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Abstract—AI models are being increasingly integrated into
real-world systems, raising significant concerns about their safety
and security. Consequently, AI red teaming has become essential
for organizations to proactively identify and address vulnerabili-
ties before they can be exploited by adversaries. While numerous
AI red teaming tools currently exist, practitioners face challenges
in selecting the most appropriate tools from a rapidly expanding
landscape, as well as managing complex and frequently conflict-
ing software dependencies across isolated projects. Given these
challenges and the relatively small number of organizations with
dedicated AI red teams, there is a strong need to lower barriers
to entry and establish a standardized environment that simplifies
the setup and execution of comprehensive AI model assessments.

Inspired by Kali Linux’s role in traditional penetration testing,
we introduce BLACKICE, an open-source containerized toolkit
designed for red teaming Large Language Models (LLMs) and
classical machine learning (ML) models. BLACKICE provides
a reproducible, version-pinned Docker image that bundles 14
carefully selected open-source tools for Responsible AI and
Security testing, all accessible via a unified command-line in-
terface. With this setup, initiating red team assessments is as
straightforward as launching a container, either locally or using
a cloud platform. Additionally, the image’s modular architecture
facilitates community-driven extensions, allowing users to easily
adapt or expand the toolkit as new threats emerge. In this paper,
we describe the architecture of the container image, the process
used for selecting tools, and the types of evaluations they support.

I. INTRODUCTION

As AI systems become increasingly integrated into criti-
cal workflows and consumer products, AI red teaming has
emerged as an essential practice to identify and mitigate
vulnerabilities. These vulnerabilities can manifest at the model
level, such as jailbreak attacks [1–3] that circumvent safety
mechanisms, or at the system level, where adversaries exploit
deployment contexts, for example, indirect prompt injections
embedded within emails processed by AI assistants [4, 5]. De-
spite the growing recognition of AI red teaming’s importance,
effectively conducting such assessments remains challenging,
as existing tools each have their own unique setup procedures
and typically require separate runtime environments due to
conflicting dependencies. While possible, managing many in-
dependent environments is often time-consuming, error-prone,
and difficult to scale, particularly across diverse platforms or
cloud-based infrastructure. Moreover, the absence of a single,
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standardized environment complicates the reproducibility of
evaluations across teams and organizations.

In traditional penetration testing, similar challenges have
been effectively addressed through the widespread adoption
of Kali Linux, a Linux distribution preconfigured with a
comprehensive suite of security tools. Kali Linux has be-
come a standard in the security community by simplifying
environment setup and bundling essential utilities, enabling
practitioners to focus on vulnerability assessments rather than
managing complex software configurations and dependen-
cies. Inspired by Kali Linux’s success, we introduce BLAC-
KICE, an open-source toolkit that consolidates leading AI
red teaming tools into a unified, reproducible, and portable
container image1; the Docker build repository is available
at https://github.com/databricks/containers. The modular ar-
chitecture and carefully curated tool selection of BLACKICE
enable both novice and expert practitioners to effectively
perform AI red team assessments, while also facilitating
straightforward, community-driven extensions. An overview of
the included tools is provided in Table I, and the corresponding
Docker build process is illustrated in Figure 1.

Tool Organization Stars Type Source

Eval Harness [6] Eleuther AI 10,300 GitHub
Promptfoo [7] Promptfoo 8,600 npm
CleverHans [8] CleverHans Lab 6,400 GitHub
Garak [9] NVIDIA 6,100 PyPI
ART [10] IBM 5,600 PyPI
Giskard [11] Giskard 4,900 PyPI
CyberSecEval [12] Meta 3,800 GitHub
PyRIT [13] Microsoft 2,900 PyPI
EasyEdit [14] ZJUNLP 2,600 GitHub
Promptmap [15] - 1,000 GitHub
FuzzyAI [16] CyberArk 800 GitHub
Fickling [17] Trail of Bits 560 PyPI
Rigging [18] Dreadnode 380 PyPI
Judges [19] Quotient AI 290 PyPI

TABLE I
OVERVIEW OF BLACKICE TOOLS, INCLUDING ORGANIZATION (IF
APPLICABLE), GITHUB STARS (NEAREST HUNDRED), TOOL TYPE

(STATIC OR DYNAMIC ), AND DISTRIBUTION SOURCE.

II. DOCKER IMAGE ARCHITECTURE

AI red teaming tools vary significantly in their usage, depen-
dencies, and distribution methods, posing unique challenges

1https://hub.docker.com/r/databricksruntime/blackice
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Fig. 1. Flowchart illustrating the Docker build process for the BLACKICE container image. Boxes with red borders highlight the steps where users directly
interact with the build process to integrate new tools.

when combining them effectively into a unified workflow.
While managing separate runtime environments for each tool
during an assessment is possible, this approach has three major
drawbacks: (1) it significantly increases operational complex-
ity due to repetitive configuration and frequent environment
switching, (2) it restricts interoperability between tools by
isolating their environments, and (3) it creates challenges
for cloud-based managed notebook services, which typically
provide only a single Python interpreter per kernel.

a) Static vs. Dynamic Tools: To enable seamless use of
all tools within the same container environment, we organize
them into two distinct categories based on usage:

• Static Tools: Evaluate AI models using straightforward
command-line interfaces, requiring minimal program-
ming knowledge. While easy to use, static tools offer
limited flexibility for customization and integration.

• Dynamic Tools: Offer similar evaluation capabilities but
additionally support advanced Python-based customiza-
tion, enabling users to write code for custom attacks.

Within the container image, static tools are installed in individ-
ual, isolated Python virtual environments (or separate Node.js
projects), each with its own dependencies, and can be executed
immediately via symlinks to custom CLI scripts. Alternatively,
dynamic tools are installed directly into the global Python
environment, with dependency conflicts managed through a
global_requirements.txt file.

b) Automated Installation: The Docker build process
automates the installation and configuration of each tool
according to its category and distribution source. At the top
of the Dockerfile, users specify tool names along with their
pinned versions (defined either by package version or Git
commit hash) in predefined configuration lists. By default,
tools listed under PYTHON_TOOLS are installed from PyPI
into isolated Python virtual environments. Users can override
this default behavior by adding tools to SYSTEM_TOOLS,
which installs them into the global Python environment, or
to GIT_TOOLS, which clones and installs them directly from
their Git repositories. NODEJS_TOOLS are always installed
via npm into separate project directories.

c) Customization via Patching: In certain scenarios,
users may need to extend or modify the functionality of
existing tools. For example, an assessment might require

implementing a custom client to query a model endpoint not
supported by default, or enhancing a tool like CyberSecE-
val [12] to enable providing the LLM with a security-oriented
system prompt during benchmark evaluations. To simplify
these modifications, the BLACKICE build process includes a
structured patching mechanism. Users can add source-level
patches as simple .diff files or custom Python modules
to a designated directory (/patches/<tool>), which are
automatically applied before the tool is installed.

d) Community Extensibility: The modular build design
enables users to easily add new tools by appending them
to the configuration lists defined at the top of the Docker-
file (e.g., PYTHON_TOOLS, SYSTEM_TOOLS, GIT_TOOLS).
After doing so, static tools are integrated by creating a
minimal wrapper script in the /cli_scripts/<tool>
directory that includes a shebang pointing to the tool’s
isolated Python interpreter and invokes its run command
with the provided arguments. Custom static tools can be
added in the same way by placing a self-contained CLI
script in /cli_scripts/<tool>. For example, we in-
clude biasforge, a custom CLI tool that evaluates bias
in language models by generating synthetic prompts based
on a specified evaluation objective, querying a target model,
and assessing the outputs using a structured judgment
schema. Dynamic tools, in contrast, may require updating the
global_requirements.txt file to resolve any newly
introduced dependency conflicts. Once the image is rebuilt,
all new tools become immediately available via the CLI, with
no additional setup required.

III. TOOL SELECTION AND COVERAGE

To ensure comprehensive coverage, we first identified criti-
cal threat domains based on technical reports and red teaming
guidelines published by industry-leading organizations [20–
26]. These reports provided valuable insights into common
techniques and best practices used in AI red team assessments.
Second, we examined system cards (e.g., [27–29]), structured
documents transparently detailing organizations’ internal red
teaming processes and findings. Finally, we reviewed out-
comes from red teaming competitions (e.g., [30–32]), where
participants attack LLMs in controlled environments designed
to reflect real-world adversarial scenarios, similar to “capture
the flag” challenges. Guided by this analysis and discussions



BlackIce Capability MITRE ATLAS Databricks AI Security Framework
(DASF)

Prompt-injection and jailbreak testing of
LLMs

AML.T0051 LLM Prompt Injection;
AML.T0054 LLM Jailbreak;
AML.T0056 LLM Meta Prompt Extraction

9.1 Prompt inject;
9.12 LLM jailbreak

Indirect prompt injection via untrusted
content (e.g., RAG/email)

AML.T0051 LLM Prompt Injection [Indirect] 9.9 Input resource control

LLM data leakage testing AML.T0057 LLM Data Leakage 10.6 Sensitive data output from a model

Hallucination stress-testing and detection AML.T0062 Discover LLM Hallucinations 9.8 LLM hallucinations

Adversarial example generation and eva-
sion testing (CV/ML)

AML.T0015 Evade ML Model;
AML.T0043 Craft Adversarial Data

10.5 Black box attacks

Supply-chain and artifact safety scanning
(e.g., malicious pickles)

AML.T0010 AI Supply Chain Compromise;
AML.T0011 Unsafe AI Artifacts

7.3 ML supply chain vulnerabilities

TABLE II
MAPPING OF BLACKICE CAPABILITIES TO MITRE ATLAS AND THE DATABRICKS AI SECURITY FRAMEWORK (DASF).

with industry AI security practitioners, we selected widely
adopted open-source tools, including those developed by es-
tablished AI security teams (e.g., [9, 12, 13]), AI security
startups (e.g., [7, 11]), academic researchers [8, 14], and
independent developers [15]. The selected tools were then
evaluated for their collective coverage of major AI security
risk categories by mapping the capabilities of BLACKICE
to MITRE ATLAS [33] and the Databricks AI Security
Framework (DASF) [34]. Table II highlights that BLACKICE
provides comprehensive coverage across domains such as
prompt injection, data leakage, hallucination detection, and
supply-chain integrity.

a) Static Tool Capabilities: Although there is a cer-
tain degree of functional overlap among static tools, each
provides distinct testing capabilities and excels in particular
areas. Evaluation Harness [6] offers over 60 academic bench-
marks targeting skills such as reasoning, reading compre-
hension, and mathematics; Promptfoo [7] generates context-
specific attacks and can evaluate vulnerabilities according to
frameworks such as the OWASP Top 10 for LLMs [35];
Garak [9] leverages predefined prompt sets to assess model-
level vulnerabilities including bias, toxicity, jailbreaks, and
hallucinations; Giskard [11] provides an extensible automated
testing platform supporting integration with multiple LLM
providers;2 CyberSecEval [12] targets security-specific issues
such as unsafe code generation and malware synthesis through
predefined corpuses; and Fickling [17] scans Python pickle
files for malicious payloads.

b) Dynamic Tool Capabilities: For advanced users, dy-
namic tools enable conducting more customized assessments:
PyRIT [13] is a Python framework allowing users to con-
figure red teaming workflows using components such as
Prompt Targets, Executors, Scorers, and Converters, facili-

2Although Giskard did not originally provide a CLI, we implemented one
to classify it as a static tool, given its strong static evaluation capabilities.

tating comprehensive and easily extendable testing scenarios;
EasyEdit [14] enables direct manipulation of a model’s internal
representations, allowing users to alter stored knowledge; and
Rigging [18] is a framework for orchestrating type-safe LLM
workflows, ideal for automating structured tasks in AI security
assessments.3

IV. CONCLUSION

BLACKICE is released as an open-source Docker image
along with its build repository, providing a standardized ex-
ecution environment that greatly reduces the effort required
to conduct comprehensive AI red teaming assessments. The
image includes a curated selection of static and dynamic tools,
collectively addressing a broad range of vulnerabilities in both
LLMs and classical ML models. Through its modular design
and straightforward extensibility, we aim for BLACKICE to
foster community-driven enhancements and encourage respon-
sible AI deployment practices.
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