
The
Delta Lake
Series
Fundamentals
and Performance

Boost data reliability for machine
learning and business intelligence
with Delta Lake

2The Delta Lake Series — Fundamentals and Performance

The Delta Lake Series of eBooks is published
by Databricks to help leaders and practitioners
understand the full capabilities of Delta Lake as
well as the landscape it resides in. This eBook,
The Delta Lake Series — Fundamentals and
Performance, focuses on the fundamentals of
Delta Lake as well as its performance.

After reading this eBook, you’ll not only under-
stand what Delta Lake offers, but you’ll also
understand how its features result in substan-
tial performance improvements.

What’s
inside?

What’s
next?

The Fundamentals of Delta Lake:
Why Reliability and Performance Matter

 Chapter

01
Unpacking the
Transaction Log

 Chapter

02
How to Use Schema Enforcement
and Evolution

 Chapter

03
Delta Lake
DML Internals

Chapter

04
How Delta Lake Quickly Processes Petabytes
With Data Skipping and Z-Ordering

Chapter

05

Here’s what
you’ll find inside

What is Delta Lake?
Introduction

3The Delta Lake Series — Fundamentals and Performance

Delta Lake is a unified data management system that brings data reliability and fast
analytics to cloud data lakes. Delta Lake runs on top of existing data lakes and is fully
compatible with Apache Spark™ APIs.

At Databricks, we’ve seen how Delta Lake can bring reliability, performance and life-
cycle management to data lakes. Our customers have found that Delta Lake solves
for challenges around malformed data ingestion, difficulties with deleting data for
compliance or issues with modifying data for data capture.

With Delta Lake, you can accelerate the velocity that high-quality data can get into
your data lake and the rate that teams can leverage that data with a secure and
scalable cloud service.

What is
Delta Lake?

https://databricks.com/product/delta-lake-on-databricks

4The Delta Lake Series — Fundamentals and Performance

The Fundamentals of Delta Lake:
Why Reliability and Performance Matter

CHAPTER 01

5The Delta Lake Series — Fundamentals and Performance

When it comes to data reliability, performance — the speed at which your programs
run — is of utmost importance. Because of the ACID transactional protections that
Delta Lake provides, you’re able to get the reliability and performance you need.

With Delta Lake, you can stream and batch concurrently, perform CRUD operations,
and save money because you’re now using fewer VMs. It’s easier to maintain your
data engineering pipelines by taking advantage of streaming, even for batch jobs.

Delta Lake is a storage layer that brings reliability to your data lakes built on HDFS
and cloud object storage by providing ACID transactions through optimistic con-
currency control between writes and snapshot isolation for consistent reads during
writes. Delta Lake also provides built-in data versioning for easy rollbacks and
reproducing reports.

In this chapter, we’ll share some of the common challenges with data lakes as well
as the Delta Lake features that address them.

Challenges with data lakes
Data lakes are a common element within modern data architectures. They serve as a
central ingestion point for the plethora of data that organizations seek to gather and
mine. While a good step forward in getting to grips with the range of data, they run
into the following common problems:

The Fundamentals of Delta Lake:
Why Reliability and
Performance Matter01

6The Delta Lake Series — Fundamentals and Performance

�1. �Reading and writing into data lakes is not reliable. Data engineers often run into
the problem of unsafe writes into data lakes that cause readers to see garbage
data during writes. They have to build workarounds to ensure readers always see
consistent data during writes.

2. �The data quality in data lakes is low. Dumping unstructured data into a data lake
is easy, but this comes at the cost of data quality. Without any mechanisms for
validating schema and the data, data lakes suffer from poor data quality. As a con-
sequence, analytics projects that strive to mine this data also fail.

3. �Poor performance with increasing amounts of data. As the amount of data that
gets dumped into a data lake increases, the number of files and directories also
increases. Big data jobs and query engines that process the data spend a signif-
icant amount of time handling the metadata operations. This problem is more
pronounced in the case of streaming jobs or handling many concurrent batch jobs.

4. �Modifying, updating or deleting records in data lakes is hard. Engineers need to
build complicated pipelines to read entire partitions or tables, modify the data
and write them back. Such pipelines are inefficient and hard to maintain.

Because of these challenges, many big data projects fail to deliver on their vision or
sometimes just fail altogether. We need a solution that enables data practitioners
to make use of their existing data lakes, while ensuring data quality.

Delta Lake’s key functionalities
Delta Lake addresses the above problems to simplify how you build your data lakes.
Delta Lake offers the following key functionalities:

• �ACID transactions: Delta Lake provides ACID transactions between multiple writes.
Every write is a transaction, and there is a serial order for writes recorded in a transaction
log. The transaction log tracks writes at file level and uses optimistic concurrency

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

7The Delta Lake Series — Fundamentals and Performance

control, which is ideally suited for data lakes since multiple writes trying to modify
the same files don’t happen that often. In scenarios where there is a conflict, Delta
Lake throws a concurrent modification exception for users to handle them and retry
their jobs. Delta Lake also offers the highest level of isolation possible (serializable
isolation) that allows engineers to continuously keep writing to a directory or table
and consumers to keep reading from the same directory or table. Readers will see
the latest snapshot that existed at the time the reading started.

• �Schema management: Delta Lake automatically validates that the schema of the
DataFrame being written is compatible with the schema of the table. Columns
that are present in the table but not in the DataFrame are set to null. If there are
extra columns in the DataFrame that are not present in the table, this operation
throws an exception. Delta Lake has DDL to explicitly add new columns explicitly
and the ability to update the schema automatically.

• �Scalable metadata handling: Delta Lake stores the metadata information of a table
or directory in the transaction log instead of the metastore. This allows Delta Lake
to list files in large directories in constant time and be efficient while reading data.

• �Data versioning and time travel: Delta Lake allows users to read a previous
snapshot of the table or directory. When files are modified during writes, Delta
Lake creates newer versions of the files and preserves the older versions. When
users want to read the older versions of the table or directory, they can provide

a timestamp or a version number to Apache Spark’s read APIs, and Delta Lake
constructs the full snapshot as of that timestamp or version based on the
information in the transaction log. This allows users to reproduce experiments
and reports and also revert a table to its older versions, if needed.

• �Unified batch and streaming sink: Apart from batch writes, Delta Lake can also
be used as an efficient streaming sink with Apache Spark’s structured streaming.
Combined with ACID transactions and scalable metadata handling, the efficient
streaming sink enables lots of near real-time analytics use cases without having to
maintain a complicated streaming and batch pipeline.

• �Record update and deletion: Delta Lake will support merge, update and delete
DML commands. This allows engineers to easily upsert and delete records in data
lakes and simplify their change data capture and GDPR use cases. Since Delta Lake
tracks and modifies data at file-level granularity, it is much more efficient than
reading and overwriting entire partitions or tables.

• �Data expectations (coming soon): Delta Lake will also support a new API to set
data expectations on tables or directories. Engineers will be able to specify a
boolean condition and tune the severity to handle data expectations. When
Apache Spark jobs write to the table or directory, Delta Lake will automatically
validate the records and when there is a violation, it will handle the records
based on the severity provided.

https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Serializable
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Serializable
https://databricks.com/spark/about

8The Definitive Guide to Delta Lake - Performance

CHAPTER 02
Unpacking the Transaction Log

9The Delta Lake Series — Fundamentals and Performance

Unpacking
the Transaction
Log02
The transaction log is key to understanding Delta Lake because it is the common
thread that runs through many of its most important features, including ACID trans-
actions, scalable metadata handling, time travel and more. The Delta Lake transac-
tion log is an ordered record of every transaction that has ever been performed on
a Delta Lake table since its inception.

Delta Lake is built on top of Apache Spark to allow multiple readers and writers of a
given table to work on the table at the same time. To show users correct views of the
data at all times, the transaction log serves as a single source of truth: the central
repository that tracks all changes that users make to the table.

When a user reads a Delta Lake table for the first time or runs a new query on an
open table that has been modified since the last time it was read, Spark checks the
transaction log to see what new transactions are posted to the table. Then, Spark
updates the end user’s table with those new changes. This ensures that a user’s
version of a table is always synchronized with the master record as of the most
recent query and that users cannot make divergent, conflicting changes to a table.

In this chapter, we’ll explore how the Delta Lake transaction log offers an elegant
solution to the problem of multiple concurrent reads and writes.

https://databricks.com/spark/about

10The Delta Lake Series — Fundamentals and Performance

Implementing atomicity
to ensure operations complete fully
Atomicity is one of the four properties of ACID transactions that guarantees that
operations (like an INSERT or UPDATE) performed on your data lake either com-
plete fully or don’t complete at all. Without this property, it’s far too easy for a hard-
ware failure or a software bug to cause data to be only partially written to a table,
resulting in messy or corrupted data.

The transaction log is the mechanism through which Delta Lake is able to offer
the guarantee of atomicity. For all intents and purposes, if it’s not recorded in the
transaction log, it never happened. By only recording transactions that execute fully
and completely, and using that record as the single source of truth, the Delta Lake
transaction log allows users to reason about their data and have peace of mind about
its fundamental trustworthiness, at petabyte scale.

Dealing with multiple concurrent reads and writes
But how does Delta Lake deal with multiple concurrent reads and writes? Since
Delta Lake is powered by Apache Spark, it’s not only possible for multiple users to

modify a table at once — it’s expected. To handle these situations, Delta Lake employs
optimistic concurrency control.

Optimistic concurrency control is a method of dealing with concurrent transactions
that assumes the changes made to a table by different users can complete
without conflicting with one another. It is incredibly fast because when dealing
with petabytes of data, there’s a high likelihood that users will be working on
different parts of the data altogether, allowing them to complete non-conflicting
transactions simultaneously.

Of course, even with optimistic concurrency control, sometimes users do try to
modify the same parts of the data at the same time. Luckily, Delta Lake has a protocol
for that. Delta Lake handles these cases by implementing a rule of mutual exclusion,
then it attempts to solve any conflict optimistically.

This protocol allows Delta Lake to deliver on the ACID principle of isolation, which
ensures that the resulting state of the table after multiple, concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

https://databricks.com/glossary/data-lake

11The Delta Lake Series — Fundamentals and Performance

As all the transactions made on Delta Lake tables are stored directly to disk, this
process satisfies the ACID property of durability, meaning it will persist even in the
event of system failure.

Time travel, data lineage and debugging
Every table is the result of the sum total of all the commits recorded in the Delta Lake
transaction log — no more and no less. The transaction log provides a step-by-step
instruction guide, detailing exactly how to get from the table’s original state to its
current state.

Therefore, we can recreate the state of a table at any point in time by starting with
an original table, and processing only commits made after that point. This powerful abil-

ity is known as “time travel,” or data versioning, and can be a lifesaver in any number of
situations. For more information, please refer to Introducing Delta Time Travel for Large-
Scale Data Lakes and Getting Data Ready for Data Science With Delta Lake and MLflow.

As the definitive record of every change ever made to a table, the Delta Lake transaction
log offers users a verifiable data lineage that is useful for governance, audit and
compliance purposes. It can also be used to trace the origin of an inadvertent change
or a bug in a pipeline back to the exact action that caused it. Users can run the
DESCRIBE HISTORY command to see metadata around the changes that were made.

Want to learn more about Delta Lake’s transaction log?
Read our blog post > Watch our tech talk >

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://www.youtube.com/watch?v=hQaENo78za0&list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP&index=21&t=112s
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://databricks.com/discover/diving-into-delta-lake-talks/unpacking-transaction-log

12The Definitive Guide to Delta Lake - Performance

How to Use Schema
Enforcement and Evolution

13The Delta Lake Series — Fundamentals and Performance

As business problems and requirements evolve over time, so does the structure
of your data. With Delta Lake, incorporating new columns or objects is easy; users
have access to simple semantics to control the schema of their tables. At the same
time, it is important to call out the importance of schema enforcement to prevent
users from accidentally polluting their tables with mistakes or garbage data in ad-
dition to schema evolution, which enables them to automatically add new columns
of rich data when those columns belong.

Schema enforcement rejects any new columns or other schema changes that
aren’t compatible with your table. By setting and upholding these high standards,
analysts and engineers can trust that their data has the highest levels of integrity and
can reason about it with clarity, allowing them to make better business decisions.

On the flip side of the coin, schema evolution complements enforcement by mak-
ing it easy for intended schema changes to take place automatically. After all, it
shouldn’t be hard to add a column.

Schema enforcement is the yin to schema evolution’s yang. When used together,
these features make it easier than ever to block out the noise and tune in to the signal.

Understanding table schemas
Every DataFrame in Apache Spark contains a schema, a blueprint that defines the
shape of the data, such as data types and columns, and metadata. With Delta Lake,
the table’s schema is saved in JSON format inside the transaction log.

03How to Use
Schema Enforcement
and Evolution

14The Delta Lake Series — Fundamentals and Performance

What is schema enforcement?
Schema enforcement, or schema validation, is a safeguard in Delta Lake that ensures
data quality by rejecting writes to a table that don’t match the table’s schema.

Like the front-desk manager at a busy restaurant who only accepts reservations,
it checks to see whether each column of data inserted into the table is on its list
of expected columns (in other words, whether each one has a “reservation”), and
rejects any writes with columns that aren’t on the list.

How does schema enforcement work?
Delta Lake uses schema validation on write, which means that all new writes to a
table are checked for compatibility with the target table’s schema at write time. If the
schema is not compatible, Delta Lake cancels the transaction altogether (no data is
written), and raises an exception to let the user know about the mismatch.

To determine whether a write to a table is compatible, Delta Lake uses the following
rules. The DataFrame to be written cannot contain:

• �Any additional columns that are not present in the target table’s schema. Con-
versely, it’s OK if the incoming data doesn’t contain every column in the table —
those columns will simply be assigned null values.

• �Column data types that differ from the column data types in the target table. If a
�target table’s column contains StringType data, but the corresponding column
in the DataFrame contains IntegerType data, schema enforcement will raise an
exception and prevent the write operation from taking place.

• �Column names that differ only by case. This means that you cannot have columns
such as “Foo” and “foo” defined in the same table. While Spark can be used in case
sensitive or insensitive (default) mode, Delta Lake is case-preserving but insensitive
when storing the schema. Parquet is case sensitive when storing and returning column

https://databricks.com/glossary/what-is-parquet

15The Delta Lake Series — Fundamentals and Performance

information. To avoid potential mistakes, data corruption or loss issues (which we’ve
personally experienced at Databricks), we decided to add this restriction.

Rather than automatically adding the new columns, Delta Lake enforces the schema,
and stops the write from occurring. To help identify which column(s) caused the
mismatch, Spark prints out both schemas in the stack trace for comparison.

How is schema enforcement useful?
Because it’s such a stringent check, schema enforcement is an excellent tool to use
as a gatekeeper for a clean, fully transformed data set that is ready for production
or consumption. It’s typically enforced on tables that directly feed:

• Machine learning algorithms
• BI dashboards
• Data analytics and visualization tools
• �Any production system requiring highly structured,

strongly typed, semantic schemas

In order to prepare their data for this final hurdle, many users employ a simple multi-
hop architecture that progressively adds structure to their tables. To learn more,
take a look at Productionizing Machine Learning With Delta Lake.

What is schema evolution?
Schema evolution is a feature that allows users to easily change a table’s current
schema to accommodate data that is changing over time. Most commonly, it’s used
when performing an append or overwrite operation, to automatically adapt the
schema to include one or more new columns.

How does schema evolution work?
Following up on the example from the previous section, developers can easily use
schema evolution to add the new columns that were previously rejected due to a
schema mismatch. Schema evolution is activated by adding .option(‘mergeSchema’,

‘true’) to your .write or .writeStream Spark command, as shown in the example below.

#Add the mergeSchema option
loans.write.format(“delta”) \
.option(“mergeSchema”, “true”) \
.mode(“append”) \
.save(DELTALAKE_SILVER_PATH)

By including the mergeSchema option in your query, any columns that are present
in the DataFrame but not in the target table are automatically added to the end of
the schema as part of a write transaction. Nested fields can also be added, and
these fields will get added to the end of their respective struct columns as well.

Data engineers and scientists can use this option to add new columns (perhaps a newly
tracked metric, or a column of this month’s sales figures) to their existing ML production
tables without breaking existing models that rely on the old columns.

The following types of schema changes are eligible for schema evolution during table
appends or overwrites:

• Adding new columns (this is the most common scenario)
• �Changing of data types from NullType

 -> any other type, or upcasts from ByteType -> ShortType -> IntegerType

Other changes, not eligible for schema evolution, require that the schema and data
are overwritten by adding .option(“overwriteSchema”,“true”). Those
changes include:

• Dropping a column
• Changing an existing column’s data typeC(in place)
• �Renaming column names that differ onlyC by case

(e.g., “Foo” and “foo”)

https://databricks.com/blog/2019/08/14/productionizing-machine-learning-with-delta-lake.html

16The Delta Lake Series — Fundamentals and Performance

Finally, with the release of Spark 3.0, explicit DDL (using ALTER TABLE) is fully
supported, allowing users to perform the following actions on table schemas:

• Adding columns
• Changing column comments
• �Setting table properties that define the behavior of the table, such as setting

the retention duration of the transaction log

How is schema evolution useful?
Schema evolution can be used anytime you intend to change the schema of your table
(as opposed to where you accidentally added columns to your DataFrame that shouldn’t
be there). It’s the easiest way to migrate your schema because it automatically adds
the correct column names and data types, without having to declare them explicitly.

Summary
Schema enforcement rejects any new columns or other schema changes that aren’t
compatible with your table. By setting and upholding these high standards, analysts
and engineers can trust that their data has the highest levels of integrity and can
reason about it with clarity, allowing them to make better business decisions.

On the flip side of the coin, schema evolution complements enforcement by making it
easy for intended schema changes to take place automatically. After all, it shouldn’t
be hard to add a column.

Schema enforcement is the yin to schema evolution’s yang. When used together, these
features make it easier than ever to block out the noise and tune in to the signal.

Want to learn more about schema enforcement and evolution?
Read our blog post > Watch our tech talk >

https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://databricks.com/discover/diving-into-delta-lake-talks/schema-enforcement-evolution

17The Delta Lake Series — Fundamentals and Performance

CHAPTER 04
Delta Lake DML Internals

18The Delta Lake Series — Fundamentals and Performance

Delta Lake supports data manipulation language (DML) commands including UPDATE,
DELETE and MERGE. These commands simplify change data capture (CDC), audit
and governance, and GDPR/CCPA workflows, among others.

In this chapter, we will demonstrate how to use each of these DML commands,
describe what Delta Lake is doing behind the scenes, and offer some performance
tuning tips for each one.

Delta Lake DML: UPDATE
You can use the UPDATE operation to selectively update any rows that match a fil-
tering condition, also known as a predicate. The code below demonstrates how to
use each type of predicate as part of an UPDATE statement. Note that Delta Lake
offers APIs for Python, Scala and SQL, but for the purposes of this eBook, we’ll include
only the SQL code.

-- Update events
UPDATE events SET eventType=‘click’ WHERE buttonPress = 1

04Delta Lake
DML Internals

19The Delta Lake Series — Fundamentals and Performance

UPDATE: Under the hood
Delta Lake performs an UPDATE on a table in two steps:

1. �Find and select the files containing data that match the predicate and, therefore,
need to be updated. Delta Lake uses data skipping whenever possible to speed
up this process.

2. �Read each matching file into memory, update the relevant rows, and write out the
result into a new data file.

Once Delta Lake has executed the UPDATE successfully, it adds a commit in the
transaction log indicating that the new data file will be used in place of the old one
from now on. The old data file is not deleted, though. Instead, it’s simply “tombstoned”
— recorded as a data file that applied to an older version of the table, but not the current
version. Delta Lake is able to use it to provide data versioning and time travel.

UPDATE + Delta Lake time travel = Easy debugging
Keeping the old data files turns out to be very useful for debugging because you can
use Delta Lake “time travel” to go back and query previous versions of a table at any

time. In the event that you update your table incorrectly and want to figure out what
happened, you can easily compare two versions of a table to one another to see what
has changed.

SELECT * FROM events VERSION AS OF 11 EXCEPT ALL SELECT
* FROM mytable VERSION AS OF 12

UPDATE: Performance tuning tips
The main way to improve the performance of the UPDATE command on Delta Lake
is to add more predicates to narrow down the search space. The more specific the
search, the fewer files Delta Lake needs to scan and/or modify.

Delta Lake DML: DELETE
You can use the DELETE command to selectively delete rows based upon a
predicate (filtering condition).

 DELETE FROM events WHERE date < ‘2017-01-01’

https://databricks.com/discover/diving-into-delta-lake-talks/schema-enforcement-evolution

20The Delta Lake Series — Fundamentals and Performance

In the event that you want to revert an accidental DELETE operation, you can use
time travel to roll back your table to the way it was.

DELETE: Under the hood
DELETE works just like UPDATE under the hood. Delta Lake makes two scans of the
data: The first scan is to identify any data files that contain rows matching the
predicate condition. The second scan reads the matching data files into memory,
at which point Delta Lake deletes the rows in question before writing out the newly
clean data to disk.

After Delta Lake completes a DELETE operation successfully, the old data files are
not deleted entirely — they’re still retained on disk, but recorded as “tombstoned”
(no longer part of the active table) in the Delta Lake transaction log. Remember,
those old files aren’t deleted immediately because you might still need them to time
travel back to an earlier version of the table. If you want to delete files older than a
certain time period, you can use the VACUUM command.

DELETE + VACUUM: Cleaning up old data files
Running the VACUUM command permanently deletes all data files that are:

1. No longer part of the active table and
2. �Older than the retention threshold, which is seven days by default

Delta Lake does not automatically VACUUM old files — you must run the command
yourself, as shown below. If you want to specify a retention period that is different
from the default of seven days, you can provide it as a parameter.

from delta.tables import * deltaTable.
vacuum files older than 30 days(720 hours)
deltaTable.vacuum(720)

21The Delta Lake Series — Fundamentals and Performance

DELETE: Performance tuning tips
Just like with the UPDATE command, the main way to improve the performance of
a DELETE operation on Delta Lake is to add more predicates to narrow down the
search space. The Databricks managed version of Delta Lake also features other
performance enhancements like improved data skipping, the use of bloom filters,
and Z-Order Optimize (multi-dimensional clustering). Read more about Z-Order
Optimize on Databricks.

Delta Lake DML: MERGE
The Delta Lake MERGE command allows you to perform upserts, which are a mix of
an UPDATE and an INSERT. To understand upserts, imagine that you have an existing
table (aka a target table), and a source table that contains a mix of new records and
updates to existing records.

Here’s how an upsert works:
• �When a record from the source table matches a preexisting record in the target

table, Delta Lake updates the record.
• �When there is no such match, Delta Lake inserts the new record.

The Delta Lake MERGE command greatly simplifies workflows that can be complex
and cumbersome with other traditional data formats like Parquet. Common scenarios
where merges/upserts come in handy include change data capture, GDPR/CCPA
compliance, sessionization, and deduplication of records.

For more information about upserts, read:
• Efficient Upserts Into Data Lakes With Databricks Delta
• Simple, Reliable Upserts and Deletes on Delta Lake Tables Using Python APIs
• Schema Evolution in Merge Operations and Operational Metrics in Delta Lake

https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://databricks.com/blog/2019/03/19/efficient-upserts-into-data-lakes-databricks-delta.html
https://databricks.com/blog/2019/10/03/simple-reliable-upserts-and-deletes-on-delta-lake-tables-using-python-apis.html
https://databricks.com/blog/2020/05/19/schema-evolution-in-merge-operations-and-operational-metrics-in-delta-lake.html

22The Delta Lake Series — Fundamentals and Performance

MERGE: Under the hood
Delta Lake completes a MERGE in two steps:

1. �Perform an inner join between the target table and source table to select all files
that have matches.

2. �Perform an outer join between the selected files in the target and source tables
and write out the updated/deleted/inserted data.

The main way that this differs from an UPDATE or a DELETE under the hood is that
Delta Lake uses joins to complete a MERGE. This fact allows us to utilize some unique
strategies when seeking to improve performance.

MERGE: Performance tuning tips
To improve performance of the MERGE command, you need to determine which of
the two joins that make up the merge is limiting your speed.

If the inner join is the bottleneck (i.e., finding the files that Delta Lake needs to rewrite
takes too long), try the following strategies:

Add more predicates to narrow down the search space.

• Adjust shuffle partitions.
• Adjust broadcast join thresholds.
• �Compact the small files in the table if there are lots of them, but don’t compact

them into files that are too large, since Delta Lake has to copy the entire file to
rewrite it.

On Databricks’ managed Delta Lake, use Z-Order optimize to exploit the locality
of updates.

On the other hand, if the outer join is the bottleneck (i.e., rewriting the actual files
themselves takes too long), try the strategies below.

• Adjust shuffle partitions.
• �Reduce files by enabling automatic repartitioning before writes

(with Optimized Writes in Databricks Delta Lake).

• �Adjust broadcast thresholds. If you’re doing a full outer join, Spark cannot do a
broadcast join, but if you’re doing a right outer join, Spark can do one, and you
can adjust the broadcast thresholds as needed.

• Cache the source table / DataFrame.
•� �Caching the source table can speed up the second scan, but be sure not to cache

the target table, as this can lead to cache coherency issues.

Delta Lake supports DML commands including UPDATE, DELETE and MERGE INTO,
which greatly simplify the workflow for many common big data operations. In this
chapter, we demonstrated how to use these commands in Delta Lake, shared infor-
mation about how each one works under the hood, and offered some performance
tuning tips.

Want a deeper dive into DML internals, including snippets of code?
Read our blog post>

https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html

23The Delta Lake Series — Fundamentals and Performance

How Delta Lake Quickly Processes
Petabytes With Data Skipping and Z-Ordering

CHAPTER 05

24The Delta Lake Series — Fundamentals and Performance

Delta Lake is capable of sifting through petabytes of data within seconds. Much of
this speed is owed to two features: (1) data skipping and (2) Z-Ordering.

Combining these features helps the Databricks Runtime to dramatically reduce the
amount of data that needs to be scanned to answer selective queries against large
Delta tables, which typically translates into substantial runtime improvements and
cost savings.

Using Delta Lake’s built-in data skipping and ZORDER clustering features, large
cloud data lakes can be queried in a matter of seconds by skipping files not relevant
to the query. For example, 93.2% of the records in a 504 TB data set were skipped
for a typical query in a real-world cybersecurity analysis use case, reducing query
times by up to two orders of magnitude. In other words, Delta Lake can speed up
your queries by as much as 100x.

Want to see data skipping and Z-Ordering in action?
Apple’s Dominique Brezinski and Databricks’ Michael Armbrust demonstrated how
to use Delta Lake as a unified solution for data engineering and data science in
the context of cybersecurity monitoring and threat response. Watch their keynote
speech, Threat Detection and Response at Scale.

05 How Delta Lake Quickly
Processes Petabytes With
Data Skipping and Z-Ordering

https://databricks.com/product/databricks-runtime
https://databricks.com/session/keynote-from-apple

25The Delta Lake Series — Fundamentals and Performance

Using data skipping and Z-Order clustering
Data skipping and Z-Ordering are used to improve the performance of needle-in-
the-haystack queries against huge data sets. Data skipping is an automatic feature
of Delta Lake, kicking in whenever your SQL queries or data set operations include
filters of the form “column op literal,” where:

• column is an attribute of some Delta Lake table, be it top-level or nested, whose
 data type is string / numeric / date/ timestamp
• op is a binary comparison operator, StartsWith / LIKE
 pattern%’, or IN <list_of_values>
• literal is an explicit (list of) value(s) of the same data type as a column

AND / OR / NOT are also supported as well as “literal op column” predicates.

Even though data skipping kicks in when the above conditions are met, it may not
always be effective. But, if there are a few columns that you frequently filter by and
want to make sure that’s fast, then you can explicitly optimize your data layout with
respect to skipping effectiveness by running the following command:

OPTIMIZE <table> [WHERE <partition_filter>]
ZORDER BY (<column> [, …])

Exploring the details
Apart from partition pruning, another common technique that’s used in the data
warehousing world, but which Spark currently lacks, is I/O pruning based on small
materialized aggregates. In short, the idea is to keep track of simple statistics such
as minimum and maximum values at a certain granularity that are correlated with
I/O granularity. And we want to leverage those statistics at query planning time in
order to avoid unnecessary I/O.

This is exactly what Delta Lake’s data skipping feature is about. As new data is
inserted into a Delta Lake table, file-level min/max statistics are collected for all
columns (including nested ones) of supported types. Then, when there’s a lookup
query against the table, Delta Lake first consults these statistics in order to deter-
mine which files can safely be skipped.

Want to learn more about data skipping and Z-Ordering, including
how to apply it within a cybersecurity analysis?
Read our blog post >

https://dl.acm.org/doi/10.5555/645924.671173
https://dl.acm.org/doi/10.5555/645924.671173
https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html

26The Delta Lake Series — Fundamentals and Performance

Now that you understand Delta Lake and how its features
can improve performance, it may be time to take a look at
some additional resources.

Explore subsequent eBooks in the collection >
• The Delta Lake Series — Features
• The Delta Lake Series — Lakehouse
• The Delta Lake Series — Streaming
• The Delta Lake Series — Customer Use Cases

Do a deep dive into Delta Lake >
Visit the site for additional resources

Try Databricks for free >
Learn more >

What’s
next?

© Databricks 2021. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/try-databricks
https://pages.databricks.com/delta-lake-open-source-reliability-for-data-lakes-reg.html
http://www.apache.org/

