Python
library for rendering spatial data. Databricks File System (DBFS) runs over a
distributed storage layer, which allows code to work with data formats using
familiar file system standards. DBFS has a FUSE Mount to allow local API calls that
perform file read and write operations, which makes it very easy to load data with
non-distributed APIs for interactive rendering. In the Python open(..) command
below, the “/dbfs/..” prefix enables the use of FUSE Mount.

%python
import folium
import Jjson

with open (“/dbfs/ml/blogs/geospatial/nyc boroughs.geojson”, “r”) as
myfile:
boro data=myfile.read() # read GeoJSON from DBFS using FuseMount

m = folium.Map (
location=[40.7128, -74.00607],
tiles=’'Stamen Terrain’,
zoom_ start=12
)
folium.GeoJson (json.loads (boro data)) .add to (m)
m # to display, also could use displayHTML(...) variants

< databricks

74

S— i
{+ Fairheld o
- X LS
- oty
= — & Gl

wwwww

S5 Gahond T

Figure 9: We can also visualize the NYC Taxi Zone data, for example, within a
notebook using an existing DataFrame or directly rendering the data with a library
such as Folium, a Python library for rendering geospatial data

Shapefile is a popular vector format developed by ESRI that stores the geometric
location and attribute information of geographic features. The format consists
of a collection of files with a common filename prefix (*.shp, *.shx and *.dbf are
mandatory) stored in the same directory. An alternative to shapefile is KML, also
used by our customers but not shown for brevity. For this example, let’s use NYC
Building shapefiles. While there are many ways to demonstrate reading shapefiles,
we will give an example using GeoSpark. The built-in ShapefileReader is used to
generate the rawSpatialDf DataFrame.

%scala

var spatialRDD = new SpatialRDD[Geometry]

spatialRDD = ShapefileReader.readToGeometryRDD (sc, “/ml/blogs/
geospatial/shapefiles/nyc”)

var rawSpatialDf = Adapter.toDf (spatialRDD, spark)
rawSpatialDf.createOrReplaceTempView (“rawSpatialDf”) //DataFrame now
available to SQL, Python, and R


https://pypi.org/project/folium/
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#databricks-file-system
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#local-file-apis
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION 75

By registering rawSpatialDf as a temp view, we can easily drop into pure Spark Raster data
SQL syntax to work with the DataFrame, to include applying a UDF to convert the Raster data stores information of features in a matrix of cells (or pixels) organized into
shapefile WKT into Geometry. rows and columns (either discrete or continuous). Satellite images, photogrammetry
e and scanned maps are all types of raster-based Earth Observation (EO) data.
SELECT *,
ST GeomFromWKT (geometry) AS geometry -- GeoSpark UDF to convert WKT to The following Python example uses RasterFrames, a DataFrame-centric spatial
Geometry

FROM rawspatialdf analytics framework, to read two bands of GeoTIFF Landsat-8 imagery (red and

near-infrared) and combine them into Normalized Difference Vegetation Index.
We can use this data to assess plant health around NYC. The rf_ipython module

Additionally, we can use Databricks’ built-in visualization for in-line analytics, such is used to manipulate RasterFrame contents into a variety of visually useful forms,

as charting the tallest buildings in NYC. such as below where the red, NIR and NDVI tile columns are rendered with color

ramps, using the Databricks built-in displayHTML(..) command to show the results
%sqgl
SELECT name,
round (Cast (num_floors AS DOUBLE), 0) AS num floors --String to Number
FROM rawspatialdf
WHERE name ‘'
ORDER BY num floors DESC LIMIT 5 # catalogs can also be Spark or

100
80
60
40
20

0.00

Tower 2 World Trade Ctr Tower 1 World Trade Ctr Tower 4 World Trade Ctr WTC Transportation Hub Empire State Building

within the notebook.

%python
# construct a CSV “catalog” for RasterFrames "raster reader

num_floors

@ | a ~  PlotOptions.. &

Figure 10: A Databricks built-in visualization for in-line analytics charting, for example,
the tallest buildings in NYC

< databricks


https://en.wikipedia.org/wiki/Multispectral_image
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

» E results: pyspark.sgl.dataframe.DataFrame = [longitude_latitude: udt, rf_tile(red): udt ... 2 more fields]

Showing only top 5 rows
longitude_latitude rf_tile(red) rf_tile(NIR) rf_tile(NDVI)

POINT (-75.64310549921628 41.35507991091221)

POINT (-75.55129747458508 41.35555632722104)

POINT (-75.64242580157753 41.285904858936576)

POINT (-75.45900176161878 41.286782331725604)

Figure 11: RasterFrame contents can be filtered, transformed, summarized, resampled and rasterized through
over 200 raster and vector functions

< databricks

76

Through its custom Spark DataSource, RasterFrames can read various raster
formats, including GeoTIFF, JP2000, MRF and HDF, from an array of services.

It also supports reading the vector formats GeoJSON and WKT/WKB. RasterFrame
contents can be filtered, transformed, summarized, resampled and rasterized
through over 200 raster and vector functions, such as st_reproject(..) and
st_centroid(...) used in the example above. It provides APIs for Python, SQL and
Scala as well as interoperability with Spark ML.


https://rasterframes.io/raster-read.html
https://rasterframes.io/raster-read.html#uri-formats
https://rasterframes.io/reference.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

EBOOK: BIG BOOK OF MACHINE LEARNING USE CASES — 3RD EDITION

Geodatabases

Geodatabases can be file based for smaller scale data or accessible via

JDBC/ODBC connections for medium scale data. You can use Databricks to
query many SQL databases with the built-in JDBC/ODBC Data Source.

Connecting to PostgreSQL is shown below and is commonly used for smaller

scale workloads by applying PostGIS extensions. This pattern of connectivity

allows customers to maintain as-is access to existing databases.

%$scala
display (

vendor_id tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance rate_code _id store_and_fwd _flag pickup_location_id dropoff_location_id payment_type fare_amount

2
2
2
1
1
2
2
2

B

sglContext.read. format (“jdbc”)
.option (Murl”, jdbcUrl)
.option (“driver”, “org.postgresqgl.Driver”)
.option (“dbtable”,
"7 (SELECT * FROM yellow tripdata staging
OFFSET 5 LIMIT 10) AS t”””) //predicate pushdown
.option (“user”, jdbcUsername)
.option (“jdbcPassword”, jdbcPassword)
.load)

2019-01-06 16:27:40 2019-01-06 16:28:47 16

16

142 142
142 142

-3

2018-01-06 16:27:40 2019-01-06 16:28:47 3

2018-01-06 16:51:27 2019-01-06 17:05:55 1.99 239 230 n

2018-01-06 16:38:49 2019-01-06 16:58:05 2.10

163 186 8

2019-01-06 16:25:58 2019-01-06 16:35:36 177 137 90 85

2019-01-06 16:42:45 2019-01-06 16:47:05 87 68 234 5

z z z z z z z z

5 4

5 2

5 2

1 164 163 2 13
2019-01-06 16:59:54 2019-01-06 17:09:33 a 1.40 2

3 1

3 2

2 1

2019-01-06 16:50:21 2019-01-06 16:57:03 1.09 234 100 65

d - 2

< databricks

77

Getting started with geospatial analysis on Databricks

Businesses and government agencies seek to use spatially referenced data in
conjunction with enterprise data sources to draw actionable insights and deliver
on a broad range of innovative use cases. In this blog we demonstrated how the
Databricks Unified Data Analytics Platform can easily scale geospatial workloads,
enabling our customers to harness the power of the cloud to capture, store and

analyze data of massive size.

In an upcoming blog, we will take a deep dive into more advanced topics for
geospatial processing at-scale with Databricks. You will find additional details
about the spatial formats and highlighted frameworks by reviewing Data

Prep Notebook, GeoMesa + H3 Notebook, GeoSpark Notebook, GeoPandas
Notebook, and RasterFrames Notebook. Also, stay tuned for a new section in our

documentation specifically for geospatial topics of interest.


https://docs.databricks.com/data/data-sources/sql-databases.html
https://www.postgresql.org/
https://postgis.net/
https://www.databricks.com/product/data-lakehouse
https://www.databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://www.databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://www.databricks.com/notebooks/geomesa-h3-notebook.html
https://www.databricks.com/notebooks/geospark-notebook.html
https://www.databricks.com/notebooks/geopandas-notebook.html
https://www.databricks.com/notebooks/geopandas-notebook.html
https://www.databricks.com/notebooks/rasterframes-notebook.html
https://docs.databricks.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

About Databricks

Databricks is the lakehouse company. More than
7,000 organizations worldwide — including Comcast,
Condé Nast, H&M and over 50% of the Fortune

500 — rely on the Databricks Lakehouse Platform

to unify their data, analytics and Al. Databricks is
headquartered in San Francisco, with offices around
the globe. Founded by the original creators of
Apache Spark™, Delta Lake and MLflow, Databricks

is on a mission to help data teams solve the world'’s O
toughest problems. To learn more, follow Databricks J

on Twitter, Linkedln and Facebook.

)

Schedule a personalized demo

Sign up for a free trial

< databricks

© Databricks 2025. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use


https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use
https://databricks.com/company/contact?utm_source=big%20book%20of%20machine%20learning%20use%20cases&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

