
Developments in MLflow: A System to Accelerate the
Machine Learning Lifecycle

Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, Clemens Mewald, Siddharth Murching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang,

Juntai Zheng, Corey Zumar
Databricks, Inc.

ABSTRACT
MLflow is a popular open source platform for managing ML
development, including experiment tracking, reproducibility,
and deployment. In this paper, we discuss user feedback col-
lected since MLflow was launched in 2018, as well as three
major features we have introduced in response to this feed-
back: a Model Registry for collaborative model management
and review, tools for simplifying ML code instrumentation,
and experiment analytics functions for extracting insights
from millions of ML experiments.
ACM Reference Format:
Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Clemens Mewald, Sid-
dharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng,
Corey Zumar . 2020. Developments in MLflow: A System to Accel-
erate the Machine Learning Lifecycle. In International Workshop
on Data Management for End-to-End Machine Learning (DEEM’20),
June 14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3399579.3399867

1 INTRODUCTION
Machine learning development requires solving new prob-
lems that are not part of the standard software development
lifecycle. While traditional software has a well-defined set of
product features to be built, ML development revolves around
experimentation: ML developers constantly experiment with
new datasets, models, software libraries, tuning parameters,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DEEM ’20, June 14, 2020, Portland, OR
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8023-2/20/06. . . $15.00
https://doi.org/10.1145/3399579.3399867

etc. to optimize a metric such as model accuracy. Because
model performance depends heavily on the input data and
training process, reproducibility is paramount throughout
ML development. Finally, in order to have business impact,
ML applications need to be deployed to production in an
inference-compatible environment; deployments need to be
monitored and regularly updated.

Facedwith these challenges, some organizations have built
ML platforms for model development and deployment. Un-
fortunately, many ML developers are bottlenecked by the
limited set of ML libraries and software tools supported by
these platforms; for example, Google’s TFX [11] is optimized
exclusively for TensorFlow [1] models.

In 2018, we introduced MLflow [15]: an open source plat-
form for the ML lifecycle designed to work with any ML
library and programming language. MLflow has been widely
adopted in industry and the academic community. MLflow
powers ML efforts in the energy, biotechnology, and online
retail sectors, varying in scale from solo practitioner projects
to large organizational initiatives involving hundreds of ML
engineers. Additionally, the platform has received contribu-
tions from over 170 developers outside of Databricks.
In this paper, we discuss trends in end-to-end machine

learning distilled from MLflow adopters’ use cases and feed-
back, as well as three major platform features we have intro-
duced in response: a Model Registry for collaborative model
management and review, autologging tools that simplify ML
code instrumentation, and experiment analytics functions for
extracting insights from millions of ML experiments. Finally,
we also discuss emerging challenges in ML development that
MLflow is well-positioned to address.

2 RELATEDWORK
Many software systems aim to simplify ML development.
The closest to our work are the end-to-end ML platforms at
large web companies. For example, Facebook’s FBLearner [6]
lets users create reusableMLworkflows that operate onware-
housed data, and Google’s TFX [11] provides data prepara-
tion and serving tools. Though these platforms significantly
accelerate ML development, they restrict users to a specific

https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1145/3399579.3399867

DEEM ’20, June 14, 2020, Portland, OR Developments in MLflow

set of ML libraries. In contrast, MLflow enables users to eas-
ily incorporate their own tools and software throughout the
machine learning lifecycle, including custom training steps,
inference code, and lineage information.
Other systems also tackle specific problems within the

ML lifecycle; MLflow combines concepts from these systems
with new ones to create a unified platform. TensorBoard [8]
and Sacred [9] are tools for trackingML experiments; MLflow
Tracking provides these capabilities via an open interface
design that enables developers to record, store, and query
results using tools and infrastructure of their choosing, as
discussed in subsection 3.2. Binder [3] and CodaLab [7] en-
able reproducible software runs; similarly, MLflow Projects
facilitates reproducible runs via a standard packaging format.
ONNX [12] is a cross-library model serialization format; the
MLflow Model format bundles serialized models with addi-
tional dependency information and introduces the concept
of flavors, which enable users to load and evaluate models
across multiple ML frameworks and levels of abstraction.
Clipper [5] and Amazon SageMaker [13] are real-time serv-
ing solutions for ML models; MLflow includes utilities to
package MLflow Models as Docker containers for deploy-
ment to these services. Finally, ModelDB [14] catalogues
models along with lineage information; the MLflow Model
Registry augments these features with novel tools for re-
viewing models and transitioning them through configurable
deployment lifecycles, as discussed in subsection 4.1.

3 PLATFORM OVERVIEW
MLflow defines components that are designed to address

fundamental challenges in each phase of the machine learn-
ing lifecycle, from model development through production-
ization. Each component is built around an open interface
philosophy, providing general abstractions for its functional-
ity that enable the platform to operate at varying scales and
achieve compatibility with the large ecosystem of program-
ming languages, ML libraries, and deployment environments.

3.1 Components
The MLflow platform defines four components that structure
the ML development process:

• MLflowTracking is an API for recording experiment
runs, including code used, parameters, input data, met-
rics, and output files. These runs can be viewed, com-
pared, and searched using an API and UI.

• MLflow Models is a generic format for packaging
models, including code and data dependencies, that
is compatible with diverse deployment environments.
Each MLflow Model defines a set of flavors that can be
used to evaluate it across multiple ML environments.

• MLflow Projects is a format for packaging code into
reusable projects. Using a YAML configuration file,
each project defines its dependencies, code to run, and
parameters for programmatic execution.

• MLflow Model Registry is a collaborative hub for
cataloguing models and managing their deployment
lifecycles. TheModel Registry is MLflow’s newest com-
ponent and is discussed further in subsection 4.1.

3.2 Architecture
MLflow is built around an open interface philosophy. The
platform defines general abstractions for each of its four com-
ponents and includes implementations of these component
interfaces for a variety of standard tools and infrastructure,
many of which have been contributed byMLflow community
members. For instance, MLflow Tracking defines a Backend
Store interface for recording experiment run metadata and an
Artifact Store interface for recording model files, providing
implementations for the UNIX and NTFS filesystems, as well
as several industry-grade relational databases.

This open interface approach enables the platform to sat-
isfy heavyweight research or enterprise requirements by
affording developers the ability to run MLflow on propri-
etary infrastructure and incorporate additional features, such
as role-based access controls. Simultaneously, MLflow’s de-
fault component implementations reduce setup overhead
and deliver out-of-the-box support for common ML tools
and workflows.

4 TRENDS AND PLATFORM ADDITIONS
Through analyses of MLflow adopters’ use cases, we have
identified several trends in end-to-end machine learning de-
velopment that have spurred advancements in the platform.

4.1 Model management
While initially architecting MLflow, we identified the orga-
nization and management of model training sessions (exper-
iment runs) as a significant challenge for ML practitioners,
particularly for those working in large-scale, collaborative
environments. As developers increasingly leveraged MLflow
Tracking to streamline their model training efforts, they
began to encounter similar challenges with managing and
sharing their models. In particular, several adopters in the
IoT domain described use cases wherein a unique model
is built for each independent device or entity. These train-
ing processes frequently produce tens of thousands or even
hundreds of thousands of models. ML practitioners and de-
ployment engineers must vet each of these models, map
them to specific production applications, and deploy them
systematically to guard against regressions and breakages.

Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle DEEM ’20, June 14, 2020, Portland, OR

create_model_version(
name="Risk Model",
source="/.../riskmodel"

)

create_registered_model(
name="Risk Model"

)

transition_model_version_stage(
name="Risk Model",
version=1,
stage="Staging"

)

load_model(
"models:/Risk Model/Staging"

)

Dev. Staging

Transition

Prod.

Staging
Env.

Request/
Approve

Download model via
load_model()

Prod.
Env.

Data Scientists Deployment Engineers

Figure 1: Left: TheModel RegistryUI displays author and lineage information for eachmodel; users can transition
model versions through predefined lifecycle stages and add markdown descriptions. Right: A diagram depicting
an example collaborative Model Registry workflow where models are deployed to staging and production envi-
ronments; a sequence of API calls for the "Data Scientists" portion of the workflow is also displayed.

Operating effectively at this scale necessitates platform func-
tionality beyond the model cataloguing and lineage tracking
capabilities of preexisting model management systems; or-
ganizations also require tools for the collaborative review
and structured deployment of models.

To address these needs, we introduced the MLflow Model
Registry: a collaborative hub for managing the model de-
ployment lifecycle. In addition to providing cataloguing and
lineage tracking capabilities, theModel Registry standardizes
the model deployment workflow by enabling ML develop-
ers and deployment engineers to version their models and
transition them through four logical stages: "Development,"
"Staging," "Production," and "Archived." Further, organiza-
tions can restrict access to particular stages on a per-user
or per-role basis, and the Model Registry enables users to
request stage transitions from colleagues. These stages struc-
ture the deployment process and provide a model review
framework, guarding against common pitfalls, such as the
deployment of broken or inferior models to production.

Finally, we observed that many organizations rely on auto-
mated frameworks to periodically test and update model de-
ployments. The Model Registry integrates with these contin-
uous integration and deployment (CI/CD) tools by providing
APIs for fetchingmodels by version and stage that developers
can incorporate into their existing CI/CD workflows.
To date, users are managing millions of models with the

Model Registry; applications range from demand prediction
in transportation logistics to forecasting home energy usage.
Figure 1 displays the Model Registry’s Model Version UI and
an example workflow where data scientists develop models,
deployment engineers evaluate transition requests for pro-
duction deployment, and CI/CD tools fetch model updates
via the load_model() API.

4.2 Ease of instrumentation
We observe that ML libraries and frameworks are continu-
ing to abstract and simplify the interfaces used to define and
train models. These simplified workflows serve as an impetus
for providing more convenient mechanisms to extract and
record training metadata (e.g., hyperparameters and perfor-
mance metrics). To reduce the burden of instrumenting ML
code in MLflow, we have incorporated autologging utilities
for specific ML libraries that automatically record relevant
training metadata to MLflow Tracking and serialize model
graphs in the MLflowModel format. These convenience APIs
reduce the overhead of instrumentation to a single line of
code. Further, they provide a contract ensuring that relevant
metadata is collected as a given ML library evolves. Figure
2 displays an example of MLflow’s Python autologging API
for TensorFlow [1] training sessions, demonstrating its ad-
vantages over preexisting instrumentation methods. Since
the release of MLflow’s first autologging API, community
members have contributed autologging integrations with
several prominent ML libraries, such as XGBoost [4].

4.3 Experiment analytics
Organizations are increasingly applying machine learning
to extract insights from data and inform critical decisions.
Accordingly, information produced by ML methods is often
represented and consumed in the form of recurring reports
or performance dashboards. Adopters have described these
patterns in the context of Business Intelligence (BI) as well
as project management: ML developers are leveraging Track-
ing to catalogue key performance metrics as outputs of their
experiment runs, and experiments themselves are serving as
a gauge of an ML initiative’s progress or effectiveness over
time. These developers then employ data science tools and

DEEM ’20, June 14, 2020, Portland, OR Developments in MLflow

visualization libraries to analyze their experiment data, gen-
erating informative reports and dashboards. To facilitate this
process, MLflow introduced APIs for exporting experiment
data in tabular format via Spark [16], Pandas [10], and SQL.

Without autologging
import mlflow
mlflow.log_param(

"layers", layers

)
model = train_model()
mlflow.log_metric(

"mse", model.mse()

)

mlflow.log_artifact(

"plot", plot(model)

)

mlflow.tensorflow.log_model(

model

)

With autologging
import mlflow

mlflow.tensorflow.autolog()
model = train_model()

Figure 2: MLflow’s autologging APIs simplify ML
code instrumentation. In this Python example, the
mlflow.tensorflow.autolog() invocation highlighted
in the right code snippet replaces the verbose instru-
mentation logic highlighted in the left code snippet.

5 FUTUREWORK
In addition to the platform improvements discussed previ-
ously, adopters’ use cases and feedback have illuminated
several other natural extension points for MLflow.

We identify data reproducibility as a significant challenge
for many organizations. Because training, validation, and
test datasets are fundamental to model behavior and to the
measurement of model performance, many ML practitioners
have expressed the need to systematically version their ML
datasets and incorporate them into the lineage information
associated with each model.
Further, as the scale of model deployments increases for

batch and real-time scoring, we observe that ML developers
requiremodel telemetry solutions for capturing statistical per-
formance insights from the inputs and outputs of deployed
models. As such tools emerge in the context of specific de-
ployment systems, we contend that ML practitioners would
benefit from a framework-agnostic structure for production
model monitoring that provides compatibility with a broad
set of deployment environments.

Finally, we observe that many ML training and inference
processes consist of multiple subtasks. Representing and
efficiently executing thesemulti-step workflows presents sig-
nificant challenges for ML practitioners: for example, many
such workflows rely on implicit input-output behavior at

each step, and alterations to a single step may cause regres-
sions in the broader workflow. We posit that a general repre-
sentation format for multi-step ML workflows with explicit
input-output interfaces would mitigate these failure modes
and enable workflow execution systems, such as Apache Air-
flow [2], to exploit the parallelism of independent subtasks.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, et al. 2016. TensorFlow: A System for
Large-Scale Machine Learning. In OSDI, Vol. 16. 265–283.

[2] Apache Airflow. 2020. Apache Airflow. https://airflow.apache.org/
[3] Binder 2020. Binder. https://mybinder.org.
[4] T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boost-

ing System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’16). As-
sociation for Computing Machinery, New York, NY, USA, 785–794.
https://doi.org/10.1145/2939672.2939785

[5] D. Crankshaw, X. Wang, G. Zhou, M.J. Franklin, J.E. Gonzalez, and I.
Stoica. 2017. Clipper: A Low-latency Online Prediction Serving System.
In Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation (NSDI’17). USENIX Association, Berkeley,
CA, USA, 613–627. http://dl.acm.org/citation.cfm?id=3154630.3154681

[6] J. Dunn. 2016. Introducing FBLearner Flow: Face-
book’s AI backbone. https://code.fb.com/core-data/
introducing-fblearner-flow-facebook-s-ai-backbone

[7] Percy Liang et al. 2020. CodaLab. https://worksheets.codalab.org.
[8] Google. 2020. TensorBoard: Visualizing Learning. https://www.

tensorflow.org/guide/summaries_and_tensorboard.
[9] K. Greff, A. Klein, M. Chovanec, F. Hutter, and J. Schmidhuber. 2017.

The Sacred Infrastructure for Computational Research. In Proceed-
ings of the 16th Python in Science Conference, K. Huff, D. Lippa,
D. Niederhut, and M. Pacer (Eds.). 49 – 56. https://doi.org/10.25080/
shinma-7f4c6e7-008

[10] Wes McKinney. 2010. Data Structures for Statistical Computing in
Python. In Proceedings of the 9th Python in Science Conference, Stéfan
van der Walt and Jarrod Millman (Eds.). 51 – 56.

[11] A.N. Modi, C.Y. Koo, C.Y. Foo, C. Mewald, D.M. Baylor, E. Breck, H.
Cheng, J. Wilkiewicz, L. Koc, L. Lew, M.A. Zinkevich, M. Wicke, M.
Ispir, N. Polyzotis, N. Fiedel, S.E. Haykal, S. Whang, S. Roy, S. Ramesh,
V. Jain, X. Zhang, and Z. Haque. 2017. TFX: A TensorFlow-Based
Production-Scale Machine Learning Platform. In KDD 2017.

[12] ONNX Group. 2020. ONNX. https://onnx.ai.
[13] SageMaker 2020. Amazon SageMaker. https://docs.aws.amazon.com/

sagemaker/latest/dg/whatis.html.
[14] M. Vartak, H. Subramanyam, W. Lee, S. Viswanathan, S. Husnoo,

S. Madden, and M. Zaharia. 2016. ModelDB: A System for Ma-
chine Learning Model Management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA ’16). Association for
Computing Machinery, New York, NY, USA, Article 14, 3 pages.
https://doi.org/10.1145/2939502.2939516

[15] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar.
2018. Accelerating the Machine Learning Lifecycle with MLflow. IEEE
Data Engineering Bulletin 41(4) (2018).

[16] M. Zaharia, R.S. Xin, P.Wendell, T. Das, M. Armbrust, A. Dave, X.Meng,
J. Rosen, S. Venkataramen, M.J. Franklin, A. Ghodsi, J.E. Gonzalez,
S. Shenker, and I. Stoica. 2016. Apache Spark: a unified engine for
big data processing. Commun. ACM 59, 11 (2016), 56–65. https:
//doi.org/10.1145/2934664

https://airflow.apache.org/
https://mybinder.org
https://doi.org/10.1145/2939672.2939785
http://dl.acm.org/citation.cfm?id=3154630.3154681
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone
https://worksheets.codalab.org
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://doi.org/10.25080/shinma-7f4c6e7-008
https://doi.org/10.25080/shinma-7f4c6e7-008
https://onnx.ai
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://doi.org/10.1145/2939502.2939516
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Related Work
	3 Platform Overview
	3.1 Components
	3.2 Architecture

	4 Trends and platform additions
	4.1 Model management
	4.2 Ease of instrumentation
	4.3 Experiment analytics

	5 Future Work
	References

