
Building a Security Lakehouse
A modular reference architecture for modernizing detection,
response, and security operations using Databricks

eBook

Contents

2B U I L D I N G A S E C U R I T Y L A K E H O U S E

Executive Summary...3

Motivation...4

Core Use Cases..5

Reference Architecture Overview...6

Step-by-Step Implementation Guide..8

Deployment Models...25

Common Pitfalls (and How to Avoid Them).. 28

Resources and Tooling References... 30

Appendix... 31

This blueprint outlines how Databricks can serve as the analytical backbone for modern security operations

centers (SOCs), starting with SIEM augmentation and evolving toward a lakehouse-centric detection platform.

It enables teams to offload expensive queries, enrich and analyze telemetry at scale, and support real-time

detection and investigation workflows without replacing their existing stack.

Executive
Summary

3B U I L D I N G A S E C U R I T Y L A K E H O U S E

Security operations teams are facing growing pressure to process more data, detect advanced threats and

respond faster, all while managing cost and operational complexity. Traditional SIEM platforms often fall short

due to high ingestion costs, rigid schemas and limited scalability. These constraints make it difficult to apply

modern analytics, retain historical visibility or integrate machine learning (ML) into security workflows.

The Databricks security lakehouse provides a flexible, scalable foundation for modernizing security operations.

It enables teams to ingest, normalize, enrich and analyze telemetry from identity systems, endpoints,

cloud services and network infrastructure using an open and governed architecture. Rather than replacing

existing tools, Databricks integrates with SIEM, SOAR and case management systems to improve detection,

investigation and automation outcomes.

This blueprint presents a modular reference architecture for building a lakehouse-centric security operations

platform. Many organizations begin by offloading high-volume telemetry or running pilot detections in

Databricks, then expand their footprint over time as the platform demonstrates value across scale, speed

and flexibility.

Motivation

1

4B U I L D I N G A S E C U R I T Y L A K E H O U S E

Core Use Cases

2 USE CASE DESCRIPTION EXAMPLE OUTCOME

Detection Engineering Build SQL- and Python-based detection logic

using normalized telemetry

Correlate access anomalies across Okta,

VPN, AWS

Log Cost Optimization Store raw logs in Databricks and forward only

enriched alerts to the SIEM

Reduce Splunk ingest volume by 80%

Historical Threat

Hunting

Query months of data across sources using

Delta Lake

Detect lateral movement over a

12-month window

Contextual Enrichment Join logs with asset, identity and threat

intel data

Flag anomalous process execution on

high-value endpoints

Compliance and

Reporting

Create structured, repeatable reports for

auditors, regulators and leadership

Automate generation of PCI, ISO or executive

risk dashboards

AI-Augmented Triage Use LLMs and AI agents to analyze, summarize

and prioritize alerts

LLM adds context and narrative

to login anomalies

5B U I L D I N G A S E C U R I T Y L A K E H O U S E

Reference
Architecture
Overview

3

1

Figure 1. Databricks security reference architecture

Collect and route: Telemetry and threat intelligence are collected using agents, brokers, aggregators

and APIs. This step supports structured and unstructured formats and enables both real-time and batch

ingestion. Data sources include endpoint logs, identity events, cloud telemetry, vulnerability data and

commercial threat feeds.

6B U I L D I N G A S E C U R I T Y L A K E H O U S E

2

3

4

5

6

Transform and enrich: Raw data is validated for quality and schema alignment, then normalized and

enriched for operational use. Enrichment can include user, device, application, threat intel and asset

context. Schema models such as OCSF and ECS help standardize fields for analysis and automation.

Reporting and observability: Security analysts and stakeholders use structured data to build

dashboards, visualize trends and track key metrics. These outputs help teams monitor coverage, identify

gaps and meet compliance and audit requirements.

Detection and response: Detection engineers create and manage rules for identifying threats and

suspicious behavior. Alerts feed into incident response workflows, DFIR runbooks and threat hunting

investigations. Teams can orchestrate playbooks or push alerts to case management systems.

Data science and ML: Security teams can apply machine learning models for advanced analytics and

detection. Use cases include threat modeling, behavioral baselining, anomaly detection and user entity

behavior analytics. These models improve prioritization and reduce false positives.

Integrate with external systems: Curated alerts, dashboards and context are delivered to downstream

platforms such as SIEM, SOAR and reporting and ticketing systems. This allows Databricks to serve as

the analytical backbone while preserving familiar analyst workflows in tools like Splunk, Sentinel, Jira

and ServiceNow.

7B U I L D I N G A S E C U R I T Y L A K E H O U S E

Step-by-Step
Implementation
Guide

4

STEP TITLE OUTCOME

0 Define Goals Clear alignment on use cases, metrics and success criteria

across stakeholders

1 Inventory and Prioritize Data A structured log source inventory based on detection value, volume

and coverage gaps

2 Ingest and Normalize Raw telemetry is ingested, parsed and transformed into normalized Delta

tables using the medallion architecture

3 Author and Operationalize

Rules

Detection rules are written in SQL or Python, version-controlled and

deployed to generate alerts

4 Route Alerts and Integrate

With SOC Tools

High-quality alerts and enriched context are delivered to SIEM, SOAR or

case management systems

5 Support Triage and

Investigation

Analysts pivot across identity, cloud and process telemetry using

dashboards and notebooks

6 Deliver Security Outcomes Metrics, dashboards and compliance reports are shared with leadership

and auditors; risk scores are generated for prioritization

This section outlines a modular, repeatable process for building a security lakehouse with Databricks. Each

step aligns to a core function within the modern security operations lifecycle. The approach supports phased

adoption and can be implemented alongside existing SIEM and SOAR tooling.

8B U I L D I N G A S E C U R I T Y L A K E H O U S E

Prerequisite: Define Goals
Objective: Establish clear business and operational goals that guide the technical design of your

modern security analytics platform. This will ensure alignment across teams and provide a foundation

for effective implementation.

Outcome: A well-defined set of objectives tied to business value and organizational priorities that will inform

architecture, telemetry strategy and detection development.

Key Principles 	■ A strong implementation starts with clearly defined problems

	■ Goals should be tied to measurable improvements: detection

coverage, cost reduction, analyst efficiency

	■ Cross-functional input (security, data engineering, operations)

is essential

Implementation Guidance 	■ Document the “as is” SOC architecture, including log sources, tools

and workflows

	■ Identify core pain points: ingest cost, false positives, long triage

cycles, poor historical visibility

	■ Define measurable outcomes: e.g., reduce SIEM ingest by 30%, enable

12-month hunting, add ML detections

	■ Create a business justification statement to support funding and

executive sponsorship

9B U I L D I N G A S E C U R I T Y L A K E H O U S E

Before building pipelines or writing detection logic, clarify your organization’s goals:

	■ What are the key security or operational problems you need to address?

	■ Which data sources are most critical for visibility and detection?

	■ Where are the pain points in your current process or tooling?

	■ What is your “as is” state versus your “to be” state?

10B U I L D I N G A S E C U R I T Y L A K E H O U S E

Key Principles 	■ Not all telemetry is equal. Prioritize based on detection value, threat

coverage, regulatory requirements and investigation needs.

	■ Use top-down mapping from business risk to telemetry coverage

	■ Apply structured evaluation to avoid reactive or ad hoc

ingestion decisions

Guidance 	■ Document the current-state security architecture, including log

sources, tooling, ownership and data flow

	■ Identify core challenges such as high ingestion cost, excessive false

positives, long triage cycles or limited historical context

	■ Define measurable objectives such as reducing telemetry

overload, extending retention windows or enabling specific detection

use cases

	■ Create a business case that aligns data priorities with threat

coverage, compliance needs and operational efficiency

Best Practices 	■ Start with identity, endpoint and cloud logs because they provide the

broadest ATT&CK and detection surface coverage

	■ Document each source’s schema, format, expected volume, retention

requirements and current gaps in coverage

Step 1: Inventory and Prioritize Data
Objective: Inventory, score and prioritize log sources to align your ingestion strategy with the highest-impact

use cases.

Outcome: A prioritized list of log sources with scoring rationale that informs your ingestion, normalization,

enrichment and detection plans.

11B U I L D I N G A S E C U R I T Y L A K E H O U S E

A NOTE ON HIGH-VALUE DATA SOURCES

Ingesting everything can be costly and operationally complex. Focus first on high-value data sources that

support core detection use cases, reduce blind spots and enrich other signals.

The table below highlights common telemetry types that are frequently prioritized.

DATA SOURCE WHY IT MATTERS

Windows Security Logs (AD/DC) Core for identity-based detections. Supports brute-force, lateral movement

and privilege abuse detection.

Firewall and Network Logs Captures ingress/egress activity and indicators of exfiltration

or lateral movement.

EDR Logs Provides high-fidelity process telemetry. Essential for detecting malware,

suspicious behavior and post-exploitation activity.

DNS Logs Identifies command-and-control activity, domain generation algorithms and

suspicious domain usage. Complements endpoint and network visibility.

Cloud Audit Logs (e.g., AWS

CloudTrail, Azure Activity)

Tracks IAM changes, API usage, resource creation and misconfigurations.

Crucial for cloud-native threat detection and compliance monitoring.

12B U I L D I N G A S E C U R I T Y L A K E H O U S E

Step 2: Ingest and Normalize
Objective: Establish scalable, schema-enforced pipelines that convert raw logs into structured tables suitable

for detection and investigation.

Outcome: A governed, scalable pipeline that turns raw telemetry into structured, queryable and reliable

inputs for detection and analytics.

Key Principles 	■ Ingest first, transform later. Land raw data in Bronze tables to

preserve auditability and enable replay.

	■ Enforce schemas early to support downstream reliability

	■ Follow the medallion architecture to separate raw, normalized and

analytical outputs for flexible downstream use

Guidance Ingestion methods:

	■ Use Auto Loader for cloud-native logs (S3, GCS, ADLS)

	■ Use Structured Streaming for real-time sources (Kafka, syslog)

	■ Support batch file drops or REST API ingestion

for legacy sources

Normalization approach:

	■ Parse and flatten nested structures

	■ Standardize core fields: event_time, src_ip,

user_name, event_type

	■ Add metadata fields: source_type,

parser_version, workspace_id

	■ Register normalized (Silver) tables in Unity Catalog for

governance, discovery and access control

13B U I L D I N G A S E C U R I T Y L A K E H O U S E

Guidance Schema design:

	■ Align with OCSF where feasible, but prioritize practical execution

	■ Version schemas and store normalization logic in Git

Parser example: CloudTrail pipeline using PySpark to explode Records

array, add ingest metadata and write to cloudtrail_bronze

Best Practices 	■ Keep Bronze in raw format with minimal transformation

	■ Drive all detection logic off Silver

	■ Use comments and table annotations to improve discoverability

GOVERNANCE AND LINEAGE

Effective security data pipelines require clear ownership, access control and traceability across raw,

normalized and enriched datasets. Databricks supports these requirements through Unity Catalog,

which provides fine-grained access control, audit logging and data lineage tracking at the table, column

and query levels.

Unity Catalog allows teams to:

	■ Restrict access to sensitive log data based on user roles (e.g., least-privilege access to identity logs

or process telemetry)

	■ Segment environments by business unit, region or tenant using catalogs, schemas and table

naming conventions

	■ Track lineage from raw (Bronze) to normalized (Silver) to enriched or alert (Gold) tables, ensuring

traceability of detections and investigations

	■ Enforce auditability of user queries, schema changes and pipeline runs for compliance

and incident response

14B U I L D I N G A S E C U R I T Y L A K E H O U S E

Governance considerations also include:

	■ Masking sensitive fields like passwords, email addresses or internal hostnames

	■ Tagging data for classification (e.g., PII, regulated logs, critical infrastructure)

	■ Controlling LLM access if using generative AI or triage agents downstream

While Unity Catalog provides robust primitives to support all of the above, a detailed governance strategy

depends on your security model, regulatory requirements and data maturity. A full deep dive into Unity

Catalog configuration, identity federation and lineage visualization is beyond the scope of this blueprint.

However, any deployment should treat governance as a first-class design requirement, not a bolt-on.

INGESTION CONSIDERATIONS

Databricks supports several ingestion strategies depending on the source type and latency requirements:

Please refer to the Appendix for additional technical details and example code.

SOURCE TYPE METHOD NOTES

Cloud audit logs (e.g., AWS

CloudTrail, GCP Audit Logs)

Autoloader and

Cloud Storage

Ideal for landing structured JSON/CSV/Parquet from S3, GCS

or ADLS. Supports schema inference and incremental load.

Streaming logs (e.g., Kafka,

syslog, Fluentd)

Structured

Streaming

Use for near real-time ingestion. Integrate with Kafka, Kinesis

or custom forwarders.

On-premises or legacy logs Batch File Upload

or REST API

Secure file transfers via cloud storage or intermediary tools

that forward logs to cloud object stores.

15B U I L D I N G A S E C U R I T Y L A K E H O U S E

MEDALLION ARCHITECTURE FOR CYBERSECURIT Y LOG DATA

A medallion architecture organizes your data pipelines into layered stages (Bronze, Silver and Gold) to support

scalable, maintainable log processing for security use cases.

This layer stores raw logs as landed from the source with minimal transformation. It preserves the original

format for auditability and replay.

This layer contains structured tables ready for detection logic and correlation. Raw data is parsed, cleaned and

normalized to a consistent schema, and optionally enriched.

1 Bronze layer (raw ingest)

2 Silver layer (normalized and enriched)

Examples: Best practices:

	■ Raw JSON from AWS CloudTrail

	■ Okta logs from an S3 drop

	■ syslog ingested via Kafka

	■ Partition by date and source

	■ Add metadata fields: ingestion_time,

source_file, log_source

Examples: Best practices:

	■ cloud_activity

normalized CloudTrail and Azure logs

	■ auth_events

login successes, failures, MFA

	■ endpoint_processes

Windows or EDR logs (normalized)

	■ Align schemas to OCSF or internal standards

	■ Flatten nested structures and unify field names

	■ Add enrichment fields (e.g., geo_country,

user_role, asset_type)

16B U I L D I N G A S E C U R I T Y L A K E H O U S E

This layer stores alert artifacts, summary dashboards and risk-scored entities. It supports downstream

consumption by SOCs, SIEMs or business intelligence tools.

3 Gold layer (detection and analytics outputs)

Examples: Best practices:

	■ alerts_table (detection results with severity,

rule_id, status)

	■ user_risk_scores (aggregated risk by user

or account)

	■ incident_timeline_views (stitched events

across data sources)

	■ Include detection metadata (e.g., rule version,

confidence)

	■ Maintain alert lifecycle fields (e.g., created_time,

status, last_updated)

	■ Create query-optimized views for dashboards

or BI tools

Step 3: Author and Operationalize Detections
Objective: Implement detection-as-code by writing, versioning and executing scalable, high-fidelity detection

logic on normalized security data in Databricks.

Outcome: A modular, scalable detection pipeline that supports both real-time and retrospective alerting with

explainable logic and full metadata.

Key Principles 	■ Author detections on Silver tables

	■ Include metadata in every alert

	■ Treat detection logic as code: testable, versioned and modular

17B U I L D I N G A S E C U R I T Y L A K E H O U S E

Guidance Authoring approaches:

	■ SQL: Ideal for prototyping and writing simple correlation rules. SQL

Pipeline Syntax provides familiar constructs to users who prefer

SPL/KQL.

	■ PySpark: Supports complex, multisource or behavioral detections

using structured logic and joins

Execution models:

	■ Batch: Scheduled via Lakeflow Jobs

	■ Streaming: Real-time detection via Lakeflow Declarative Pipelines and

Structured Streaming

	■ Hybrid: Score-based or sliding window models

Alert output schema:

	■ Required fields: rule_id, rule_name, event_time, severity,

confidence, source_table, raw_event, status

	■ Store alerts in gold.alerts_table partitioned by alert_time

Best Practices 	■ Maintain detection logic in Git with CI/CD pipelines for versioning

and testing

	■ Parameterize rules for multi-tenant environments

	■ Tag detection rules with MITRE technique IDs if applicable

18B U I L D I N G A S E C U R I T Y L A K E H O U S E

Key Principles 	■ Detection happens in Databricks; triage happens in downstream

SOC platforms

	■ Routing must be reliable, scalable and aligned with existing workflows

	■ Alerts should include all metadata needed for prioritization

and investigation

	■ All interactions should follow consistent schema standards and

tagging conventions

Guidance Outbound: Route alerts and insights
	■ Write all alerts to a Gold-layer Delta table (e.g., alerts_table)

partitioned by alert_time

	■ Include standard fields: rule_id, severity, confidence, alert_

context, src_ip, user_id, event_time, raw_event_link

	■ Implement routing workflows using batch (Lakeflow Jobs) or

streaming (Structured Streaming):

	■ Splunk: HEC endpoint via Python notebook or REST API
	■ Sentinel: Log Analytics API or Event Hub
	■ ServiceNow: REST API for ticket creation
	■ Slack/Teams: Webhooks for ChatOps alerts
	■ Delta Sharing: For MSSPs, partners or multi-tenant delivery

Step 4: Route Alerts and Integrate With SOC Tools
Objective: Establish reliable, bidirectional workflows between Databricks and existing SOC platforms to

support alert routing, case enrichment and full-loop integration.

Outcome: Databricks serves as the centralized intelligence layer for detection and analytics while integrating

with SIEM, SOAR and case management systems to preserve existing triage workflows and enhance

downstream investigation and response.

19B U I L D I N G A S E C U R I T Y L A K E H O U S E

Guidance Inbound: Ingest alerts and incidents
	■ Common ingestion methods:

	■ Splunk: REST API, HEC export, JDBC or S3 export
	■ Sentinel: Azure Data Export to Event Hub or REST API
	■ Elastic/QRadar: Kafka or JSON file drop

	■ Normalize alert schema to match internal alerts_table

	■ Tag all imported data with source_system, ingest_time

and source_type

	■ Schedule periodic ingestion using Lakeflow Jobs

Best Practices 	■ Include raw event links in outbound alerts for fast pivoting during

investigations

	■ Normalize and store external alerts using the same table structures

as internal detections

	■ Use deduplication logic and alert state tracking to avoid noisy or

repeated notifications

	■ Monitor integration health using dashboards and alert on ingestion

failures or latency spikes

	■ Treat integrations as modular building blocks — enable phased

adoption per tool or team

20B U I L D I N G A S E C U R I T Y L A K E H O U S E

Key Principles 	■ Every alert must include enough context to answer: Who? What?

When? Where? How?

	■ Analysts need flexible interfaces tailored to their workflows, including

dashboards, notebooks and SQL queries

	■ Investigation workflows should be repeatable, scalable

and collaborative

Guidance Build dashboards in Databricks SQL for:
	■ Alert trend analysis
	■ Entity frequency, geo dispersion and behavior heat maps
	■ Alert-to-source drilldowns

Create templated triage notebooks:
	■ Parameterize by alert_id or user_id
	■ Join with logs from identity, process, cloud and network sources
	■ Visualize timelines, graphs and contextual metadata

Step 5: Support Investigation and Triage
Objective: Provide analysts with a flexible, scalable investigation environment that enables rich context, deep

pivoting and collaborative analysis without relying on legacy SIEM interfaces.

Outcome: Analysts can investigate alerts directly in Databricks using dashboards, structured queries and

parameterized notebooks. This accelerates triage, reduces noise and enables deeper visibility across identity,

process, network and cloud data sources.

21B U I L D I N G A S E C U R I T Y L A K E H O U S E

Guidance Integrate enrichment sources:
	■ Asset inventory, user role, CMDB
	■ Threat intelligence and GeoIP
	■ Historical behaviors and peer baselines

Enable collaborative triage:
	■ Analysts can annotate notebooks with markdown summaries
	■ Output can be handed off to IR or exported as case evidence

Best Practices 	■ Govern investigation data using Unity Catalog for access control

and lineage

	■ Standardize notebook templates to accelerate onboarding and

reduce cognitive load

	■ Audit notebook usage to support compliance and quality control

22B U I L D I N G A S E C U R I T Y L A K E H O U S E

Key Principles 	■ Security outcomes should be visible, measurable and tied to

organizational risk and compliance goals

	■ Outputs must be accessible to multiple personas, including security

analysts, compliance teams and business stakeholders

	■ Standardized reporting structures reduce manual effort, increase

consistency and improve audit readiness

Guidance Dashboards and KPIs — build dashboards for:
	■ Alert volumes, suppression rates and response-time metrics
	■ Threat coverage by log source, rule or MITRE technique
	■ SOC KPIs such as mean time to detect and mean time to respond

Create templated reports for:
	■ Control coverage and policy alignment (e.g., NIST, PCI, ISO 27001)
	■ Data access and lineage for regulated logs (via Unity Catalog)
	■ Evidence of detection logic, alerting pipelines and case

response actions

Step 6: Deliver Security Outcomes
Objective: Translate detection logic, enriched telemetry and investigation insights into actionable outputs for

reporting, compliance and executive visibility.

Outcome: A set of structured, shareable outputs that support downstream consumption across

compliance, risk, executive reporting and operational dashboards. These artifacts provide evidence of

control effectiveness, drive cross-functional decision-making and close the feedback loop from detection to

measurable business impact.

23B U I L D I N G A S E C U R I T Y L A K E H O U S E

Guidance Generate aggregate scores for:
	■ Users, hosts and accounts based on alert activity

and behavioral anomalies
	■ Asset exposure based on vulnerability, threat intel

and access patterns
	■ Trends over time to track control effectiveness

and response maturity

Deliver curated outputs to:
	■ SIEM or SOAR tools for triage and automation
	■ BI platforms (e.g., Power BI, Tableau) for executive reporting
	■ Ticketing systems (e.g., Jira, ServiceNow) for remediation tracking

Best Practices 	■ Tailor dashboards and reports to audience-specific needs (e.g., SOC,

risk, executive, compliance)

	■ Use Declarative Pipelines or scheduled Lakeflow Jobs to automate

report generation

	■ Store historical reporting artifacts in Delta for auditability

and trend analysis

	■ Align outputs to the same schema and logic used in detection for

consistency and traceability

24B U I L D I N G A S E C U R I T Y L A K E H O U S E

Deployment
Models

5 Building a security lakehouse does not require an overnight migration. Organizations adopt Databricks as their

detection and analytics layer in phases that balance legacy constraints with future-state architecture goals.

These models provide a practical approach for aligning Databricks implementation with operational maturity,

data strategy and security priorities.

Key takeaway: These models are not mutually exclusive. Many customers begin with parallel pipelines for a

specific log type or detection use case, then expand Databricks footprint over time, ultimately shifting from a

SIEM-centric model to a lakehouse-first SOC.

Model 1: Visibility Overlay (Legacy-Centric SOC)

Databricks receives a copy of telemetry already routed to the SIEM. It

is used primarily for cost analysis, historical hunting and proof-of-value

detection development.

BEST FOR:

	■ Teams testing detection-

as-code or ML models

	■ Use cases like log retention,

performance tuning or

shadow detections

BENEFITS:

	■ Simple to implement

	■ No disruption to analyst

workflows

	■ Enables cost benchmarking

and detection quality

comparison

	■ Often used as a “Phase 1” in

modernization efforts

LIMITATIONS:

	■ Databricks is not involved in

real-time detection or triage

	■ No cost reduction in the

SIEM platform

	■ Difficult to correlate or

enrich across sources

outside the SIEM

25B U I L D I N G A S E C U R I T Y L A K E H O U S E

Model 2: Dual Processing (Integrated Analytics Architecture)

Telemetry is split at the source or collection layer. Databricks and the

SIEM receive data in parallel. Detection logic runs in both systems, but

Databricks leads enrichment, correlation and large-scale analytics.

BEST FOR:

	■ Teams evaluating Databricks

for advanced detection or

ML use cases

	■ Organizations migrating off

of SIEM features over time

	■ Use cases like UEBA,

anomaly detection and alert

enrichment

	■ Environments with mixed

ownership (e.g., security

owns SIEM, data team owns

Databricks)

BENEFITS:

	■ Enables offloading of high-

cost queries and detections

	■ Supports complex analytics

and detection-as-code in

Databricks

	■ Allows selective routing to

reduce SIEM license usage

LIMITATIONS:

	■ Requires duplicate pipelines

and potential schema

alignment between systems

	■ Increases operational

complexity and tool

fragmentation

	■ Risk of detection drift

if logic isn’t centrally

maintained

26B U I L D I N G A S E C U R I T Y L A K E H O U S E

Model 3: Lakehouse-Centric SOC (Modernized Detection Backbone)

Databricks is the telemetry system of record. The SIEM becomes

a downstream consumer of curated alerts, enrichment or specific

log subsets.

BEST FOR:

	■ Organizations prioritizing

open data architectures

and cloud-native security

pipelines

	■ MSSPs or global

organizations with

centralized detection but

distributed SOC operations

	■ Use cases requiring

advanced triage, risk scoring

or ML-driven workflows

BENEFITS:

	■ Centralizes detection,

enrichment and

investigation in one platform

	■ Reduces SIEM volume and

dependency

	■ Enables analytics across

broader time windows and

data domains

LIMITATIONS:

	■ Requires architectural

alignment and buy-in

across teams

	■ May require custom

integration with legacy tools

	■ Still emerging in terms of

packaged integrations

27B U I L D I N G A S E C U R I T Y L A K E H O U S E

Common Pitfalls
(and How to
Avoid Them)

6

PITFALL WHY IT MATTERS HOW TO AVOID IT

Skipping Schema

Enforcement

Detection logic becomes

brittle, joins break and

pipelines degrade over time

Define schemas for all Silver-layer tables; flatten

and standardize fields during normalization;

enforce types using Delta and Unity Catalog

Writing Detections

on Raw Logs

Raw JSON changes frequently

and lacks structure, making

detections fragile

Normalize all telemetry to Silver tables; isolate

parsing from detection logic; treat Silver tables

as detection contracts

Overengineering

Initial Schemas

Waiting for perfect schemas

delays deployment and

adoption

Start with minimal viable schemas; iterate; use

schema versioning and annotations

No Observability

on Pipelines

Pipeline failures can go

unnoticed, creating blind

spots in detection coverage

Use Declarative Pipelines expectations and

metrics; log failures; monitor detection and

ingestion health via dashboards

Inconsistent Parser

Logic Across

Environments

Parser drift leads to

inconsistent detection results

and harder debugging

Store parser logic in Git; tag records with

parser_version; promote through CI/CD

This section highlights the most common pitfalls and how to proactively mitigate them. Avoiding these pitfalls

improves adoption, reduces operational drag and ensures that SIEM augmentation delivers measurable

outcomes across cost, coverage and analyst experience.

28B U I L D I N G A S E C U R I T Y L A K E H O U S E

PITFALL WHY IT MATTERS HOW TO AVOID IT

Weak Governance

and Access

Controls

Sensitive security data without

access controls creates risk

and slows adoption

Use Unity Catalog for access policies; mask

sensitive fields; audit access and query history

Assuming SIEM

Replacement

Creates friction with SOC

teams and overpromises

platform capabilities

Position Databricks as a detection and

enrichment engine; maintain SIEM/SOAR

integrations; emphasize signal quality

improvement

29B U I L D I N G A S E C U R I T Y L A K E H O U S E

Resources
and Tooling
References

7 This section provides links, references and tools to support the successful implementation of a security

lakehouse with Databricks. It includes official documentation, open standards and sample assets for faster

onboarding and execution.

Databricks resources
	■ Data Intelligence for Cybersecurity eBook

	■ Databricks Auto Loader (AWS, Azure, GCP)

	■ Declarative Pipelines (AWS, Azure, GCP)

	■ Unity Catalog (AWS, Azure, GCP)

	■ Structured Streaming (AWS, Azure, GCP)

	■ Databricks SQL dashboards (AWS, Azure, GCP)

Detection engineering and security content
	■ MITRE ATT&CK Framework

	■ Open Cybersecurity Schema Framework (OCSF)

	■ CloudTrail Log Event Reference

	■ Elastic Common Schema (ECS)

Useful tools and libraries
	■ Library requests for alert routing via REST

	■ GeoLite2 (MaxMind)

	■ JQ for JSON flattening

	■ Jupyter Markdown reference

For any implementation questions, engagement requests or support, contact your Databricks Solutions

Architect or the Field Engineering Cybersecurity team.

30B U I L D I N G A S E C U R I T Y L A K E H O U S E

https://www.databricks.com/resources/ebook/future-ai-driven-defense-databricks
https://docs.databricks.com/aws/en/ingestion/cloud-object-storage/auto-loader/
https://learn.microsoft.com/en-us/azure/databricks/ingestion/cloud-object-storage/auto-loader/
https://docs.databricks.com/gcp/en/ingestion/cloud-object-storage/auto-loader/
https://docs.databricks.com/aws/en/dlt/
https://learn.microsoft.com/en-us/azure/databricks/dlt/concepts
https://docs.databricks.com/gcp/en/dlt/
https://docs.databricks.com/aws/en/data-governance/unity-catalog/
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/
https://docs.databricks.com/gcp/en/data-governance/unity-catalog
https://docs.databricks.com/aws/en/structured-streaming/concepts
https://learn.microsoft.com/en-us/azure/databricks/structured-streaming/concepts
https://docs.databricks.com/gcp/en/structured-streaming/concepts
https://docs.databricks.com/aws/en/dashboards/
https://learn.microsoft.com/en-us/azure/databricks/dashboards/
https://docs.databricks.com/gcp/en/dashboards/
https://www.ocsf.io/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
https://www.elastic.co/guide/en/ecs/current/index.html

Appendix Sample Silver Tables

Parser and Schema Normalization
Normalization is critical to enabling scalable, reusable detections and efficient investigation workflows. It

involves transforming raw logs into structured, query-friendly Delta tables with consistent field names, formats

and types across sources.

RECOMMENDED APPROACH: BUILD WITH NOTEBOOKS AND LAKEFLOW JOBS

We recommend building normalization logic using standard Databricks Notebooks and automating it with

Lakeflow Jobs or Declarative Pipelines for repeatable, scalable execution.

This pattern gives you:

	■ Full control over parser logic (JSON flattening, regex, type coercion)

	■ Support for custom enrichment (e.g., GeoIP, asset tagging)

	■ Clear separation between raw ingestion (Bronze) and normalized tables (Silver)

TABLE DESCRIPTION

auth_events Login successes, failures and MFA interactions

cloud_activity Cloud API actions (e.g., CloudTrail, Azure, GCP)

endpoint_processes Process creation, execution, parent-child relationships

dns_queries Query name, source IP, domain classification

network_flows Source/destination IP, port, protocol, bytes in/out

31B U I L D I N G A S E C U R I T Y L A K E H O U S E

Suggested development pattern

1.	 Create a raw landing table (Bronze) using Auto Loader or a streaming source

2.	 Build a notebook that:

	■ Reads raw data

	■ Applies schema validation

	■ Performs field extraction, transformation and enrichment

	■ Writes to a normalized Delta table (Silver)

3.	 Schedule the notebook using Lakeflow Jobs or Declarative Pipelines with event-driven

or time-based triggers

4.	 Add table comments and register in Unity Catalog for discoverability and access control

Parser Design Recommendations
	■ Parse and flatten all nested JSON structures at ingest

	■ Extract a consistent event_time field using UTC and handle time zone shifts

	■ Standardize field names across similar sources (e.g., user_name, src_ip, dest_ip,

event_type)

	■ Tag records with metadata fields such as source_type, log_vendor, parser_

version and workspace_id

32B U I L D I N G A S E C U R I T Y L A K E H O U S E

PARSER EX AMPLE: CLOUDTRAIL TO CLOUDTRAIL_BRONZE TABLE

This example demonstrates how to build a basic CloudTrail ingestion pipeline using PySpark on Databricks.

The script reads raw AWS CloudTrail logs in JSON format from an S3 bucket, explodes the Records array to

isolate individual events, and adds operational metadata such as ingestion timestamp and source file path.

The resulting flattened events are written to a Bronze Delta table (kristin.aws_anomaly.cloudtrail_bronze) for

persistent storage and further processing.

This is a common pattern for staging raw telemetry before normalization and enrichment.

Set up paths
s3_path = 's3://my-s3-bucket/aws_cloudtrail/'
bronze_table_name = 'kristin.aws_anomaly.cloudtrail_bronze'

Read CloudTrail logs from S3
df_raw = spark.read.schema(cloudTrailSchema).json(s3_path)

Explode the Records array to get individual events
df_bronze = df_raw.select(explode("Records").alias("record")) \
 .select("record.*")

Add metadata columns after exploding
df_bronze = df_bronze.withColumn("ingest_timestamp", current_timestamp()) \
 .withColumn("source_file", input_file_name())

df_bronze.write.format('delta') \
 .mode('append') \
 .option('mergeSchema', 'true') \
 .saveAsTable(bronze_table_name

33B U I L D I N G A S E C U R I T Y L A K E H O U S E

© Databricks 2025. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

About Databricks

Databricks is the data and AI company. More than 10,000 organizations worldwide —

including Block, Comcast, Condé Nast, Rivian, Shell and over 60% of the Fortune 500 —

rely on the Databricks Data Intelligence Platform to take control of their data and put it to

work with AI. Databricks is headquartered in San Francisco, with offices around the globe,

and was founded by the original creators of Lakehouse, Apache Spark™, Delta Lake and

MLflow. To learn more, follow Databricks on LinkedIn, X and Facebook.

http://www.apache.org/
https://databricks.com/privacy-policy
https://databricks.com/terms-of-use
https://www.linkedin.com/company/databricks
https://twitter.com/databricks
https://www.facebook.com/databricksinc

