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Abstract—Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of
single-process programs is known as a many-task application. Typically, HPC tools are used to parallelize these analyses. In this work,
we investigate an alternate approach that uses Apache Spark—a modern platform for data intensive computing—to parallelize
many-task applications. We implement Kira, a flexible and distributed astronomy image processing toolkit, and its Source Extractor
(Kira SE) application. Using Kira SE as a case study, we examine the programming flexibility, dataflow richness, scheduling capacity
and performance of Apache Spark running on the Amazon EC2 cloud. By exploiting data locality, Kira SE achieves a 4.1× speedup
over an equivalent C program when analyzing a 1TB dataset using 512 cores on the Amazon EC2 cloud. Furthermore, Kira SE on the
Amazon EC2 cloud achieves a 1.8× speedup over the C program on the NERSC Edison supercomputer. A 128-core Amazon EC2
cloud deployment of Kira SE using Spark Streaming can achieve a second-scale latency with a sustained throughput of ∼800 MB/s.
Our experience with Kira demonstrates that data intensive computing platforms like Apache Spark are a performant alternative for
many-task scientific applications.
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1 INTRODUCTION

D RAMATIC increases in dataset sizes have made data
processing a major bottleneck for scientific research

in many disciplines, such as astronomy, genomics, social
science, and neuroscience. Researchers frequently start with
a C or Fortran program that is optimized for processing
a small amount of data on a single-node workstation and
then use distributed processing frameworks to improve pro-
cessing capacity. Examples include the Montage astronomy
image mosaic application [1], the sequence alignment tool
BLAST [2], and high energy physics histogram analysis [3].
These applications are known as many-task applications
because they comprise many small single-process tasks that
are connected by dataflow patterns [4].

Scientists have used dedicated workflow systems (e.g.,
HTCondor [5]), parallel frameworks (e.g., the Message Pass-
ing Interface, MPI [6]), and more recently the data pro-
cessing system Hadoop [7] to build these applications [3],
[8]. Each approach has its own advantages such as prove-
nance tracking, high scalability, and automated parallelism.
However, these approaches also have shortcomings such as
limited programming flexibility, lack of fault-tolerance, or a
rigid programming model.

Apache Spark [9] was designed to support fast iterative
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data analyses on very large datasets by relying on an in-
memory data model that allows for the caching of inter-
mediate results. By using a directed acyclic graph (DAG)
to describe parallel tasks, Apache Spark provides resilience
against transient failures by replaying computational lin-
eage and can optimize for data locality when scheduling
tasks. These features have made Apache Spark a widely
used distributed computing platform for machine learn-
ing [10], [11] and computational science [12], [13], [14], and
make Apache Spark a natural platform for executing many-
task applications.

In addition to traditional batch many-task processing,
some more recent scientific applications also have latency
requirements that could easily be met by a stream process-
ing approach. For example, in the Large Synoptic Survey
Telescope (LSST, [15]) survey, the image processing pipeline
needs to send out alerts to the community based on transient
events such as supernovae detections. It also assesses data
quality at near real-time to provide feedback to telescope
operations. The latency in these cases should not exceed 60
seconds [16]. Apache Spark’s built-in streaming processing
module [17] provides a convenient way to deploy applica-
tions enabled by Apache Spark in a streaming manner.

Previous research using Apache Spark for computa-
tional science reimplemented the underlying domain algo-
rithms [12], [13], [14]. In contrast, our research investigates
how to leverage Apache Spark by reusing existing code
bases for many-task applications. This approach avoids
rewriting existing code which takes unnecessary effort and
can introduce errors. We study this question in the context of
Kira, an astronomy image processing toolkit [18]. In particu-
lar, we focus on the source extractor component of Kira (Kira
SE) to evaluate the programing flexibility, dataflow richness
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and scheduling capacity of Apache Spark. Source extraction,
is a common function in astronomy pipelines, that identifies
point sources of light in an image. We evaluate Kira SE’s
performance by comparing against an equivalent C imple-
mentation that is parallelized using HPC tools. We also use
Kira SE to examine the use of Spark Streaming to address the
near real-time requirements of astronomy image processing,
such as in the LSST. Leveraging a multi-language analytics
platform like Apache Spark provides several advantages for
many-task applications:

1) Apache Spark can use existing astronomy libraries
written in Python and C. This allows astronomers
to reuse existing libraries to build new analysis
functionality.

2) Apache Spark supports a broad range of dataflow
patterns such as pipeline, broadcast, scatter, gather,
reduce, all-gather, and all-to-all (shuffle). This broad
dataflow pattern support can be used to optimize
the data transfer between computation stages.

3) Apache Spark’s broad support for underlying file
systems allows Kira to process data stored in a
distributed file system such as HDFS [19], as well
as data stored in HPC-style shared file systems such
as GlusterFS [20] or Lustre [21], or cloud blob stores
like Amazon S3 and Microsoft DataLake.

4) Apache Spark also provides fault tolerance, a fea-
ture missing from MPI [6].

5) Kira can leverage other components of the Berkeley
Data Analytics Stack (BDAS), e.g., Spark Stream-
ing [17].

Our experiments indicate that in addition to these ben-
efits of flexibility and ease of development, Apache Spark
provides performance benefits that can be leveraged by a
scientific computing application such as Kira. For example,
our results show that Apache Spark is capable of managing
O(106) tasks and that Kira SE runs 4.1× faster than an
equivalent C program when using a shared file system on
the Amazon EC2 cloud with the 1TB from the Sloan Digital
Sky Survey [22] Data Release 7. We also show that running
Kira SE in the Amazon EC2 cloud can achieve performance
that is 1.8× faster than that of the equivalent C program
running on the NERSC Edison supercomputer. Enabled by
Spark Streaming, a deployment of Kira SE on 16 nodes
on Amazon EC2 cloud achieves second-scale latency and
a sustained throughput of ∼800 MB/s.

Our experience with Kira indicates that Big Data
platforms such as Apache Spark are a competitive al-
ternative for many-task scientific applications. We be-
lieve this is important, because leveraging such plat-
forms would enable scientists to benefit from the rapid
pace of innovation and large range of systems and tech-
nologies that are being driven by wide-spread inter-
est in Big Data analytics. Kira is open source software
released under an MIT license and is available from
https://github.com/BIDS/Kira.

This paper is an extension of a previous conference
paper [23]. Compared to that earlier work, in this paper,
we optimize Kira SE’s data layout and reduce data copy-
ing, resulting in significant performance improvements over
the previous implementation. Further, we study how solid

state disks can improve Kira SE’s performance compared to
spinning disks. We also investigate the feasibility of Kira SE
when deployed as a steam application with Spark Stream-
ing. In summary, this paper makes stronger claims about the
applicability and the benefits of using Big Data technology
(i.e., Apache Spark) for this astronomy imagery processing
application and other many-task scientific applications.

2 BACKGROUND

This section reviews the science behind sky surveys, in-
troduces the source extraction kernel, explores engineering
requirements, and discusses the origin and usage of Apache
Spark.

2.1 Sky Surveys
Modern astronomical research is increasingly centered
around large-scale sky surveys. Rather than selecting spe-
cific targets to study, such a survey will uniformly observe
large swaths of the sky. Example surveys include the Sloan
Digital Sky Survey (SDSS) [22], the Dark Energy Survey
(DES) [24], and the Large Synoptic Survey Telescope (LSST,
[15]). Enabled by new telescopes and cameras with wide
fields of view, these surveys deliver huge datasets that can
be used for many different scientific studies simultaneously.

In addition to studying the astrophysical properties
of many different individual galaxies, the large scale of
these surveys allows scientists to use the distribution of
galaxies to study the biggest contemporary mysteries in
astrophysics: dark matter, dark energy, and the properties of
gravity. These surveys normally include a time component:
each patch of the sky is imaged many times, with obser-
vations spread over hours, days, weeks or months. With
this repeated imaging, transient events can be detected via
“difference imaging”. Transients such as supernovae can be
detected in large numbers to better measure dark energy,
and the large survey area often results in the discovery of
new, extremely rare, transient phenomena.

2.2 Source Extraction
Source extraction is a key step in astronomical image pro-
cessing pipelines. SExtractor [25] is a widely used C appli-
cation for source extraction. The source extraction kernel
identifies and extracts point sources of light against the
dark background of a standard telescope image. Although
SExtractor is currently implemented as a monolithic C
program, the application’s logic can be divided into back-
ground estimation, background removal, object detection,
and astrometric and photometric estimation.

Astronomers can improve extraction accuracy by run-
ning multiple iterations of source extraction. Detected ob-
jects are removed after each iteration. While the original
C program contains the required functionality for build-
ing this iterative source extractor, it does not expose the
interfaces through the command line. To resolve this issue,
SEP [26] reorganizes the code base of SExtractor to expose
the core estimation, removal, and detection functions as a
library. SEP provides both C and Python interfaces. Users
can then build the iterative source extractor using SEP
primitives. Our system, Kira SE is implemented by calling
into the SEP library.
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2.3 Engineering Requirements

In some experiments—such as ones that search for super-
novae explosions—it is important to process the images as
rapidly as possible. A rapid processing pipeline enables
astronomers to trigger follow-up observations with more
sensitive instrumentation before the peak of the super-
novae occurs. High throughput is also needed in large scale
sky survey pipelines that perform real time data analysis,
such as the LSST [15]. The LSST uses a 2.4m-wide optical
telescope that captures 3.2 billion pixels per image. This
telescope produces approximately 12.8 GB in 39 seconds
for a sustained rate of ∼330 MB per second, and a typical
night produces 13 TB of data [27]. Over the planned 10-year
project, the survey is expected produce 60 PB of raw data,
which will be consolidated into a 15 PB catalog. LSST also
requires a latency that should not exceed 60 seconds [16]
to notice the community with transient events and quality
assessment alerts. The latency requirements of this pipeline
couple with the massive amount of data captured to create
a challenging throughput requirement for the processing
pipeline.

2.4 Apache Spark

Apache Spark is a dataflow-based execution system that
provides a functional, collection oriented API [9]. Apache
Spark’s development was motivated by a need for a system
that could rapidly execute iterative workloads on very large
datasets, as is common in large scale machine learning [28].
Apache Spark has become widely adopted in industry, and
academic research groups have used Apache Spark for
the analysis of scientific datasets in areas such as neuro-
science [12] and genomics [14].

Apache Spark is centered around the Resilient Dis-
tributed Dataset (RDD) abstraction [9]. To a programmer,
RDDs appear as an immutable collection of independent
items that are distributed across the cluster. RDDs are
immutable and are transformed using a functional API.
Operations on RDDs are evaluated lazily, enabling the sys-
tem to schedule execution and data movement with better
knowledge of the operations to be performed than systems
that immediately execute each stage. Apache Spark provides
Scala, Java, and Python programming interfaces. By default,
Apache Spark uses HDFS [19] for persistent storage, but it
can process data stored in Amazon S3 or on a shared file
system such as GlusterFS [20] or Lustre [21]. Apache Spark
provides fault tolerance via lineage-based recomputation. If
a partition of data is lost, Apache Spark can recover the data
by re-executing the section of the DAG that computed the
lost partition.

Apache Spark also provides a streaming interface using a
discretized stream (D-Stream) architecture, which leverages
the RDD abstraction [17]. D-Stream partitions data streams
into mini-batches, then applies a sequence of transforma-
tions on the mini-batches. Spark streaming can recover from
faults and stragglers quickly by using the lineage-based
fault tolerance techniques of RDDs. D-Streams can provide
subsecond latency when processing streaming data.

3 APPLYING APACHE SPARK TO
MANY-TASK APPLICATIONS

Scientific analysis pipelines are frequently assembled by
building a dataflow out of many single-process programs.
Many-task applications arise in scientific research domains
including astronomy, biochemistry, bioinformatics, psychol-
ogy, economics, climate science, and neuroscience. In these
applications, tasks are typically grouped into stages that
are connected by producer-consumer data sharing relation-
ships. A previous survey [29] identified seven common
dataflow patterns among a group of many-task applications.
The patterns include pipeline, broadcast, scatter, gather, re-
duce, all-gather, and all-to-all. Most many-task applications
can be viewed as stages of independent tasks that are linked
by these dataflow patterns.

The map-reduce [30] model uses a similar pattern to
schedule jobs. Traditional map-reduce systems such as
Google’s MapReduce [30] and Apache Hadoop MapRe-
duce [7] abstract producer-consumer relationships into a
map stage and a reduce stage. These two stages are then
linked by a data shuffle. Although these systems have
proved very powerful for processing very large datasets,
the map-reduce API has been criticized as inflexible [31].
Additionally, since jobs are restricted to a single map and
reduce phase, tools such as FlumeJava [32] are necessary
for assembling pipelines of map-reduce jobs. Since data is
spilled to disk at the end of each map and reduce phase, tra-
ditional map-reduce platforms perform poorly on iterative
and pipelined workflows [9].

To resolve these problems, second-generation map-
reduce execution systems such as DryadLINQ [33] and
Apache Spark [9] allow for applications to be decomposed
into DAGs. In these DAGs, nodes represent computation,
and the nodes are linked by dataflows. In Apache Spark, this
abstraction is provided by RDDs [9]. Table 1 demonstrates
how seven common dataflow patterns can be mapped to
Apache Spark.

TABLE 1
Dataflow Pattern Primitives in Apache Spark

Pattern Spark primitive
Pipeline RDD.map()
Broadcast sparkContext.broadcast()
Scatter sparkContext.parallelize()
Gather RDD.collect()
Reduce RDD.reduce()
All-gather RDD.collect().broadcast()
All-to-all RDD.reduceByKey() or

RDD.repartition()

Apache Spark improves upon Hadoop MapReduce by
adding an in-memory processing model that natively sup-
ports iterative computation. As compared to other DAG
based methods such as DryadLINQ, this enables the ef-
ficient execution of chained pipeline stages. In a chained
pipeline, disk I/O and inter-process communication are
only performed before the first stage of the chain, and after
the last stage of the chain. Apache Spark uses communica-
tion barriers to synchronize the execution of each stage [9].
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Fig. 1. Overview of Kira’s Architecture and Inter-Component Interactions

Another observation from the survey [29] is that many
of the documented applications are data-intensive. When
these applications are executed in distributed or parallel
platforms, reading and writing data between disk and
memory dominates the execution time. The data analysis
applications supported by Apache Spark and Hadoop are
also data intensive. Thus, the data locality optimization in
Apache Spark/Hadoop should also be effective to improve
the performance of the many-task applications.

Given its rich dataflow pattern support and locality
optimization, Apache Spark and related systems are strong
candidates for many-task applications.

4 KIRA DESIGN AND IMPLEMENTATION

When designing the Kira astronomy image processing
toolkit, we focused on improving computational perfor-
mance and I/O cost while providing a flexible programming
interface that enables code reuse.

4.1 Architecture Overview
Kira’s overall architecture is shown in Figure 1. Each outer
box with rounded corners is a process. A process can be
a Spark Driver, a Spark Worker, or a HDFS daemon (Na-
meNode or DataNode). Kira runs on top of Spark, which
supports a single driver and multiple workers. The SEP
library (shaded inner box) is deployed to all worker nodes.
The input files are stored in the underlying file system.

To run Kira, we submit the compiled program, the
parameters, and library dependencies to the Spark Driver.
The Spark Driver manages control flow, dataflow, and task
scheduling by coordinating the Spark Workers. The Spark
Driver accesses distributed/parallel file systems for meta-
data and the I/O operations are distributed across the Spark
Worker nodes in parallel.

When running a task, workers perform computation by
calling out to the SEP library. For Apache Spark’s native
Scala/Java interface, Kira calls the C library through the
Java Native Interface (JNI). With Apache Spark’s Python
bindings (PySpark), Kira calls the C library through the pre-
compiled Python interface provided by the SEP library.

4.2 Computation

We considered three approaches when implementing the
Source Extractor algorithm in Kira:

1) Reimplement the Source Extractor algorithm from
scratch.

2) Connect existing programs as monolithic pieces
without changing them.

3) Reorganize the C-based SExtractor implementation
to expose a programmable library that we call.

While reimplementing the functionality of the C SEx-
tractor code using Apache Spark’s Scala API would allow
us to execute SExtractor in parallel, it would lower the ef-
ficiency of the computation and would require a significant
reimplementation effort. The monolithic approach would
not involve a modification to the original executable. While
we could integrate with the original codebase at this level,
this would lock us in to the hardcoded program logic of the
original program. For example, astronomers can improve
extraction accuracy by running multiple iterations of source
extraction with detected sources being removed from the
input image after each iteration. The original SExtractor
contains the required functionality for the inner loop of
this iterative process, however, the hardcoded logic only
allows users to run the source extraction once. In order
to not be locked in to the rigid control flow limitations of
the monolithic model, we instead opt for a library-based
model. This approach allows us to reuse the legacy code
base without sacrificing control-flow flexibility.

4.3 I/O

The Flexible Image Transport System (FITS) [34] format is a
widely adopted file format for astronomy images. Each FITS
file contains ASCII metadata and binary image data. The
FITS format is commonly used by sky surveys, thus Kira
must be able to process and export FITS files. In Kira, one
of our goals is to leverage the locality information provided
by HDFS. When a file is loaded into HDFS, the file is split
into blocks that are replicated across machines. When a
system such as Apache Spark loads the file, HDFS then
provides information about which machines have copies of
each block of the file. This allows the scheduler to optimize
task placement for data locality.

Kira uses the SparkContext.binaryFiles() API.
This API loads all files within a directory as a sequence
of tuples. Each tuple contains the file object and a byte
stream containing the contents of the file. With Apache
Spark’s Scala interface, we then use the jFITS [35] library
to convert these byte streams into the FITS objects that users
can transform and compute upon. In PySpark, we use the
Astropy [36] Python library.

5 PROGRAMMING KIRA

The Kira API is described in Table 2. Background methods
are used to estimate and remove the image background.
The Extractor API is used for extracting objects and es-
timating astrometric and photometric parameters. The El-
lipse API offers helper functions for converting between
ellipse representations, and for generating masks that are
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based on an object’s elliptical shape. The sum_circle(),
sum_ellipse(), and kron_radius() methods in the
extractor category and all methods in the ellipse category
perform batch processing, where the input coordinates are
passed as a three dimensional array. With Apache Spark’s
Scala API, we are able to amortize the cost of each Java
Native Interface (JNI) call by processing objects in batches.

This API allows us to build a source extractor in Kira
that is equivalent to the SEP extractor [26]. Listing 1 con-
tains pseudocode describing how to implement a source
extractor using Kira’s API. This code uses Apache Spark’s
binaryFiles() method to load input files from persistent
storage. We then map over each file to convert the FITS data
into a matrix with associated metadata. In the final map
stage, we estimates and remove the background from the
matrix. Once the background is removed, we then extract
the objects from the matrix.

Listing 1. Objects Extraction Logic
1 val input_rdd = sparkContext.binaryFiles(src)
2 val mtx_rdd = input_rdd.map(f => load(f))
3 val objects_rdd = mtx_rdd.map(m => {
4 /* mask is a 2-d array with
5 * the same dimensions as m
6 */
7 val mask = null
8 val bkg = new Background(m, mask)
9 val matrix = bkg.subfrom(m)

10 val ex = new Extractor
11 val objects = ex.extract(matrix))
12 })

In Listing 2, we demonstrate how the Kira API can be
used to perform iterative image refinement. Although the
original SExtractor [25] contains all necessary functionality,
it is not feasible for users to implement this feature due to
the hardcoded program logic. However, since Kira provides
library level bindings, it is easy to implement a multi-stage
refinement pipeline.

Listing 2. Iterative Objects Extraction Logic
1 val input_rdd = sparkContext.binaryFiles(src)
2 val mtx_rdd = input_rdd.map(f=>load(f))
3 val objects_rdd = mtx_rdd.(m => {
4 /*mask is a 2-d array with
5 *the same size of m
6 */
7 var mask = null
8 var ex = new Extractor
9 for(i <- 0 until 5) {

10 var bkg = new Background(m, mask)
11 var matrix = bkg.subfrom(m)
12 var objects = ex.extract(matrix)
13 mask = mask_ellipse(objects)
14 }
15 objects
16 })

Listing 2 wraps the source extraction phase from List-
ing 1 in a loop. This allows us to update the mask used for
extraction, which is used to further refine the extraction in
subsequent iterations.

6 TUNING APACHE SPARK

This section discusses how we configure Apache Spark in
terms of parallelism and scheduling to make Kira SE more
efficiently use EC2 computing resources.

6.1 Parallelism
Apache Spark allows for both thread and process paral-
lelism. By default, Apache Spark makes use of thread-
level parallelism by launching a single Java Virtual Ma-
chine (JVM) per worker machine. Users then specify the
number of threads to launch per worker (typically, one
thread per core). However, with Apache Spark’s Scala API
in Kira SE, neither the jFITS library nor the JNI are thread
safe. To work around this, we configured Apache Spark to
support process level parallelism by launching a worker in-
stance for each core. This configuration may reduce scalabil-
ity, as it increases the number of workers the driver manages
and can reduce the performance of broadcast operations, as
broadcast objects are replicated across workers. However,
our experiments with 512 workers in §8 show that Kira’s
scalability is not severely impacted by worker management
or broadcast overhead. The Kira/PySpark implementation
is thread safe, and we launch a single Spark Worker per
machine when running under PySpark. Each Spark Worker
then manages the multiple cores on the machine.

6.2 Scheduling
Apache Spark’s task-scheduling policy aims to achieve
fairness while maximizing data locality by using delay
scheduling [37]. In the context of Apache Spark, a task is
an instance of code that runs on a worker and a job consists
of many tasks running on many workers. In this scheduling
paradigm, if node n has the data needed to run task j, task
j will execute on node n if task j would wait less than a
threshold time t to start. The policy is tunable through three
parameters:

• spark.locality.wait.process
• spark.locality.wait.node
• spark.locality.wait.rack

These parameters allow users to specify how much time
a task will wait before being sent to another process, node,
or rack. For Kira SE, we have found that data balancing
can impact task distribution, leading to node starvation
and a reduction in overall performance. Loading a 65 GB
(11,150 files) dataset from SDSS Data Release 2 to a 16-
node HDFS deployment ideally should result in 699 files
on each node. In reality, the number of files on each node
varies between 617 and 715. Enforcing locality with longer
spark.locality.wait time (3000 ms) leads to task distribution
imbalance, which makes Kira SE 4.5% slower than running
with spark.locality.wait set to 0 ms. In practice, we set all
spark.locality.wait parameters to zero, so that tasks do not
wait for locality. This setting effectively avoids starvation
and improves the overall time-to-solution.

The root cause of the ineffectiveness of delay scheduling
is the size of the input files for the Kira SE tasks. Each
input file is ∼6 MB, compared to a typical block size of
64/128 MB [19]. Delay scheduling’s parameters let users
specify how long a task should wait for locality before
getting executed elsewhere. This waiting time can be viewed
as the expected job completion time difference between
executing the task with data locality and without locality.
In the Kira SE case, the need for scheduling a task to a
node without locality only occurs when there is a possible
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TABLE 2
Kira Primitives and Explanation

Group API Explanation

Background
makeback() Builds background from an input image
backarray() Returns the background as a 2D array
subbackarray() Subtracts a given background from image

Extractor

extract() Returns objects extracted from the input image
sum circle() Sums data in circular apertures
sum ellipse() Sums data in elliptical apertures
kron radius() Calculate iron radius within an ellipse

Ellipse
ellipse coeffs() Converts from ellipse axes and angle to coefficient representations
ellipse axes() Converts from coefficient representations to ellipse axes and angles
mask ellipse() Masks out certain pixels that fall in a given ellipse

Master Script Worker Script
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GlusterFS Node
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access

Metadata

Data

Fig. 2. Overview of a Parallel Version of Source Extractor using HPC
Tools

starvation if we continue to enforce the locality. Since our
input files are small, the cost of doing a remote fetch is low
and thus we should only wait for a short period of time [38].
By experimenting with different waiting time settings, we
found that not waiting (i.e., delay=0) delivered the best
performance. 1

7 AN HPC SOLUTION

A typical way to parallelize a many-task application such
as source extractor is to use a scripting language or MPI
to launch multiple tasks concurrently. Figure 2 shows the
architecture of such a solution.

All the input files are stored in the shared file system,
e.g., GlusterFS or Luster. We use a master script first to read
all the input file names, then partition the file names into
partitions. After that, the master script informs the worker
scripts on each node to process an independent partition of
files in parallel in a batch manner.

For GlusterFS, metadata is distributed across the cluster
and the metadata query from the master script communi-

1. While this result seems to contradict our result in §8 that states that
Apache Spark outperforms the HPC solution due to data locality, it is
not contradictory because even with no delay scheduling, 98% of the
tasks scheduled have local data. Thus the delay scheduling penalty is
not needed in this case. We have traded a 2% decrease in locality for a
4.5% improvement in overall performance.

cates with all nodes. The file I/O is done by the worker
nodes. Note that unlike HDFS, POSIX I/O libraries can-
not take advantage of data placement locality during file
read/write. While Lustre file I/O is similar to GlusterFS,
file system metadata is consolidated onto a small set of
metadata servers.

8 PERFORMANCE

We migrated an earlier version of Kira that used Apache
Spark’s Scala interface [18] to PySpark for increased uptake
in the astronomy community. In the course of this migration,
we optimized data layout and took efforts to make zero-
copy calls to external libraries, which led to significant
performance improvements. To differentiate the two imple-
mentations, we refer to them as Kira-SE-v1 and Kira-SE-v2,
respectively.

We compare both of the Kira implementations against
the HPC solution that runs the C code in the SEP library
(referred to as the C version in the following text). Because
all implementations use the same SEP library, Kira SE (both
versions) perform an identical amount of computation and
read and write the exact same files.

To understand Apache Spark’s overhead, we first com-
pare Kira SE’s performance against the C version on a
single machine. Then we fix the problem size and scale
Kira SE and the C implementation across a varying number
of machines on EC2 to understand the relative scalability
of each approach. With a 1 TB dataset from Sloan Digital
Sky Survey Data Release 7, we study the difference in
performance between Kira SE and the C version for large
dataset processing. Finally, we show some interesting results
when running the C version on the Edison supercomputer
that is deployed at the National Energy Research Scientific
Computing Center (NERSC).

In all experiments using Amazon’s EC2 service, we
use m2.4xlarge instances for spinning disks and r3.2xlarge
instance for solid state disks. The m2.4xlarge instance type
has eight cores (each running at 2.4GHz), 68 GB RAM, two
hard disk drives (HDD), and Gigabit Ethernet. We chose this
HDD based configuration to give a fair comparison against
the Edison supercomputer, which is backed by HDDs. We
also report results from a performance study using nodes
with solid state drives (SSDs).

In addition to the batch implementations, we also study
a streaming deployment of Kira SE on a 16 m2.4xlarge
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instance cluster. This study will show Spark Streaming’s ca-
pability in supporting near real-time processing as required
by surveys such as LSST.

Software configurations are described in the following
experiments. If not stated otherwise, we run each experi-
ment three times, and present the average. Error bars in the
figures are the standard deviation of the measurements.

8.1 Single Machine Performance

We begin by describing a set of scale-up experiments on
a single machine. The purpose of these experiments is to
understand Kira SE’s relative overhead compared to that of
simply running the SEP C code on a single node. Note that,
the two Kira versions and the C implementation run the
same SEP C code. Kira-SE-v1 and Kira-SE-v2 call the C code
through Java Native Interface and the Cython interface,
respectively. We also want to identify the resource require-
ments (computation or disk I/O) that dominate Kira SE’s
performance. For both Kira SE and the C implementation,
we store data locally in an ext4 file system [39].

For this experiment, we use a 12GB dataset from the
SDSS DR2 survey. The dataset contains 2310 image files
where each image is ∼6MB.

1 core 2 cores 4 cores 8 cores
Scale

0

1000

2000

3000

4000

5000

T
im

e
-t

o
-s

o
lu

ti
o
n
 (

se
co

n
d
s)

Kira-SE-v2
Kira-SE-v1
C

Fig. 3. Single-Node Scale-Up Performance Comparison between Kira
SE and the C Version (Lower is Better)

Figure 3 shows the running time of 3 different deploy-
ments of the Source Extractor on a single m2.4xlarge ma-
chine as it is scaled from 1 to 8 cores. The figure shows that C
and Kira-SE-v2 have similar performance while Kira-SE-v1
is significantly slower, although the difference decreases as
more cores are used. The runtime of the C implementation
is dominated by disk I/O and the runtime improves by 65%
when scaling from a single core to eight cores. Although
Kira-SE-v1 is 7.4× slower than the C implementation on
a single core, Kira-SE-v1 is only 2.2× slower than the
performance of the C version when using all eight cores
on the node. The performance slowdown of Kira-SE-v1
compared to the C implementation is mainly caused by Java
Virtual Machine and JNI overhead when calling to the C
libraries. With 8 cores on the node, the performance of Kira-
SE-v1 is dominated by CPU. Kira-SE-v2 is 39.7% slower

than the C implementation with a single core, while this
performance gap shrinks as the core count increases. The
performance of Kira-SE-v2 converges to the C performance
beyond four cores. The performance improvement of Kira-
SE-v2 over Kira-SE-v1 is attributable to using the SEP-
native data layout in our PySpark application as well as
the reduction in data copying between SEP library and the
core C library. A further performance breakdown of Kira-
SE-v2 reveals that the the library calling and data copying
overhead of SEP averages 108 msec. That is, by allowing
SEP to operate in-place on the images without an expensive
pre-process and copy step, we are able to improve Kira’s
performance dramatically.

We also profiled the C implementation with both warm
and cold file system caches. When running with a cold
cache, the job completed in 371 seconds while the job com-
pleted in 83 seconds when running with a warm cache. This
indicates that 78% of job execution time is consumed by I/O
(reading and writing data between local disk and memory).
Since the C implementation of SExtractor is dominated by
disk I/O, we believe that it is representative of a data
intensive application.

8.2 Scale-Out Performance

Next, we wanted to understand the strong scaling perfor-
mance of both Kira SE and the C implementation. Although
Kira-SE-v1 has 2.2× worse performance than the C imple-
mentation when running on a single machine, we expect
that Kira-SE-v1 will achieve better performance at scale due
to disk locality. We expect that this will allow Kira-SE-v1 to
outperform the C implementation on large clusters. Kira-SE-
v2 combines improved locality with computational require-
ments that are similar to that of the C implementation, so we
expect Kira-SE-v2 to be faster than the C implementation at
all scales.

We use a 65GB dataset from the SDSS DR7 that com-
prises 11,150 image files. Kira SE was configured to use
HDFS as a storage system, while the C version used Glus-
terFS. Both HDFS and GlusterFS are configured with a
replication factor of two.

Figure 4 compares the performance of Kira-SE-v1,
Kira-SE-v2, and the C version across multiple compute
nodes(shown with log scale). Kira-SE-v1 is 2.7× slower than
the C version on eight cores. However, the gap between the
two implementations decreases as we scale up. On 256 cores
and 512 cores, Kira-SE-v1 is respectively 5.6% and 22.4%
faster than the C version. The Kira-SE-v2 shows a more
significant improvement over the C implementation with
a speedup of 2.2×–3.1× across scales. Both Kira-SE-v1 and
Kira-SE-v2 achieve near linear scalability.

The fundamental driver of Kira SE’s linear scalability is
its consistent local disk hit ratio, which is the ratio between
the number of tasks that access the input file on the local
disk (rather than having to go across the network) and
total number of tasks. Taking Kira-SE-v2 as an example,
Apache Spark and HDFS optimize for data locality during
scheduling and achieve a hit ratio around 98% with a small
standard deviation (around 0.2%), as shown in Figure 5. In
contrast, the C implementation’s estimated locality hit ratio
decreases in half as the cluster size doubles.
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In general, a shared file system can be configured in
many ways to achieve better availability, performance, and
resilience. To understand the impact of the shared file sys-
tem configuration, we compare the performance of Kira SE
(time-to-solution) against four configurations of GlusterFS.
The four configurations are distributed, replicated, striped,
and striped replicated. Table 3 explains the data layout of
each configuration. When possible, we set the replication
and striping factors to two. GlusterFS manages metadata
in a distributed manner by spreading metadata across all
available nodes with a hash function. This allows the clients
to deterministically know the location of the metadata of a
given file name in the cluster.

We evaluate these configurations using the same dataset
as the scale-out experiment. We select 128 cores and 256
cores as the target scale since it is the transition point in
Figure 4 where Kira-SE-v1 begins to run faster than the C
version. As stated previously in §7, the C version performs
a two-step process. The first step collects and partitions all
file paths. We refer to this step as metadata overhead. The
processing step occurs next, and is where each node pro-

TABLE 3
GlusterFS Configuration Modes and Data Layout

Conf Mode Data Layout
distributed files are distributed to all nodes without

replication
replicated files are distributed to all nodes with a

number of replicas specified by the user
striped files are partitioned into a pre-defined

number of stripes then distributed to all
nodes without replication

striped
replicated

files are partitioned into a pre-defined
number of stripes and the stripes are dis-
tributed to all nodes with a number of
replicas specified by the user

cesses its own partition. Figure 6 compares the performance
of Kira-SE-v1, Kira-SE-v2, and the C version with profiled
metadata overhead.
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Fig. 6. Kira SE Performance Compared to All GlusterFS Configurations
(Lower is Better)

The C version running in the distributed mode outper-
forms Kira-SE-v1 at both scales. However, the distributed
mode is not practical in a cloud environment since it has no
replication or any other resilience mechanism. Replicating
or striping files introduces extra metadata overhead when
we compare the replicated mode to the distributed mode.

Another observation is that striping will further slow
down metadata processing, whereas the processing part
takes less time than the distributed mode for both scales due
to the doubled probability of accessing a file stripe (with the
striping factor of two) in local disk. Since the input files are
∼6MB each, and are always processed by a single task, the
replicated mode should be preferred to the striped replicated
mode.

When running on 256 cores, Kira-SE-v1 outperforms all
GlusterFS configurations except for the (impractical) dis-
tributed mode. When compared to the distributed mode, Kira-
SE-v1 delivers comparable performance, as it is 18% slower.
In our experiments with the 1TB dataset in Section 8.3.1,
Kira-SE-v1 outperforms the distributed mode.

As expected, Kira-SE-v2 outperforms the distributed
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Fig. 7. Kira SE Performance with 1TB Input Compared to the C Version
Running on GlusterFS on EC2 (Lower is Better)

mode, in this case by 2.1× and 1.8× on 128 cores and 256
cores, respectively.

8.3 1TB Dataset Performance
Having examined the performance of the different ap-
proaches using a relatively small (65GB) data set, we now
investigate their performance when there is significantly
more data to process. We select a 1TB dataset from the SDSS
DR7 survey, which is comprised of 176,938 image files. With
this experiment, we seek to answer the following questions:

• Can Kira scale to process a 1TB dataset?
• What is the relative performance of Kira compared

to the HPC version on the Amazon EC2 cloud?
• How does Kira SE performance compare to the HPC

version on a supercomputer?

8.3.1 Cloud
We configure GlusterFS in the replicated and distributed
modes and compare Kira-SE-v1’s and Kira-SE-v2’s perfor-
mance against the C implementation. A detailed breakdown
of the performance is shown in Figure 7. In this experiment,
Kira-SE-v1 runs 1.1× and 1.3× faster than the C version
running on top of GlusterFS configured in distributed mode
on 256 cores and 512 cores respectively. Compared to the
more practical replicated configuration of GlusterFS, Kira-SE-
v1 is 2.3× and 2.5× faster. On the other hand, Kira-SE-v2
runs 2.5× and 2.0× faster than the impractical distributed
mode on 256 cores and 512 cores, respectively. Kira-SE-
v2 is also 4.1× ∼ 5.2× faster than the replicated mode.
The C version in distributed mode is slower than both Kira
SE implementations due to the lack of the locality notion
in the HPC solution presented in §7. The C version in
replicated mode slows down 2.2× than that in distributed
mode because the directory metadata query is dramatically
slower (13.4×), and the additional replica for each output
file and associated metadata update introduces a slowdown
of 1.4×.

Compared to the experiment with the 65GB dataset in
Section 8.2, Kira-SE-v2 processes 15.9× more data in 16.3×

more time. If we discount the Apache Spark startup time,
we can see that Kira-SE-v2 scales linearly in relation to the
data size.

The overall throughput of Kira-SE-v2 is 1,335 MB/sec-
ond, which is 4.0× greater than necessary to support the
upcoming Large Synoptic Survey Telescope (LSST), as dis-
cussed in Section 2.3. This high throughput enables real-time
image processing.

8.3.2 Supercomputer Performance
Many astronomers have access to supercomputers and be-
lieve that supercomputers outperform commodity clusters
for data-intensive applications. To examine this belief, we
compare Kira-SE-v1 and Kira-SE-v2 on the Amazon cloud
versus the performance of the C version running on the
NERSC Edison supercomputer, a Cray XC 30 System. On
the supercomputer we use the Lustre file system, which pro-
vides a peak throughput of 48GB/s. Each compute node of
Edison is equipped with a 24-core Ivy Bridge processor, with
a 2.4GHz clock rate. This is comparable to the CPU speed of
the Amazon EC2 m2.4xlarge instance (eight vCPUs of Intel
Xeon E5-2665, each running at 2.4GHz). The experiments
on Edison run on 21 nodes (a total of 504 cores) while Kira
SE uses 64 nodes (512 cores) on EC2. Figure 8 shows the
measurements.
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Fig. 8. Kira SE Performance with 1TB Input Compared to the C Version
Running on NERSC Edison Supercomputer (Lower is Better)

Kira-SE-v1 delivers performance comparable to that of
the C version on Edison. While Kira-SE-v2 achieves a 1.8×
speedup compared to that of Edison performance. During
the experiments, we observed that the C version perfor-
mance varies significantly with an average time-to-solution
of 1,388.9 seconds and a standard deviation of 520.5 seconds.
These results clearly fall into two classes. The first class has
an average time-to-solution of 937.8 seconds with a standard
deviation of 69.5 seconds. The second class has an average
time-to-solution of 1840.1 seconds with a standard deviation
of 248.7 seconds. A further analysis shows that we are
only using 0.4% of the computing resources of the Edison
machine. In the first class, the sustained I/O bandwidth is
1.0 GB/s, which is 2.1% of the I/O bandwidth available
on the file system. While in the second class, the sustained
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I/O bandwidth is down to 0.5GB/s. Since the Edison cluster
scheduler only schedules a single job per compute node,
computing resources are completely isolated. Thus, we can
reason that it is the I/O network resource or the file system
that causes the performance variance.

On the other hand, Kira-SE-v2 is able to speedup the
performance by a factor of 1.8 compared to the C perfor-
mance on the Edison Supercomputer with an average time-
to-solution of 767.4 seconds and a standard deviation of
10.9 seconds. The stable performance of both versions of
Kira SE can be attributed to exploiting data locality: both
the Kira implementations move the I/O from network to
local disk access, which gives a higher I/O bandwidth as
well as better task-to-task isolation.

8.4 Solid State Disk Performance
In §8.1, we stated that the Kira-SE-v2 performance is domi-
nated by disk I/O. By running with high bandwidth SSDs,
we can quantitatively evaluate the potential performance
improvement that increased I/O bandwidth can provide.
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Fig. 9. Kira-SE-v2 Performance with 65GB Input Using Solid State Disk
(SSD) Compared to Spinning Disks (HDD) (Lower is Better)

Figure 9 shows that using SSDs allows Kira-SE-v2 to
run 1.6× ∼ 2.0× faster than spinning disks across various
cluster scales. The measurement with the 1TB dataset shows
a 1.9× and 2.0× speedup on 256 cores and 512 cores, respec-
tively. Using SSDs boosts the sustained processing rate on
512 cores from 1,335 MB/second to 2,723 MB/second, which
is about 8.3× higher than the LSST real time processing
requirement.

8.5 Spark Streaming
In §2.3, we stated that the LSST sky survey requires near
real-time processing with a maximum latency of 60 sec-
onds [16], and that the sustained data generation rate of
LSST is∼330 MB/s [27]. Though executing Kira in the batch
mode periodically can meet the latency and throughput re-
quirements of such an application, doing so in a continuous
fashion would require external tools to manage the Kira
invocation and handle fault-tolerance across executions. For
example, results from finished batch executions are lost due

to a failure, Apache Spark can not recover using its lineage
since the lost results are out of scope once the spark execu-
tion finishes. In contrast, deploying Kira with Spark Stream-
ing will make continuous processing fully automatic, and
also Spark Streaming has the ability to efficiently recover
lost data from failures. Thus, in this section, we examine the
deployment of Kira using Spark Streaming. Also, we would
like to find out more generally the latency and throughput
bounds of Kira with Spark Streaming to understand the
applicability of Spark Streaming for providing low latency
processing in a scientific environment.

8.5.1 Spark Streaming Overview
Spark Streaming’s D-Stream abstraction [17] partitions data
streams into mini-batches, then applies a sequence of trans-
formations on the mini-batches. Users can specify the “batch
interval”, which is the time period that defines the size of
each mini-batch. At the end of an interval, processing is
begun on the data that arrived during that interval and a
new interval is started. This process is depicted in Figure 10.

File 1 N N+1 2N 2N+1 3N 3N+1... ... ...

0
batch

interval
2*batch
interval

3*batch
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mini_batch_1 mini_batch_2 mini_batch_3

mini_batch_1
execution
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Fig. 10. Spark Streaming Operations along Time Line with Batch Interval
Longer than per Batch Execution Time

Technically, Spark streaming can monitor an HDFS di-
rectory for new files and process the new files periodi-
cally. The Python interface of the Spark Streaming 1.6.0
release supports both text files and fixed-length binary
records. We implement a new streaming interface called
SparkContext.binaryFileStream() to read the FITS
files as binary streams. Then, the source extraction proce-
dure can be applied to the data by calling Kira APIs.

We evaluate the streaming deployment based on its
processing latency. We define the processing latency as the
time from when an interval starts until the final file of that
interval is processed. As shown in Figure 10, the processing
latency is the sum of two parts.

proc latency = batch interval + exec time (1)

The first part is its waiting time inside the batch interval.
The second part is the execution time for the mini-batch. If
the the batch interval is shorter than the average execution
time, then it is an infeasible deployment. This is because the
file processing latency would increase as time proceeds.

8.5.2 Experiment Results
In this experiment, we use a fixed cluster of 16 m2.4xlarge
instances (128 cores in total) and stream the 65 GB dataset
to an HDFS directory at the rate of 780 MB/s (∼128 files/s).
We vary the batch interval parameter in the range of {1,
2, 4, 8} seconds and measure the execution time of each
mini-batch. Then we examine the feasibility of these batch
interval values by comparing to average execution time.
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Figure 11 shows the measured execution time with a
varying batch interval of {1, 2, 4, 8} seconds. With all four
batch interval settings, we see that the execution time of the
first mini-batch is higher than the other mini-batches due
to startup cost of loading libraries into memory. After the
first batch, the execution time is fairly stable. As would be
expected, decreasing the batch interval by 2 approximately
halves the execution time, until the step from the 2 second
batch interval to 1 second.
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Fig. 11. Per Mini-batch Execution Time of Kira-SE-v2 Enabled by Spark
Streaming with Varying Batch Intervals

Figure 12 shows the scatter plot of the batch interval
and the average execution time. We classify the space into
“feasible” and “infeasible” based on the difference of batch
interval and average execution time. In the lightly shaded
area, the execution time of a mini-batch is less than the batch
interval. So points that fall in this area represent feasible
Spark Streaming deployments. In contrast, the points that
fall in the dark shaded area indicate infeasible deployments,
as the execution time is on average longer than the batch
interval.

Among the four batch interval values test, the batch
intervals of 4 and 8 seconds result in feasible deployments.
The processing latencies, calculated using Equation 1, for
them are 7.9 seconds and 15.4 seconds, respectively. Both
deployments are able to keep up with the 780 MB/s data
streaming rate.

This performance on 16 m2.4xlarge instances easily
meets LSST’s requirements of near real-time processing with
a maximum 60 seconds latency and the sustained data
generation rate at ∼330 MB/s. Our results show that Spark
Streaming has significant performance headroom in the case
so that it could support even more stringent requirements.

9 RELATED WORK

Many systems have tackled the problem of executing single
process programs in parallel across large compute clusters.
This includes workflow systems such as HTCondor, and ad
hoc Hadoop and MPI based approaches.

In a workflow system, programmers can easily con-
nect serial/parallel programs by specifying dependencies
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Fig. 12. Batch Interval Setting Feasibility Classification, Error Bars are
Standard Deviation of Execution Time.

between tasks and files. These systems do not require any
modifications to the original code base. Workflow systems
provide a flexible data management and task execution
scheme that can be applied to a broad range of applications,
but at the cost of programming flexibility.

Researchers have used the Hadoop MapReduce [7] sys-
tem to parallelize tasks using a map-reduce data model. A
variety of scientific applications have been parallelized us-
ing Hadoop such as CloudBLAST [8]. Although Hadoop ex-
poses many convenient abstractions, it is difficult to express
the application with the restrictive map-reduce API [31] and
Hadoop’s disk based model makes iterative/pipelined tasks
expensive.

MPI has also been used to parallelize a diverse range
of workloads. There are MPI-based parallel implementa-
tions of astronomy image mosaicing applications (Mon-
tage [1]) and sequence alignment and search toolkits (mpi-
BLAST [40]) applications. As an execution system, MPI has
two significant drawbacks. First, to implement a many-task
application on top of MPI, a user must develop a custom C
wrapper for the application and a custom message-passing
approach for communicating between nodes. In practice, the
communication stages are critical for performance, which
means that the dataflow management scheme must be tai-
lored to the application and hand tuned. Additionally, MPI
does not provide fault tolerance, which is problematic when
running a long lived application across many (possibly)
unreliable nodes.

Traditionally, distributed workflow systems are run on
top of a shared file system. Shared file systems (e.g., Lus-
tre [21], and GlusterFS [20]) are commonly used because
they are compatible with the POSIX standard and offer a
shared namespace across all nodes. However, shared file
systems do not expose file locality to workflow systems,
thus making suboptimal use of local disks on the compute
nodes when possible. Most tools in the Hadoop ecosystem
use HDFS [19]). HDFS provides a shared namespace, but
is not POSIX compliant. Unlike traditional server-based
shared file systems, HDFS uses the disks on the compute
nodes which enables data locality on filesystem access.
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10 FUTURE WORK

Kira is currently available as an alpha release (https://
github.com/BIDS/Kira), and we are planning to migrate
Kira SE into a larger project for supernovae detection.

By adding processing kernels including image repro-
jection and image co-addition, Kira will be useful as an
end-to-end astronomy image analysis pipeline. We will use
this end-to-end pipeline to continue evaluating the use of
Apache Spark as a conduit for many-task dataflow pipelines
by comparing against the equivalent C implementation.
With this system, we will try to determine which data in-
tensive scientific applications execute most efficiently using
“big data” software architectures on commodity clusters,
rather than using HPC software methods on supercomput-
ers. From this, we hope to obtain insights that can drive the
development of novel computing infrastructure for many-
task scientific applications.

11 CONCLUSION

In this paper, we investigated the idea of leveraging the
modern big data platform for many-task scientific applica-
tions. Specifically, we built Kira (https://github.com/BIDS/
Kira), a flexible, scalable, and performant astronomy image
processing toolkit using Apache Spark running on Amazon
EC2 Cloud. We also presented the real world Kira Source
Extractor application, and use this application to study
the programming flexibility, dataflow richness, scheduling
capacity and performance of the surrounding ecosystem.

The Kira SE implementation demonstrates linear scal-
ability with both increasing cluster and data size. Due to
its superior data locality, our Spark-based implementation
achieves a speedup of 2.2×–4.1× over the equivalent C im-
plementation running on GlusterFS. Kira SE’s performance
scales near linearly with the dataset and cluster size. Specif-
ically, Kira SE processes the 1TB SSDS DR7 dataset (176,938
tasks) 4.1× faster than C over GlusterFS when running on a
cluster of 64 m2.4xlarge Amazon EC2 instances. Kira SE also
achieves a 1.8× speedup compared to the C version running
on the NERSC Edison supercomputer. Using SSDs can boost
the Kira SE performance by a factor of two compared to
the performance with spinning disks. By leveraging the
Spark Streaming module, we were able to deploy Kira SE
as a streaming application. On a 128 core cluster, Kira SE
with Spark Streaming can achieve a second-scale process-
ing latency and a sustained throughput of ∼800 MB/s.
All these measurements indicate that using Apache Spark
can improve the performance of data intensive scientific
applications.

We also demonstrated that Apache Spark can integrate
with a pre-existing astronomy image processing library. This
allows users to reuse existing source code to build new
analysis pipelines. We believe that Apache Spark’s flexible
programming interface, rich dataflow support, task schedul-
ing capacity, locality optimization, and built-in support for
fault tolerance make Apache Spark a strong candidate to
support many-task scientific applications. Apache Spark is
one (popular) example of a Big Data platform. We learned
that leveraging such a platform would enable scientists to
benefit from the rapid pace of innovation and large range

of systems and technologies that are being driven by wide-
spread interest in Big Data analytics.
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