
Structured Streaming: A Declarative API for Real-Time
Applications in Apache Spark

Michael Armbrust†, Tathagata Das†, Joseph Torres†, Burak Yavuz†, Shixiong Zhu†,
Reynold Xin†, Ali Ghodsi†, Ion Stoica†, Matei Zaharia†‡

†Databricks Inc., ‡Stanford University

Abstract
With the ubiquity of real-time data, organizations need streaming
systems that are scalable, easy to use, and easy to integrate into
business applications. Structured Streaming is a new high-level
streaming API in Apache Spark based on our experience with Spark
Streaming. Structured Streaming differs from other recent stream-
ing APIs, such as Google Dataflow, in two main ways. First, it is a
purely declarative API based on automatically incrementalizing a
static relational query (expressed using SQL or DataFrames), in con-
trast to APIs that ask the user to build a DAG of physical operators.
Second, Structured Streaming aims to support end-to-end real-time
applications that integrate streaming with batch and interactive
analysis. We found that this integration was often a key challenge
in practice. Structured Streaming achieves high performance via
Spark SQL’s code generation engine and can outperform Apache
Flink by up to 2× and Apache Kafka Streams by 90×. It also offers
rich operational features such as rollbacks, code updates, and mixed
streaming/batch execution.We describe the system’s design and use
cases from several hundred production deployments on Databricks,
the largest of which process over 1 PB of data per month.

ACM Reference Format:
M. Armbrust et al.. 2018. Structured Streaming: A Declarative API for Real-
Time Applications in Apache Spark. In SIGMOD’18: 2018 International Con-
ference on Management of Data, June 10–15, 2018, Houston, TX, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3183713.3190664

1 Introduction
Many high-volume data sources operate in real time, including
sensors, logs from mobile applications, and the Internet of Things.
As organizations have gotten better at capturing this data, they also
want to process it in real time, whether to give human analysts the
freshest possible data or drive automated decisions. Enabling broad
access to streaming computation requires systems that are scalable,
easy to use and easy to integrate into business applications.

While there has been tremendous progress in distributed stream
processing systems in the past few years [2, 15, 17, 27, 32], these sys-
tems still remain fairly challenging to use in practice. In this paper,
we begin by describing these challenges, based on our experience

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190664

with Spark Streaming [37], one of the earliest stream processing
systems to provide a high-level, functional API. We found that two
challenges frequently came up with users. First, streaming systems
often ask users to think in terms of complex physical execution
concepts, such as at-least-once delivery, state storage and triggering
modes, that are unique to streaming. Second, many systems focus
only on streaming computation, but in real use cases, streaming is
often part of a larger business application that also includes batch
analytics, joins with static data, and interactive queries. Integrating
streaming systems with these other workloads (e.g., maintaining
transactionality) requires significant engineering effort.

Motivated by these challenges, we describe Structured Stream-
ing, a new high-level API for stream processing that was developed
in Apache Spark starting in 2016. Structured Streaming builds on
many ideas in recent stream processing systems, such as separating
processing time from event time and triggers in Google Dataflow [2],
using a relational execution engine for performance [12], and of-
fering a language-integrated API [17, 37], but aims to make them
simpler to use and integrated with the rest of Apache Spark. Specif-
ically, Structured Streaming differs from other widely used open
source streaming APIs in two ways:
• Incremental query model: Structured Streaming automati-
cally incrementalizes queries on static datasets expressed through
Spark’s SQL and DataFrame APIs [8], meaning that users typ-
ically only need to understand Spark’s batch APIs to write a
streaming query. Event time concepts are especially easy to ex-
press and understand in this model. Although incremental query
execution and viewmaintenance are well studied [11, 24, 29, 38],
we believe Structured Streaming is the first effort to adopt them
in a widely used open source system. We found that this incre-
mental API generally worked well for both novice and advanced
users. For example, advanced users can use a set of stateful pro-
cessing operators that give fine-grained control to implement
custom logic while fitting into the incremental model.

• Support for end-to-end applications: Structured Streaming’s
API and built-in connectors make it easy to write code that is
“correct by default" when interacting with external systems and
can be integrated into larger applications using Spark and other
software. Data sources and sinks follow a simple transactional
model that enables “exactly-once" computation by default. The
incrementalization based API naturally makes it easy to run a
streaming query as a batch job or develop hybrid applications
that join streams with static data computed through Spark’s
batch APIs. In addition, users can manage multiple streaming
queries dynamically and run interactive queries on consistent

https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/3183713.3190664

snapshots of stream output, making it possible to write applica-
tions that go beyond computing a fixed result to let users refine
and drill into streaming data.
Beyond these design decisions, we made several other design

choices in Structured Streaming that simplify operation and in-
crease performance. First, Structured Streaming reuses the Spark
SQL execution engine [8], including its optimizer and runtime code
generator. This leads to high throughput compared to other stream-
ing systems (e.g., 2× the throughput of Apache Flink and 90× that
of Apache Kafka Streams in the Yahoo! Streaming Benchmark [14]),
as in Trill [12], and also lets Structured Streaming automatically
leverage new SQL functionality added to Spark. The engine runs
in a microbatch execution mode by default [37] but it can also use
a low-latency continuous operators for some queries because the
API is agnostic to execution strategy [6].

Second, we found that operating a streaming application can be
challenging, so we designed the engine to support failures, code
updates and recomputation of already outputted data. For example,
one common issue is that new data in a stream causes an applica-
tion to crash, or worse, to output an incorrect result that users do
not notice until much later (e.g., due to mis-parsing an input field).
In Structured Streaming, each application maintains a write-ahead
event log in human-readable JSON format that administrators can
use to restart it from an arbitrary point. If the application crashes
due to an error in a user-defined function, administrators can up-
date the UDF and restart from where it left off, which happens
automatically when the restarted application reads the log. If the
application was outputting incorrect data instead, administrators
can manually roll it back to a point before the problem started and
recompute its results starting from there.

Our team has been running Structured Streaming applications
for customers of Databricks’ cloud service since 2016, as well as
using the system internally, so we end the paper with some ex-
ample use cases. Production applications range from interactive
network security analysis and automated alerts to incremental Ex-
tract, Transform and Load (ETL). Users often leverage the design of
the engine in interesting ways, e.g., by running a streaming query
“discontinuously" as a series of single-microbatch jobs to leverage
Structured Streaming’s transactional input and output without hav-
ing to pay for cloud servers running 24/7. The largest customer
applications we discuss process over 1 PB of data per month on
hundreds of machines. We also show that Structured Streaming
outperforms Apache Flink and Kafka Streams by 2× and 90× re-
spectively in the widely used Yahoo! Streaming Benchmark [14].

The rest of this paper is organized as follows. We start by dis-
cussing the stream processing challenges reported by users in Sec-
tion 2. Next, we give an overview of Structured Streaming (Sec-
tion 3), then describe its API (Section 4), query planning (Section 5),
execution (Section 6) and operational features (Section 7). In Sec-
tion 8, we describe several large use cases at Databricks and its
customers. We then measure the system’s performance in Section 9,
discuss related work in Section 10 and conclude in Section 11.

2 Stream Processing Challenges
Despite extensive progress in the past few years, distributed stream-
ing applications are still generally considered difficult to develop
and operate. Before designing Structured Streaming, we spent

time discussing these challenges with users and designers of other
streaming systems, including Spark Streaming, Truviso, Storm,
Dataflow and Flink. This section details the challenges we saw.

2.1 Complex and Low-Level APIs

Streaming systems were invariably considered more difficult to use
than batch ones due to complex API semantics. Some complexity is
to be expected due to new concerns that arise only in streaming: for
example, the user needs to think about what type of intermediate
results the system should output before it has received all the data
relevant to a particular entity, e.g., to a customer’s browsing session
on a website. However, other complexity arises due to the low-
level nature of many streaming APIs: these APIs often ask users to
specify applications at the level of physical operators with complex
semantics instead of a more declarative level.

As a concrete example, the Google Dataflow model [2] has a
powerful API with a rich set of options for handling event time
aggregation, windowing and out-of-order data. However, in this
model, users need to specify a windowing mode, triggering mode
and trigger refinement mode (essentially, whether the operator
outputs deltas or accumulated results) for each aggregation operator.
Adding an operator that expects deltas after an aggregation that
outputs accumulated results will lead to unexpected results. In
essence, the raw API [10] asks the user to write a physical operator
graph, not a logical query, so every user of the system needs to
understand the intricacies of incremental processing.

Other APIs, such as Spark Streaming [37] and Flink’s DataStream
API [18], are also based on writing DAGs of physical operators and
offer a complex array of options for managing state [20]. In addition,
reasoning about applications becomes even more complex in sys-
tems that relax exactly-once semantics [32], effectively requiring
the user to design and implement a consistency model.

To address this issue, we designed Structured Streaming to make
simple applications simple to express using its incremental query
model. In addition, we found that adding customizable stateful
processing operators to this model still enabled advanced users to
build their own processing logic, such as custom session-based
windows, while staying within the incremental model (e.g., these
same operators also work in batch jobs). Other open source systems
have also recently added incremental SQL queries [15, 19], and of
course databases have long supported them [11, 24, 29, 38].

2.2 Integration in End-to-End Applications

The second challenge we found was that nearly every streaming
workload must run in the context of a larger application, and this in-
tegration often requires significant engineering effort. Many stream-
ing APIs focus primarily on reading streaming input from a source
and writing streaming output to a sink, but end-to-end business
applications need to perform other tasks. Examples include:
(1) The business purpose of the application may be to enable inter-

active queries on fresh data. In this case, a streaming job is used
to update summary tables in a structured storage system such
as an RDBMS or Apache Hive [33]. It is important that when the
streaming job updates its result, it does so atomically, so users
do not see partial results. This can be difficult with file-based
big data systems like Hive, where tables are partitioned across
files, or even with parallel loads into a data warehouse.

(2) An Extract, Transform and Load (ETL) job might need to join
a stream with static data loaded from another storage system
or transformed using a batch computation. In this case, it is
important to be able to reason about consistency across the two
systems (e.g., what happens when the static data is updated?),
and it is useful to write the whole computation in a single API.

(3) A team may occasionally need to run its streaming business
logic as a batch application, e.g., to backfill a result on old data
or test alternate versions of the code. Rewriting the code in a
separate system would be time-consuming and error-prone.
We address this challenge by integrating Structured Streaming

closely with Spark’s batch and interactive APIs.

2.3 Operational Challenges

One of the largest challenges to deploying streaming applications
in practice is management and operation. Some key issues include:
• Failures: This is the most heavily studied issue in the research
literature. In addition to single node failures, systems also need
to support graceful shutdown and restart of the whole applica-
tion, e.g., to let operators migrate it to a new cluster.

• Code Updates: Applications are rarely perfect, so developers
may need to update their code. After an update, they may want
the application to restart where it left off, or possibly to re-
compute past results that were erroneous due to a bug. Both
cases need to be supported in the streaming system’s state man-
agement and fault recovery mechanisms. Systems should also
support updating the runtime itself (e.g., patching Spark).

• Rescaling: Applications see varying load over time, and gen-
erally increasing load in the long term, so operators may want
to scale them up and down dynamically, especially in the cloud.
Systems based on a static communication topology, while con-
ceptually simple, are difficult to scale dynamically.

• Stragglers: Instead of outright failing, nodes in the stream-
ing system can slow down due to hardware or software issues
and degrade the throughput of the whole application. Systems
should automatically handle this situation.

• Monitoring: Streaming systems need to give operators clear
visibility into system load, backlogs, state size and other metrics.

2.4 Cost and Performance Challenges

Beyond operational and engineering issues, the cost-performance of
streaming applications can be an obstacle because these applications
run 24/7. For example, without dynamic rescaling, an application
will waste resources outside peak hours; and even with rescaling,
it may be more expensive to compute a result continuously than to
run a periodic batch job. We thus designed Structured Streaming
to leverage all the execution optimizations in Spark SQL [8].

So far, we chose to optimize throughput as our main performance
metric because we found that it was often themost important metric
in large-scale streaming applications. Applications that require a
distributed streaming system usually work with large data volumes
coming from external sources (e.g., mobile devices, sensors or IoT),
where datamay already incur a delay just getting to the system. This
is one reason why event time processing is an important feature
in these systems [2]. In contrast, latency-sensitive applications

Input Streams

Spark Tables

Output Sink

Log State Store

Structured Streaming

O
pt

im
iz

er

In
cr

em
en

ta
liz

er Microbatch
Execution

Contiuous
Processing

data.where($“state” === “CA”)

.groupBy(window($“time”, “30s”))

.avg(“latency”)

DataFrame or SQL Query

Figure 1: The components of Structured Streaming.

such as high-frequency trading or physical system control loops
often run on a single scale-up processor, or even custom hardware
like ASICs and FPGAs [3]. However, we also designed Structured
Streaming to support executing over latency-optimized engines,
and implemented a continuous processing mode for this task, which
we describe in Section 6.3. This is a change over Spark Streaming,
where microbatching was “baked into" the API.

3 Structured Streaming Overview
Structured Streaming aims to tackle the stream processing chal-
lenges we identified through a combination of API and execution
engine design. In this section, we give a brief overview of the overall
system. Figure 1 shows Structured Streaming’s main components.

Input and Output. Structured Streaming connects to a variety of
input sources and output sinks for I/O. To provide “exactly-once"
output and fault tolerance, it places two restrictions on sources and
sinks, which are similar to other exactly-once systems [17, 37]:
(1) Input sources must be replayable, allowing the system to re-read

recent input data if a node crashes. In practice, organizations
use a reliable message bus such as Amazon Kinesis or Apache
Kafka [5, 23] for this purpose, or simply a durable file system.

(2) Output sinks must support idempotent writes, to ensure reliable
recovery if a node fails while writing. Structured Streaming
can also provide atomic output for certain sinks that support it,
where the entire update to the job’s output appears atomically
even if it was written by multiple nodes working in parallel.

In addition to external systems, Structured Streaming also supports
input and output from tables in Spark SQL. For example, users can
compute a static table from any of Spark’s batch input sources and
join it with a stream, or ask Structured Streaming to output to an
in-memory Spark table that users can query interactively.

API. Users program Structured Streaming by writing a query
against one or more streams and tables using Spark SQL’s batch
APIs: SQL and DataFrames [8]. This query defines an output table
that the user wants to compute, assuming that each input stream is
replaced by a table holding all the data received from that stream
so far. The engine then determines how to compute and write this

output table into a sink incrementally, using similar techniques to
incremental view maintenance [11, 29]. Different sinks also support
different output modes, which determine how the system may write
out its results: for example, some sinks are append-only by nature,
while others allow updating records in place by key.

To support streaming specifically, Structured Streaming also
adds several API features that fit in the existing Spark SQL API:
(1) Triggers control how often the engine will attempt to compute

a new result and update the output sink, as in Dataflow [2].

(2) Users can mark a column as denoting event time (a timestamp
set at the data source), and set a watermark policy to determine
when enough data has been received to output a result for a
specific event time, as in [2].

(3) Stateful operators allow users to track and update mutable state
by key in order to implement complex processing, such as cus-
tom session-based windows. These are similar to Spark Stream-
ing’s updateStateByKey API [37].
Note that windowing, another key feature for streaming, is done

using Spark SQL’s existing aggregation APIs. In addition, all the
new APIs added by Structured Streaming also work in batch jobs.

Execution. Once it has received a query, Structured Streaming
optimizes it, incrementalizes it, and begins executing it. By default,
the system uses a microbatch model similar to Discretized Streams
in Spark Streaming, which supports dynamic load balancing, rescal-
ing, fault recovery and straggler mitigation by dividing work into
small tasks [37]. In addition, it can use a continuous processing
mode based on traditional long-running operators (Section 6.3).

In both cases, Structured Streaming uses two forms of durable
storage to achieve fault tolerance. First, a write-ahead log keeps
track of which data has been processed and reliably written to the
output sink from each input source. For some output sinks, this log
can be integrated with the sink to make updates to the sink atomic.
Second, the system uses a larger-scale state store to hold snapshots
of operator states for long-running aggregation operators. These are
written asynchronously, and may be “behind" the latest data written
to the output sink. The system will automatically track which state
it has last updated in its log, and recompute state starting from that
point in the data on failure. Both the log and state store can run
over pluggable storage systems (e.g., HDFS or S3).

Operational Features. Using the durability of the write-ahead
log and state store, users can achieve several forms of rollback and
recovery. An entire Structured Streaming application can be shut
down and restarted on new hardware. Running applications also
tolerate node crashes, additions and stragglers automatically, by
sending tasks to new nodes. For code updates to UDFs, it is sufficient
to stop and restart the application, and it will begin using the new
code. In addition, users can manually roll back the application to
a previous point in the log and redo the part of the computation
starting then, beginning from an older snapshot of the state store.

In addition, Structured Streaming’s ability to execute with mi-
crobatches lets it “adaptively batch" data so that it can quickly
catch up with input data if the load spikes or if a job is rolled back,
then return to low latency later. This makes operation significantly
simpler (e.g., users can safely update job code more often).

The next sections go into detail about Structured Streaming’s
API (§4), query planning (§5) and job execution and operation (§6).

4 Programming Model
Structured Streaming combines elements of Google Dataflow [2],
incremental queries [11, 29, 38] and Spark Streaming [37] to enable
stream processing beneath the Spark SQL API. In this section, we
start by showing a short example, then describe the semantics of
the model and the streaming-specific operators we added in Spark
SQL to support streaming use cases (e.g., stateful operators).

4.1 A Short Example

Structured Streaming operates within Spark’s structured data APIs:
SQL, DataFrames and Datasets [8]. The main abstraction users work
with is tables (represented by the DataFrames or Dataset classes),
which each represent a view to be computed from input sources to
the system.1 When users create a table/DataFrame from a streaming
input source, and attempt to compute it, Spark will automatically
launch a streaming computation.

As a simple example, let us start with a batch job that counts
clicks by country of origin for a web application. Suppose that the
input data is JSON files and the output should be Parquet. This job
can be written with Spark DataFrames in Scala as follows:
// Define a DataFrame to read from static data

data = spark.read.format("json").load("/in")

// Transform it to compute a result

counts = data.groupBy($"country").count()

// Write to a static data sink

counts.write.format("parquet").save("/counts")

Changing this job to use Structured Streaming only requires
modifying the input and output sources, not the transformation
in the middle. For example, if new JSON files are going to contin-
ually be uploaded to the /in directory, we can modify our job to
continually update /counts by changing only the first and last lines:
// Define a DataFrame to read streaming data

data = spark.readStream.format("json").load("/in")

// Transform it to compute a result

counts = data.groupBy($"country").count()

// Write to a streaming data sink

counts.writeStream.format("parquet")

.outputMode("complete").start("/counts")

The output mode parameter on the sink here specifies how Struc-
tured Streaming should update the sink. In this case, the complete
mode means to write a complete result file for each update, because
the file output sink chosen does not support fine-grained updates.
However, other sinks, such as key-value stores, support additional
output modes (e.g., updating just the changed keys).

Under the hood, Structured Streaming will automatically incre-
mentalize the query specified by the transformation(s) from input
sources to data sinks, and execute it in a streaming fashion. The
1 Spark SQL offers several slightly different APIs that map to the same query engine.
The DataFrame API, modeled after data frames in R and Pandas [28, 30], offers a
simple interface to build relational queries programmatically that is familiar to many
users. The Dataset API adds static typing over DataFrames, similar to RDDs [36].
Alternatively, users can write SQL directly. All APIs produce a relational query plan.

engine will also automatically maintain state and checkpoint it
to external storage as needed—in this case, for example, we have
a running count aggregation since the start of the stream, so the
engine will keep track of the running counts for each country.

Finally, the API also naturally supports windowing and event
time through Spark SQL’s existing aggregation operators. For ex-
ample, instead of counting data by country, we could count it in
1-hour sliding windows advancing every 5 minutes by changing
just the middle line of the computation as follows:

// Count events by windows on the "time" field

data.groupBy(window($"time","1h","5min")).count()

The time field here (event time) is just a field in the data, similar
to country earlier. Users can also set a watermark on this field to
let the system forget state for old windows after a timeout (§4.3.1).

4.2 Programming Model Semantics

Formally, we define the semantics of Structured Streaming’s pro-
gramming model as follows:
(1) Each input source provides a partially ordered set of records

over time. We assume partial orders here because some message
bus systems are parallel and do not define a total order across
records—for example, Kafka divides streams into “partitions"
that are each ordered.

(2) The user provides a query to execute across the input data that
can output a result table at any given point in processing time.
Structured Streaming will always produce results consistent
with running this query on a prefix of the data in all input sources.
That is, it will never show results that incorporate one input
record but do not incorporate its ancestors in the partial order.
Moreover, these prefixes will be increasing over time.

(3) Triggers tell the system when to run a new incremental compu-
tation and update the result table. For example, in microbatch
mode, the user may wish to trigger an incremental update every
minute (in processing time).

(4) The sink’s output mode specifies how the result table is written
to the output system. The engine supports three distinct modes:
• Complete: The engine writes the whole result table at once,
e.g., replacing a whole file in HDFS with a new version. This
is of course inefficient when the result is large.

• Append: The engine can only add records to the sink. For
example, a map-only job on a set of input files results in
monotonically increasing output.

• Update: The engine updates the sink in place based on a key
for each record, updating only keys whose values changed.

Figure 2 illustrates the model visually. One attractive property of
the model is that the contents of the result table (which is logically
just a view that need never be materialized) are defined indepen-
dently of the output mode (whether we output the whole table on
every trigger, or only deltas). In contrast, APIs such as Dataflow
require the equivalent of an output mode on every operator, so
users must plan the whole operator DAG keeping in mind whether
each operator is outputting complete results or positive or negative
deltas, effectively incrementalizing the query by hand.

t=1
Processing

Time

t=2 t=3 t=1

Trigger: every 1 sec

t=2 t=3

Input
Table

Result
Table

Output
Written

Q
ue

ry

Q
ue

ry

Complete Output Mode Append Output Mode

Trigger: every 1 sec

Figure 2: Structured Streaming’s semantics for two output
modes. Logically, all input data received up to a point in pro-
cessing time is viewed as a large input table, and the user pro-
vides a query that defines a result table based on this input.
Physically, Structured Streaming computes changes to the
result table incrementally (without having to store all input
data) and outputs results based on its output mode. For com-
plete mode, it outputs the whole result table (left), while for
append mode, it only outputs newly added records (right).

A second attractive property is that the model has strong consis-
tency semantics, which we call prefix consistency. First, it guarantees
that when input records are relatively ordered within a source (e.g.,
log records from the same device), the system will only produce
results that incorporate them in the same records (e.g., never skip-
ping a record). Second, because the result table is defined based on
all data in the input prefix at once, we know that all rows in the
result table reflect all input records. In contrast, in some systems
based on message-passing between nodes, the node that receives a
record might send an update to two downstream nodes, but there
is no guarantee that the outputs from these two are synchronized.
Prefix consistency also makes operation easier, as users can roll
back the system to a specific point in the write-ahead log (i.e., a
specific prefix of the data) and recompute outputs from that point.

In summary, with the Structured Streaming models, as long as
users understand a regular Spark or DataFrame query, they can
understand the content of the result table for their job and the
values that will be written to the sink. Users need not worry about
consistency, failures or incorrect processing orders.

Finally, the reader might notice that some of the output modes we
defined are incompatible with certain types of query. For example,
suppose we are aggregating counts by country, as in our code
example in the previous section, and we want to use the append
output mode. There is no way for the system to guarantee it has
stopped receiving records for a given country, so this combination
of query and output mode will not be allowed by the system. We
describe which combinations are allowed in Section 5.1.

4.3 Streaming Specific Operators

Many Structured Streaming queries can be written using just the
standard operators in Spark SQL, such as selection, aggregation and

joins. However, to support some requirements unique to streaming,
we added two new types of operators to Spark SQL: watermarking
operators tell the system when to “close" an event time window and
output results or forget state, and stateful operators let users write
custom logic to implement complex processing. Crucially, both of
these new operators still fit in Structured Streaming’s incremental
semantics (§4.2), and both can also be used in batch jobs.

4.3.1 Event TimeWatermarks. From a logical point of view,
the key idea in event time is to treat application-specified times-
tamps as an arbitrary field in the data, allowing records to arrive
out-of-order [2, 24]. We can then use standard operators and in-
cremental processing to update results grouped by event time. In
practice, however, it is useful for the processing system to have
some loose bounds on how late data can arrive, for two reasons:
(1) Allowing arbitrarily late data might require storing arbitrarily

large state. For example, if we count data by 1-minute event
time window, the system needs to remember a count for every
1-minute window since the application began, because a late
record might still arrive for any particular minute. This can
quickly lead to large amounts of state, especially if combined
with another grouping key. The same issue happens with joins.

(2) Some sinks do not support data retraction, making it useful to
be able to write the results for a given event time after a timeout.
For example, custom downstream applications want to start
working with a “final" result and might not support retractions.
Append-mode sinks also do not support retractions.
Structured Streaming lets developers set a watermark [2] for

event time columns using the withWatermark operator. This operator
gives the system a delay threshold tC for a given timestamp column
C . At any point in time, the watermark forC ismax(C) − tC , that is,
tC seconds before the maximum event time seen so far in C . Note
that this choice of watermark is naturally robust to backlogged
data: if the system cannot keep up with the input rate for a period
of time, the watermark will not move forward arbitrarily during
that time, and all events that arrived within at most T seconds of
being produced will still be processed.

When present, watermarks affect when stateful operators can
forget old state (e.g., if grouping by a window derived from a wa-
termarked column), and when Structured Streaming will output
data with an event time key to append-mode sinks. Different input
streams can have different watermarks.

4.3.2 Stateful Operators. For developers who want to write
custom stream processing logic, Structured Streaming’s stateful
operators are “UDFs with state" that give users control over the
computation while fitting into Structured Streaming’s semantics
and fault tolerance mechanisms. There are two stateful operators,
mapGroupsWithState and flatMapGroupsWithState. Both operators
act on data that has been assigned a key using groupByKey, and let
the developers track and update a state for each key using custom
logic, as well as output records for each key. They are closely based
on Spark Streaming’s updateStateByKey operator [37].

The mapGroupsWithState operator, on a grouped dataset with
keys of type K and values of type V , takes in a user-defined update
function with the following arguments:
• key of type K

// Define an update function that simply tracks the

// number of events for each key as its state , returns

// that as its result , and times out keys after 30 min.

def updateFunc(key: UserId , newValues: Iterator[Event],

state: GroupState[Int]): Int = {

val totalEvents = state.get() + newValues.size()

state.update(totalEvents)

state.setTimeoutDuration("30 min")

return totalEvents

}

// Use this update function on a stream , returning a

// new table lens that contains the session lengths.

lens = events.groupByKey(event => event.userId)

.mapGroupsWithState(updateFunc)

Figure 3: Using mapGroupsWithState to track the number of
events per session, timing out sessions after 30 minutes.

• newValues of type Iterator[V]

• state of type GroupState[S], where S is a user-specified class.
The operator will invoke this function whenever one or more

new values are received for a key. On each call, the function re-
ceives all of the values that were received for that key since the last
call (multiple values may be batched for efficiency). It also receives
a state object that wraps around a user-defined data type S , and
allows the user to update the state, drop this key from state tracking,
or set a timeout for this specific key (either in event time or process-
ing time). This allows the user to store arbitrary data for the key,
as well as implement custom logic for dropping state (e.g., custom
exit conditions when implementing session-based windows).

Finally, the update function returns a user-specified return type
R for its key. The return value of mapGroupsWithState is a new table
with the final R record outputted for each group in the data (when
the group is closed or times out). For example, the developer may
wish to track user sessions on a website using mapGroupsWithState,
and output the total number of pages clicked for each session.

To illustrate, Figure 3 shows how to use mapGroupsWithState to
track user sessions, where a session is defined as a series of events
with the same userId and gaps less than 30 minutes between them.
We output the final number of events in each session as our return
value R. A job could then compute metrics such as the average
number of events per session by aggregating the result table lens.

The second stateful operator, flatMapGroupsWithState, is very
similar to mapGroupsWithState, except that the update function can
return zero or more values of type R per update instead of one.
For example, this operator could be used to manually implement a
stream-to-table join. The return values can either be returned all at
once, when the group is closed, or incrementally across calls to the
update function. Both operators also work in batch mode, in which
case the update function will only be called once.

5 Query Planning
We implemented Structured Streaming’s query planning using the
Catalyst extensible optimizer in Spark SQL [8], which allows writ-
ing composable rules using pattern matching in Scala. Query plan-
ning proceeds in three stages: analysis to determine whether the
query is valid, incrementalization and optimization.

5.1 Analysis

The first stage of query planning is analysis, where the engine
validates the user’s query and resolves the attributes and data types
referred to in the query. Structured Streaming uses Spark SQL’s
existing analysis passes to resolve attributes and types, but adds
new rules to check that the query can be executed incrementally
by the engine. It also checks that the user’s chosen output mode
is valid for this specific query. For example, the Append output
mode can only be used with queries whose output is monotonic [4]:
that is, where a given output record will not be removed once it is
written. In this mode, only selections, joins, and aggregations over
keys that include event time are allowed (in which case the engine
will only output the value for a given event time once its watermark
has passed). Similarly, in the Complete output mode, where the
whole output table needs to be written on each trigger, Structured
Streaming only permits aggregation queries where the amount of
state that needs to be tracked is proportional to the number of keys
in the result. A full description of the supported modes is available
in the Structured Streaming documentation [31].

5.2 Incrementalization

The next step of the query planning process is incrementalizing
the static query provided by the user to efficiently update results
in response to new data. In general, Structured Streaming’s incre-
mentalizer aims to ensure that the query’s result can be updated in
time proportional to the amount of new data received before each
trigger or to the amount of new rows that have to be produced,
without a dependance on the total amount of data received so far.

The engine can incrementalize a restricted, but growing, class of
queries. As of Spark 2.3.0, the supported queries can contain:
• Any number of selections, projections and SELECT DISTINCTs.

• Inner, left-outer and right-outer joins between a stream and a
table or between two streams. For outer joins against a stream,
the join condition must involve a watermarked column.

• Stateful operators like mapGroupsWithState (§4.3.2).

• Up to one aggregation (possibly on compound keys).

• Sorting after an aggregation, only in complete output mode.
The engine uses Catalyst transformation rules to map these sup-

ported queries into trees of physical operators that perform both
computation and state management. For example, an aggregation
in the user query might be mapped to a StatefulAggregate oper-
ator that tracks open groups inside Structured Streaming’s state
store (§6.1) and outputs the desired result. Internally, Structured
Streaming also tracks an output mode for each physical operator in
the DAG produced during incrementalization, similar to the refine-
ment mode for aggregation operators in Dataflow [2]. For example,
some operators may update emitted records (equivalent to update
mode), while others may only emit new records (append mode).
Crucially, in Structured Streaming, users do not have to specify
these intra-DAG modes manually.

Incrementalization is an active area of work in Structured Stream-
ing, but we have found that even the restricted set of queries avail-
able today is suitable for many use cases (§8). In other cases, users
have leveraged Structured Streaming’s stateful operators (§4.3.2)
to implement custom incremental processing logic that maintains

Operator DAG
Input Streams Output Sink

Log State Store

R
ea

d
In

pu
t

Se
le

ct

St
at

ef
ul

Ag
gr

eg
at

e

W
rit

e
O

ut
pu

t

Epoch
Offsets

Async State
Checkpoints

Figure 4: State management during the execution of Struc-
tured Streaming. Input operators are responsible for defin-
ing epochs in each input source and saving information
about them (e.g., offsets) reliably in the write-ahead log.
Stateful operators also checkpoint state asynchronously,
marking it with its epoch, but this does not need to happen
on every epoch. Finally, output operators log which epochs’
outputs have been reliably committed to the idempotent out-
put sink; the very last epoch may be rewritten on failure.

state of their choice. We expect to add more advanced automatic
incrementalization techniques into the engine over time.

5.3 Query Optimization

The final stage of planning is optimization. Structured Streaming
applies most of the optimization rules in Spark SQL [8], such as pred-
icate pushdown, projection pushdown, expression simplification
and others. In addition, it uses Spark SQL’s Tungsten binary format
for data in memory (avoiding the overhead of Java objects), and
its runtime code generator to compile chains of operators to Java
bytecode that runs over this format. This design means that most
of the work in logical and execution optimization for analytical
workloads in Spark SQL automatically applies to streaming.

6 Application Execution
The final component of Structured Streaming is its execution strat-
egy. In this section, we describe how the engine tracks state, and
then the two execution modes: microbatching via fine-grained tasks
and continuous processing using long-lived operators. We then
discuss operational features to simplify managing and deploying
Structured Streaming applications.

6.1 State Management and Recovery

At a high level, Structured Streaming tracks state in a manner simi-
lar to Spark Streaming [37], in both its microbatch and continuous
modes. The state of an application is tracked using two external stor-
age systems: a write-ahead log that supports durable, atomic writes
at low latency, and a state store that can store larger amounts of data
durably and allows parallel access (e.g., S3 or HDFS). Structured
Streaming uses these systems together to recover on failure.

The engine places two requirements on input sources and out-
put sinks to provide fault tolerance. First, input sources should be
replayable, i.e., allow re-reading recent data using some form of

identifier, such as a stream offset. Durable message bus systems like
Kafka and Kinesis meet this need. Second, output sinks should be
idempotent, allowing Structured Streaming to rewrite some already
written data on failure. Sinks can implement this in different ways.

Given these properties, Structured Streaming performs state
tracking using the following mechanism, as shown in Figure 4:
(1) As input operators read data, the master node of the Spark

application defines epochs based on offsets in each input source.
For example, Kafka and Kinesis present topics as a series of
partitions, each of which are byte streams, and allow reading
data using offsets in these partitions. The master writes the start
and end offsets of each epoch durably to the log.

(2) Any operators requiring state checkpoint their state periodi-
cally and asynchronosuly to the state store, using incremental
checkpoints when possible. They store the epoch ID along with
each checkpoint written. These checkpoints do not need to
happen on every epoch or to block processing.2

(3) Output operators write the epochs they committed to the log.
The master waits for all nodes running an operator to report
a commit for a given epoch before allowing commits for the
next epoch. Depending on the sink, the master can also run an
operation to finalize the writes from multiple nodes if the sink
supports this. This means that if the streaming application fails,
only one epoch may be partially written.3

(4) Upon recovery, the new instance of the application starts by
reading the log to find the last epoch that has not been commit-
ted to the sink, including its start and end offsets. It then uses
the offsets of earlier epochs to reconstruct the application’s in-
memory state from the last epoch written to the state store. This
just requires loading the old state and running those epochs
with the same offsets while disabling output. Finally, the system
reruns the last epoch and relies on the sink’s idempotence to
write its results, then starts defining new epochs.
Finally, all of the state management in this design is transparent

to user code. Both the aggregation operators and custom state-
ful processing operators (e.g., mapGroupsWithState) automatically
checkpoint state to the state store, without requiring custom code
to do it. The user’s data types only need to be serializable.

6.2 Microbatch Execution Mode

Structured Streaming jobs can execute in twomodes: microbatching
or continuous operators. The microbatch mode uses the discretized
streams execution model from Spark Streaming [37], and inherits
its benefits, such as dynamic load balancing, rescaling, straggler
mitigation and fault recovery without whole-system rollback.

In this mode, epochs are typically set to be a few hundred mil-
liseconds to a few seconds, and each epoch executes as a traditional
Spark job composed of a DAG of independent tasks [36]. For exam-
ple, a query doing selection followed by stateful aggregation might
execute as a set of “map" tasks for the selection and “reduce" tasks
2 In Spark 2.3.0, we actually make one checkpoint per epoch, but we plan to make
them less frequent in a future release, as is already done in Spark Streaming.
3 Some sinks, such as Amazon S3, provide no way to atomically commit multiple writes
from different writer nodes. In such cases, we have also created Spark data sources
that add transactions over the underlying storage system. For example, Databricks
Delta [7] offers a consistent view of S3 data for both streaming and batch queries,
along with additional features such as index maintenance.

for the aggregation, where the reduce tasks track state in memory
on worker nodes and periodically checkpoint it to the state store.
As in Spark Streaming, this mode provides the following benefits:

• Dynamic load balancing: Each operator’s work is divided
into small, independent tasks that can be scheduled on any
node, so the system can automatically balance these across
nodes if some are executing slower than others.

• Fine-grained fault recovery: If a node fails, only its tasks
need to be rerun, instead of having to roll back the whole
cluster to a checkpoint as in most systems based on topolo-
gies of long-lived operators. Moreover, the lost tasks can be
rerun in parallel, further reducing recovery time [37].

• Straggler mitigation: Spark will launch backup copies of
slow tasks as it does in batch jobs, and downstream tasks will
simply use the output from whichever copy finishes first.

• Rescaling: Adding or removing a node is simple as tasks
will automatically be scheduled on all the available nodes.

• Scale and throughput: Because this mode reuses Spark’s
batch execution engine, it inherits all the optimizations in
this engine, such as a high-performance shuffle implementa-
tion [34] and the ability to run on thousands of nodes.

The main disadvantage of this mode is a higher minimum la-
tency, as there is overhead to launching a DAG of tasks in Spark. In
practice, however, latencies of a few seconds are achievable even
on large clusters running multi-step computations. Depending on
the application, these are on a similar time scale to data collection
and alerting systems.

6.3 Continuous Processing Mode

A new continuous processing added in Apache Spark 2.3 [6] exe-
cutes Structured Streaming jobs using long-lived operators as in
traditional streaming systems such as Telegraph and Borealis [1, 13].
This mode enables lower latency at a cost of less operational flexi-
bility (e.g., limited support for rescaling the job at runtime).

The key enabler for this execution mode was choosing a declar-
ative API for Structured Streaming that is not tied to the execution
strategy. For example, the original Spark Streaming API had some
operators based on processing time that leaked the concept of mi-
crobatches into the programming model, making it hard to move
programs to another type of engine. In contrast, Structured Stream-
ing’s API and semantics are independent of the execution engine:
continuous execution is similar to having a much larger number of
triggers. Note that unlike systems based purely on unsynchronized
message passing, such as Storm [32], we do retain the concept of
triggers and epochs in this mode so the output from multiple nodes
can be coordinated and committed together to the sink.

Because the API supports fine-grained execution, Structured
Streaming jobs could theoretically run on any existing distributed
streaming engine design [1, 13, 17]. In continuous processing, we
built a simple continuous operator engine that lives inside Spark and
can reuse Spark’s scheduling infrastructure and per-node operators
(e.g., code-generated operators). The first version released in Spark
2.3.0 only supports “map-like” jobs (i.e., no shuffle operations),
which were one of the most common scenarios where users wanted
lower latency, but the design can be extended to support shuffles.

Compared to microbatch execution, there are two differences
when using continuous processing:
(1) The master launches long-running tasks on each partition using

Spark’s scheduler that each read one partition of the input
source (e.g., Kinesis stream) but execute multiple epochs. If one
of these tasks fails, Spark will simply relaunch it.

(2) Epochs are coordinated differently. The master periodically tells
nodes to start a new epoch, and receives a start offset for the
epoch on each input partition, which it inserts into the write-
ahead log. When it asks them to start the next epoch, it also
receives end offsets for the previous one, writes these to the
log, and tells nodes to commit the epoch when it has written all
the end offsets. Thus, the master is not on the critical path for
inspecting all the input sources and defining start/end offsets.
We found that the most common use case where organizations

wanted low latency and the scale of a distributed processing engine
was “stream to stream” map operations to transform data before it is
used in other streaming applications. For example, an organization
might upload events to Kafka, run some simple ETL transformations
as a streaming job, and write the transformed data to Kafka again
for consumption by other streaming applications. In this type of
design, each transformation job will add latency to all downstream
steps, so organizations wish to minimize this latency.

7 Operational Features
We used several properties of our execution strategy and API to
design a number of operational features in Structured Streaming
that tackle common problems in deployments. Perhaps most im-
portantly across these features, we aimed to make both Structured
Streaming’s semantics and its fault tolerance model easy to under-
stand. With a simple design, operators can form an accurate model
of how a system runs and what various actions will do to it.

7.1 Code Updates

Developers can update User-Defined Functions (UDFs) in their
program and simply restart the application to use the new ver-
sion of the code. For example, if a UDF is crashing on a particular
input record, that epoch of processing will fail, so the developer
can update the code and restart the application again to continue
processing. This also applies to stateful operator UDFs, which can
be updated as long as they retain the same schema for their state
objects. We also designed Spark’s log and state store formats to be
binary compatible across Spark framework updates.

7.2 Manual Rollback

Sometimes, an application outputs wrong results for some time
before a user notices: for example, a field that fails to parse might
simply be reported as NULL. Therefore, rollbacks are a fact of life for
many operators. In Structured Streaming, it is easy to determine
which records went into each epoch from the write-ahead log and
roll back the application to the epoch where a problem started
occurring. We chose to store the write-ahead log as JSON to let
administrators perform these operations manually.4 As long as the
input sources and state store still have data from the failed epoch,
4 One additional step they may have to do is remove faulty data from the output sink,
depending on the sink chosen. For the file sink, for example, it’s straightforward to
find which files were written in a particular epoch and remove those.

the job can start again from a previous point. Message buses like
Kafka are typically configured for several weeks of retention so
rollbacks are often possible.

Manual rollbacks interact well with Structured Streaming’s prefix
consistency guarantee for execution semantics 4.2. Specifically,
when an administrator rolls back the job to a point in the write-
ahead log, she knows which prefix of the input streams this point
corresponds to, and the job can recompute output from that point
on while retaining consistency within the new output. Beyond this
guarantee, Structured Streaming’s support for running the same
code as a batch job and for rescaling means that administrators can
run the recovery on a temporarily larger cluster to catch up quickly,
further reducing the operational complexity of manual rollbacks.

7.3 Hybrid Batch and Streaming Execution

The most obvious benefit of Structured Streaming’s unified API is
that users can share code between batch and streaming jobs, or run
the same program as a batch job for testing. However, we have also
found this useful for purely streaming scenarios in two ways:
• “Run-once" triggers for cost savings: Many Databricks customers
wanted the transactionality and state management properties
of a streaming engine without running servers 24/7. Virtually
all ETL workloads require tracking how far in the input one has
gotten and which results have been saved reliably, which can
be difficult to implement by hand. These functions are exactly
what Structured Streaming’s state management provides. Thus,
several customers implemented ETL jobs by running a single
epoch of a Structured Streaming job every few hours as a batch
computation, using the provided “run once" trigger that was
originally designed for testing. This leads to significant cost sav-
ings (in one case, up to 10× [35]) for lower-volume applications.
With all the major cloud providers now supporting per-second
or per-minute billing [9], we believe this type of “discontinuous
processing" will become more common.

• Adaptive batching: Even streaming applications occasionally
experience large backlogs. For example, a link between two
datacenters might go down, temporarily delaying data transfer,
or there might simply be a spike in user activity. In these cases,
Structured Streaming will automatically execute longer epochs
in order to catch up with the input streams, often achieving
similar throughput to Spark’s batch jobs. This will not greatly
increase latency, given that data is already backlogged, but will
let the system catch up faster. In cloud environments, operators
can also add extra nodes to the cluster temporarily.

7.4 Monitoring

Structured Streaming uses Spark’s existing metrics API and struc-
tured event log to report information such as number of records
processed, bytes shuffled across the network, etc. These interfaces
are familiar to operators and easy to connect to a variety of UI tools.

7.5 Fault and Straggler Recovery

As discussed in §6.2, Structured Streaming’s microbatch mode can
recover from node failures, stragglers and load imbalances using
Spark’s fine-grained task execution model. The continuous pro-
cessing mode recovers from node failures, but does not yet protect
against stragglers or load imbalance.

IDS

IDS

IDS

…

alertsStreaming
ETL

S3 S3

S3

raw logs
logs

(Parquet format)

structured data
(Parquet format)

security
analyst

install
queries
as alerts

notifications
Streaming

ETL

Streaming
Alerts

Interactive
Analytics

Figure 5: Information security platform use case. Using
Structured Streaming and Spark SQL, a team of analysts can
query both streaming and historical data and easily install
queries for new attack patterns as streaming alerts.

8 Production Use Cases
We have supported Structured Streaming on Databricks’ managed
cloud service [16] since 2016, and today, our cloud is running hun-
dreds of production streaming applications at a given time (i.e.,
applications running 24/7). The largest of these applications ingest
over 1 PB of data per month and run on hundreds of servers. We
also use Structured Streaming internally to monitor our services,
including the execution of Structured Streaming itself. In this sec-
tion, we describe three customer workloads that leverage various
aspects of Structured Streaming, as well as our internal use case.

8.1 Information Security Platform

A large customer has used Structured Streaming to develop a large-
scale security platform to enable over 100 analysts to scour through
network traffic logs to quickly identify and respond to security
incidents, as well as to generate automated alerts. This platform
combines streaming with batch and interactive queries and is thus
a great example of the system’s support for end-to-end applications.

Figure 5 shows the architecture of the platform. Intrusion Detec-
tion Systems (IDSes) monitor all the network traffic in the organiza-
tion, and output logs to S3. From here, a Structured Streaming jobs
ETLs these logs into a compact Apache Parquet based table stored
on Databricks Delta [7] to enable fast and concurrent access from
multiple downstream applications. Other Structured Streaming jobs
then process these logs to produce additional tables (e.g., by joining
them with other data). Analysts query these tables interactively, us-
ing SQL or Dataframes, to detect and diagnose new attack patterns.
If they identify a compromise, they also look back through historical
data to trace previous actions from that attacker. Finally, in parallel,
the Parquet logs are processed by another Structured Streaming
cluster that generates real-time alerts based on pre-written rules.

The key challenges in realizing this platform are (1) building
a robust and scalable streaming pipeline, while (2) providing the
analysts with an effective environment to query both fresh and
historical data. Using standard tools and services available on AWS,
a team of 20 people took over six months to build and deploy
a previous version of this platform in production. This previous
version had several limitations, including only being able to store a

small amount of data for historical queries due to using a traditional
data warehouse for the interactive queries. In contrast, a team of five
engineers was able to reimplement the platform using Structured
Streaming in two weeks. The new platform was simultaneously
more scalable and able to support more complex analysis using
Spark’s ML APIs. Next, we provide a few examples to illustrate the
advantages of Structured Streaming that made this possible.

First, Structured Streaming’s ability to adaptively vary the batch
size enabled the developers to build a streaming pipeline that deals
not only with spikes in the workload, but also with failures and
code upgrades. Consider a streaming job that goes offline either due
to failure or upgrades. When the cluster is brought back online, it
will start automatically to process the data all the way back from the
moment it went offline. Initially, the cluster will use large batches to
maximize the throughput. Once it catches up, the cluster switches
to small batches for low latency. This allows administrators to
regularly upgrade clusters without the fear of excessive downtime.

Second, the ability to join a stream with other streams, as well
as with historical tables, has considerably simplified the analysis.
Consider the simple task of figuring out which device a TCP con-
nection originates at. It turns out that this task is challenging in
the presence of mobile devices, as these devices are given dynamic
IP addresses every time they join the network. Hence, from TCP
logs alone, is not possible to track down the end-points of a connec-
tion. With Structured Streaming, an analyst can easily solve this
problem. She can simply join the TCP logs with DHCP logs to map
the IP address to the MAC address, and then use the organization’s
internal database of network devices to map the MAC address to
a particular machine and user. In addition, users were able to do
this join in real time using stateful operators as both the TCP and
DHCP logs were being streamed in.

Finally, using the same system for streaming, interactive queries
and ETL has provided developers with the ability to quickly iterate
and deploy new alerts. In particular, it enables analysts to build
and test queries for detecting new attacks on offline data, and then
deploy these queries directly on the alerting cluster. In one example,
an analyst developed a query to identify exfiltration attacks via
DNS. In this attack, malware leaks confidential information from
the compromised host by piggybacking this information into DNS
requests sent to an external DNS server owned by the attacker. One
simplified query to detect such an attack essentially computes the
aggregate size of the DNS requests sent by every host over a time
interval. If the aggregate is greater than a given threshold, the query
flags the corresponding host as potentially being compromised. The
analyst used historical data to set this threshold, so as to achieve
the desired balance between false positive and false negative rates.
Once satisfied with the result, the analyst simply pushed the query
to the alerting cluster. The ability to use the same system and the
same API for data analysis and for implementing the alerts led
not only to significant engineering cost savings, but also to better
security, as it is significantly easier to deploy new rules.

8.2 Monitoring Live Video Delivery

A large media company is using Structured Streaming to compute
quality metrics for their live video traffic and interactively identify
delivery problems. Live video delivery is especially challenging

because network problems can severely disrupt utility. For pre-
recorded video, clients can use large buffers to mask issues, and a
degradation at most results in extra buffering time; but for live video,
a problem may mean missing a critical moment in a sports match or
similar event. This organization collects video quality metrics from
clients in real time, performs ETL operations and aggregation using
Structured Streaming, then stores the results in a data warehouse.
This allows operations engineers to interactively query fresh data
to detect and diagnose quality issues (e.g., determine whether an
issue is tied to a specific ISP, video server or other cause).

8.3 Analyzing Game Performance

A large gaming company uses Structured Streaming to monitor the
latency experienced by players in a popular online game with tens
of millions of monthly active users. As in the video use case, high
network performance is essential for the user experience when
gaming, and repeated problems can quickly lead to player churn.
This organization collects latency logs from its game clients to
cloud storage and then performs a variety of streaming analyses.
For example, one job joins themeasurements with a table of Internet
Autonomous Systems (ASes) and then aggregates the performance
by AS over time to identify poorly performing ASes. When such
an AS is identified, the streaming job triggers an alert, and IT staff
can contact the AS in question to remediate the issue.

8.4 Cloud Monitoring at Databricks

At Databricks, we have been using Apache Spark since the start of
the company to monitor our own cloud service, understand work-
load statistics, trigger alerts, and let our engineers interactively
debug issues. The monitoring pipeline produces dozens of interac-
tive dashboards as well as structured Parquet tables for ad-hoc SQL
queries. These dashboards also play a key role for business users to
understand which customers have increasing or decreasing usage,
prioritize feature development, and proactively identify customers
that are experiencing problems.

We built at least three versions of a monitoring pipeline using
a combination of batch and streaming APIs starting four years
ago, and in all the cases, we found that the major challenges were
operational. Despite our best efforts, pipelines could be brittle, expe-
riencing frequent failures when aspects of our input data changed
(e.g., new schemas or reading from more locations than before), and
upgrading themwas a daunting exercise. Worse yet, failures and up-
grades often resulted in missing data, so we had to manually go back
and re-run jobs to reconstruct the missing data. Testing pipelines
was also challenging due to their reliance on multiple distinct Spark
jobs and storage systems. Our experience with Structured Stream-
ing shows that it successfully addresses many of these challenges.
Not only we were able to reimplement our pipelines in weeks,
but the management overhead decreased drastically. Restartability
coupled with adaptive batching, transactional sources/sinks and
well-defined consistency semantics have enabled simpler fault re-
covery, upgrades, and rollbacks to repair old results. Moreover, we
can test the same code in batch mode on data samples or use many
of the same functions in interactive queries.

Our pipelines with Structured Streaming also regularly combine
its batch and streaming capabilities. For example, the pipeline to
monitor streaming jobs starts with an ETL job that reads JSON

0.7

33

65

0

20

40

60

80

M
illi

on
s

of
 re

co
rd

s/
s

Ap
ac

he
 F

lin
k

Ka
fk

a
St

re
am

s

St
ru

ct
ur

ed
St

re
am

in
g

(a) vs. Other Systems

0

50

100

150

200

250

0 10 20

M
illi

on
s

of
 re

co
rd

s/
s

Number of Nodes

(b) System Scaling

Figure 6: Throughput results on the Yahoo! benchmark.

events from Kafka and writes them to a columnar Parquet table
in S3. Dozens of other batch and streaming jobs then query this
table to produce dashboards and other reports. Because Parquet is
a compact and column-oriented format, this architecture consumes
drastically fewer resources than having every job read directly from
Kafka, and simultaneously places less load on the Kafka brokers.
Overall, streaming jobs’ latencies range from seconds to minutes,
and users can also query the Parquet table interactively in seconds.

9 Performance Evaluation
In this section, we measure the performance of Structured Stream-
ing using controlled benchmarks. We study performance vs. other
systems on the Yahoo! Streaming Benchmark [14], scalability, and
the throughput-latency tradeoff with continuous processing.

9.1 Performance vs. Other Streaming Systems

To evaluate performance compared to other streaming engines, we
used the Yahoo! Streaming Benchmark [14], a widely used workload
that has also been evaluated in other open source systems. This
benchmark requires systems to read ad click events, join them
against a static table of ad campaigns by campaign ID, and output
counts by campaign on 10-second event-time windows.

We compared Kafka Streams 0.10.2, Apache Flink 1.2.1 and Spark
2.3.0 on a cluster with five c3.2xlarge Amazon EC2 workers (each
with 8 virtual cores and 15 GB RAM) and one master. For Flink,
we used the optimized version of the benchmark published by
dataArtisans for a similar cluster [22]. Like in that benchmark, the
systems read data from a Kafka cluster running on the workers with
40 partitions (one per core), and write results to Kafka. The original
Yahoo! benchmark used Redis to hold the static table for joining
ad campaigns, but we found that Redis could be a bottleneck, so
we replaced it with a table in each system (a KTable in Kafka, a
DataFrame in Spark, and an in-memory hash map in Flink).

Figure 6a shows each system’s maximum stable throughput, i.e.,
the throughput it can process before a backlog begins to form. We
see that streaming system performance can vary significantly. Kafka
Streams implements a simple message-passing model through the
Kafka message bus, but only attains 700,000 records/second on our
40-core cluster. Apache Flink reaches 33 million records/s. Finally,
Structured Streaming reaches 65 million records/s, nearly 2× the
throughput of Flink. This particular Structured Streaming query is

1

10

100

1000

0 200000 400000 600000 800000 1000000

La
te

nc
y

(m
s)

Input Rate (records/s)

Figure 7: Latency of continuous processing vs. input rate.
Dashed line shows max throughput in microbatch mode.

implemented using just DataFrame operations with no UDF code.
The performance thus comes solely from Spark SQL’s built in exe-
cution optimizations, including storing data in a compact binary
format and runtime code generation. As pointed out by the authors
of Trill [12] and others, execution optimizations can make a large
difference in streaming workloads, and many systems based on
per-record operations do not maximize performance.

9.2 Scalability

Figure 6b shows how Structured Streaming’s performance scales for
the Yahoo! benchmark as we vary the size of our cluster. We used 1,
5, 10 and 20 c3.2xlarge Amazon EC2 workers (with 8 virtual cores
and 15 GB RAM each) and the same experimental setup as in §9.1,
including one Kafka partition per core. We see that throughput
scales close to linearly, from 11.5 million records/s on 1 node to 225
million records/s on 20 nodes (i.e., 160 cores).

9.3 Continuous Processing

We benchmarked Structurd Streaming’s continuous processing
mode on a 4-core server to show the latency-throughput trade-
offs it can achieve. (Because partitions run independently in this
mode, we expect the latency to stay the same as more nodes are
added.) Figure 7 shows the results for a map job reading from Kafka,
with the dashed line showing the maximum throughput achiev-
able by microbatch mode. We see that continuous mode is able to
achieve much lower latency without a large drop in throughput
(e.g., less than 10 ms latency at half the maximum throughput of mi-
crobatching). Its maximum stable throughput is also slightly higher
because microbatch mode incurs latency due to task scheduling.

10 Related Work
Structured Streaming builds on many existing systems for stream
processing and big data analytics, including Spark SQL’s DataFrame
API [8], Spark Streaming [37], Dataflow [2], incremental query
systems [11, 24, 29, 38] and distributed stream processing [21]. At
a high level, the main contributions of this work are:
• An account of real-world user challenges with streaming sys-
tems, including operational challenges that are not always dis-
cussed in the research literature (§2).

• A simple, declarative programming model that incrementalizes
a widely used batch API (Spark DataFrames/SQL) to provide
similar capabilities to Dataflow [2] and other streaming systems.

• An execution engine providing high throughput, fault tolerance,
and rich operational features that combines with the rest of
Apache Spark to let users easily build end-to-end applications.

From an API standpoint, the closest work is incremental query
systems [11, 24, 29, 38], including recent distributed systems such as
Stateful Bulk Processing [25] andNaiad [26]. Structured Streaming’s
API is an extension of Spark SQL [8], including its declarative
DataFrame interface for programmatic construction of relational
queries. Apache Flink also recently added a table API (currently in
beta) for defining relational queries that canmap to either streaming
or batch execution [19], but this API lacks some of the features of
Structured Streaming, such as custom stateful operators (§4.3.2).

Other recent streaming systems have language-integrated APIs
that operate at a lower, more “imperative" level. In particular, Spark
Streaming [37], Google Dataflow [2] and Flink’s DataStreamAPI [18]
provide various functional operators but require users to choose the
right DAG of operators to implement a particular incrementaliza-
tion strategy (e.g., when to pass on deltas versus complete results);
essentially, these are equivalent to writing a physical execution
plan. Structured Streaming’s API is simpler for users who are not
experts on incrementalization. Structured Streaming adopts the
definitions of event time, processing time, watermarks and triggers
from Dataflow but incorporates them in an incremental model.

For execution, Structured Streaming uses concepts similar to dis-
cretized streams formicrobatchmode [37] and traditional streaming
engines for continuous processing mode [1, 13, 21]. It also builds
on an analytical engine for performance like Trill [12]. The most
unique contribution here is the integration of batch and stream-
ing queries to enable sophisticated end-to-end applications. As
described in §8, Structured Streaming users can easily write ap-
plications that combine batch, interactive and stream processing
using the same code (e.g., security log analysis). In addition, they
leverage powerful operational features such as run-once triggers
(running a streaming application “discontinuously" as batch jobs to
retain its transactional features but lower costs), code updates, and
batch processing to handle backlogs or code rollbacks (§7).

11 Conclusion

Stream processing is a powerful tool, but streaming systems are still
difficult to use, operate and integrate into larger applications. We
designed Structured Streaming to simplify all three of these tasks
while integrating with the rest of Apache Spark. Unlike many other
open source streaming engines, Structured Streaming purposefully
adopts a very high-level API: incrementalizing an existing Spark
SQL or DataFrame query. This makes it accessible to a wide range
of users. Although Structured Streaming’s API is more declarative
and constrained, we found that works well for a diverse range of
applications, including those that require custom logic for state-
ful processing. Beyond this focus on a high-level API, Structured
Streaming also includes several powerful operational features and
achieves high performance using the Spark SQL engine. Experi-
ence across hundreds of customer use cases shows that users can
leverage the system to build sophisticated business applications.

12 Acknowledgements

Wewould like to thank the diverse Apache Spark developer commu-
nity that has contributed to Structured Streaming, Spark Streaming
and Spark SQL over the years.We also thank the SIGMOD reviewers
for their detailed feedback on the paper.

References
[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong

hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. 2005. The design of the borealis
stream processing engine. In In CIDR. 277–289.

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded,
Out-of-order Data Processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803.
https://doi.org/10.14778/2824032.2824076

[3] Intel Altera. 2017. Financial/HPC – Financial Offload. https:
//www.altera.com/solutions/industry/computer-and-storage/applications/
computer/financial-offload.html. (2017).

[4] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011.
Consistency analysis in Bloom: A CALM and collected approach. In In Proceedings
5th Biennial Conference on Innovative Data Systems Research. 249–260.

[5] Amazon. 2017. Amazon Kinesis. https://aws.amazon.com/kinesis/. (2017).
[6] Michael Armbrust. 2017. SPARK-20928: Continuous Processing Mode for Struc-

tured Streaming. https://issues.apache.org/jira/browse/SPARK-20928. (2017).
[7] Michael Armbrust, Bill Chambers, and Matei Zaharia. 2017.

Databricks Delta: A Unified Data Management System for
Real-time Big Data. https://databricks.com/blog/2017/10/25/
databricks-delta-a-unified-management-system-for-real-time-big-data.html.
(2017).

[8] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. 1383–1394.
https://doi.org/10.1145/2723372.2742797

[9] Jeff Barr. 2017. New – Per-Second Billing for EC2 In-
stances and EBS Volumes. https://aws.amazon.com/blogs/aws/
new-per-second-billing-for-ec2-instances-and-ebs-volumes/. (2017).

[10] Apache Beam. 2017. Apache Beam programming guide. https://beam.apache.
org/documentation/programming-guide/. (2017).

[11] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. 1986. Efficiently
Updating Materialized Views. SIGMOD Rec. 15, 2 (June 1986), 61–71. https:
//doi.org/10.1145/16856.16861

[12] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: A
High-performance Incremental Query Processor for Diverse Analytics. Proc.
VLDB Endow. 8, 4 (Dec. 2014), 401–412. https://doi.org/10.14778/2735496.2735503

[13] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
JosephM. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred
Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow Processing.
In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’03). ACM, New York, NY, USA, 668–668. https://doi.org/10.
1145/872757.872857

[14] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Tom Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang
Peng, and Paul Poulosky. 2015. Benchmarking Streaming Computa-
tion Engines at Yahoo! https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at. (2015).

[15] Confluent. 2017. KSQL: Streaming SQL for Kafka. https://www.confluent.io/
product/ksql/. (2017).

[16] Databricks. 2017. Databricks unified analytics platform. https://databricks.com/
product/unified-analytics-platform. (2017).

[17] Apache Flink. 2017. Apache Flink. http://flink.apache.org. (2017).

[18] Apache Flink. 2017. Flink DataStream API Programming Guide. https://ci.apache.
org/projects/flink/flink-docs-release-1.3/dev/datastream_api.html. (2017).

[19] Apache Flink. 2017. Flink Table & SQL API Beta. https://ci.apache.org/projects/
flink/flink-docs-release-1.3/dev/table/index.html. (2017).

[20] Apache Flink. 2017. Working with State. https://ci.apache.org/projects/flink/
flink-docs-release-1.3/dev/stream/state.html. (2017).

[21] Lukasz Golab and M. Tamer Özsu. 2003. Issues in Data Stream Management.
SIGMOD Rec. 32, 2 (June 2003), 5–14. https://doi.org/10.1145/776985.776986

[22] Jamie Grier. 2016. Extending the Yahoo! Streaming Benchmark. https://
data-artisans.com/blog/extending-the-yahoo-streaming-benchmark. (2016).

[23] Apache Kafka. 2017. Kafka. http://kafka.apache.org. (2017).
[24] Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Farina, Pasha

Golovko, Alan Li, and Neil Thombre. 2010. Continuous Analytics over Discontin-
uous Streams. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’10). ACM, New York, NY, USA, 1081–1092.
https://doi.org/10.1145/1807167.1807290

[25] Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C. Webb, and
Ken Yocum. 2010. Stateful Bulk Processing for Incremental Analytics. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, New York,
NY, USA, 51–62. https://doi.org/10.1145/1807128.1807138

[26] Frank McSherry, Derek Murray, Rebecca Isaacs, and Michael Isard. 2013. Differ-
ential dataflow, In Proceedings of CIDR 2013. https://www.microsoft.com/en-us/
research/publication/differential-dataflow/

[27] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. 439–455. https:
//doi.org/10.1145/2517349.2522738

[28] Pandas. 2017. pandas Python data analysis library. http://pandas.pydata.org.
(2017).

[29] X. Qian and Gio Wiederhold. 1991. Incremental Recomputation of Active Rela-
tional Expressions. IEEE Trans. on Knowl. and Data Eng. 3, 3 (Sept. 1991), 337–341.
https://doi.org/10.1109/69.91063

[30] R [n. d.]. R project for statistical computing. http://www.r-project.org. ([n. d.]).
[31] Apache Spark. 2017. Spark Documentation. http://spark.apache.org/docs/latest.

(2017).
[32] Apache Storm. 2017. Apache Storm. http://storm.apache.org. (2017).
[33] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. 2010. Hive - a
petabyte scale data warehouse using Hadoop. In ICDE, Feifei Li, Mirella M. Moro,
Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J. Carey,
Fabio Casati, Edward Y. Chang, Ioana Manolescu, Sharad Mehrotra, Umeshwar
Dayal, and Vassilis J. Tsotras (Eds.). IEEE, 996–1005. http://infolab.stanford.edu/
~ragho/hive-icde2010.pdf

[34] Reynold Xin et al. [n. d.]. GraySort on Apache Spark by Databricks. http:
//sortbenchmark.org/ApacheSpark2014.pdf. ([n. d.]).

[35] Burak Yavuz and Tyson Condie. 2017. Running Streaming Jobs Once
a Day For 10x Cost Savings. https://databricks.com/blog/2017/05/22/
running-streaming-jobs-day-10x-cost-savings.html. (2017).

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. 15–28.

[37] Matei Zaharia, Tathagata Das, Haoyuan Li, Tim Hunter, Scott Shenker, and Ion
Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at Scale.
In SOSP.

[38] Yue Zhuge, Héctor García-Molina, Joachim Hammer, and Jennifer Widom. 1995.
View Maintenance in a Warehousing Environment. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD ’95).
ACM, New York, NY, USA, 316–327. https://doi.org/10.1145/223784.223848

https://doi.org/10.14778/2824032.2824076
https://www.altera.com/solutions/industry/computer-and-storage/applications/computer/financial-offload.html
https://www.altera.com/solutions/industry/computer-and-storage/applications/computer/financial-offload.html
https://www.altera.com/solutions/industry/computer-and-storage/applications/computer/financial-offload.html
https://aws.amazon.com/kinesis/
https://databricks.com/blog/2017/10/25/databricks-delta-a-unified-management-system-for-real-time-big-data.html
https://databricks.com/blog/2017/10/25/databricks-delta-a-unified-management-system-for-real-time-big-data.html
https://doi.org/10.1145/2723372.2742797
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://beam.apache.org/documentation/programming-guide/
https://beam.apache.org/documentation/programming-guide/
https://doi.org/10.1145/16856.16861
https://doi.org/10.1145/16856.16861
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/872757.872857
https://doi.org/10.1145/872757.872857
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://www.confluent.io/product/ksql/
https://www.confluent.io/product/ksql/
https://databricks.com/product/unified-analytics-platform
https://databricks.com/product/unified-analytics-platform
http://flink.apache.org
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/table/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/table/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/stream/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/stream/state.html
https://doi.org/10.1145/776985.776986
https://data-artisans.com/blog/extending-the-yahoo-streaming-benchmark
https://data-artisans.com/blog/extending-the-yahoo-streaming-benchmark
http://kafka.apache.org
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/1807128.1807138
https://www.microsoft.com/en-us/research/publication/differential-dataflow/
https://www.microsoft.com/en-us/research/publication/differential-dataflow/
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/69.91063
http://spark.apache.org/docs/latest
http://storm.apache.org
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf
http://sortbenchmark.org/ApacheSpark2014.pdf
http://sortbenchmark.org/ApacheSpark2014.pdf
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html
https://doi.org/10.1145/223784.223848

	Abstract
	1 Introduction
	2 Stream Processing Challenges
	2.1 Complex and Low-Level APIs
	2.2 Integration in End-to-End Applications
	2.3 Operational Challenges
	2.4 Cost and Performance Challenges

	3 Structured Streaming Overview
	4 Programming Model
	4.1 A Short Example
	4.2 Programming Model Semantics
	4.3 Streaming Specific Operators

	5 Query Planning
	5.1 Analysis
	5.2 Incrementalization
	5.3 Query Optimization

	6 Application Execution
	6.1 State Management and Recovery
	6.2 Microbatch Execution Mode
	6.3 Continuous Processing Mode

	7 Operational Features
	7.1 Code Updates
	7.2 Manual Rollback
	7.3 Hybrid Batch and Streaming Execution
	7.4 Monitoring
	7.5 Fault and Straggler Recovery

	8 Production Use Cases
	8.1 Information Security Platform
	8.2 Monitoring Live Video Delivery
	8.3 Analyzing Game Performance
	8.4 Cloud Monitoring at Databricks

	9 Performance Evaluation
	9.1 Performance vs. Other Streaming Systems
	9.2 Scalability
	9.3 Continuous Processing

	10 Related Work
	11 Conclusion
	12 Acknowledgements
	References

