
2 2

Data Engineers
Guide to
Apache Spark
and Delta Lake

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

Table of Contents

Chapter 1:	� A Gentle Introduction to
Apache Spark	 3

Chapter 2:	� A Tour of Spark’s Toolset	 24

Chapter 3:	� Working with
Different Types of Data	 42

Chapter 4:	� Delta Lake Quickstart	 84

Apache Spark™ has seen immense growth over the past several years, including
its compatibility with Delta Lake.

Delta Lake is an open-source storage layer that sits on top of your existing
data lake file storage, such as AWS S3, Azure Data Lake Storage, or HDFS. Delta
Lake brings reliability, performance, and lifecycle management to data lakes.
Databricks is proud to share excerpts from the Delta Lake Quickstart and the book,
Spark: The Definitive Guide.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3

Now that we took our history lesson on Apache Spark, it ’s time to start using it and applying it! This chapter
will present a gentle introduction to Spark — we will walk through the core architecture of a cluster, Spark
Application, and Spark’s Structured APIs using DataFrames and SQL. Along the way we will touch on
Spark’s core terminology and concepts so that you are empowered start using Spark right away. Let’s get
started with some basic background terminology and concepts.

CHAPTER 1: �A Gentle Introduction to Spark

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4

Spark’s Basic Architecture
Typically when you think of a “computer” you think about one machine sitting on your
desk at home or at work. This machine works perfectly well for watching movies
or working with spreadsheet software. However, as many users likely experience
at some point, there are some things that your computer is not powerful enough to
perform. One particularly challenging area is data processing. Single machines do
not have enough power and resources to perform computations on huge amounts
of information (or the user may not have time to wait for the computation to finish).
A cluster, or group of machines, pools the resources of many machines together
allowing us to use all the cumulative resources as if they were one. Now a group of
machines alone is not powerful, you need a framework to coordinate work across
them. Spark is a tool for just that, managing and coordinating the execution of tasks
on data across a cluster of computers.

The cluster of machines that Spark will leverage to execute tasks will be managed by
a cluster manager like Spark’s Standalone cluster manager, YARN, or Mesos. We then
submit Spark Applications to these cluster managers which will grant resources to
our application so that we can complete our work.

Spark Applications
Spark Applications consist of a driver process and a set of executor processes.
The driver process runs your main() function, sits on a node in the cluster, and is
responsible for three things: maintaining information about the Spark Application;
responding to a user’s program or input; and analyzing, distributing, and scheduling
work across the executors (defined momentarily). The driver process is absolutely
essential — it ’s the heart of a Spark Application and maintains all relevant information
during the lifetime of the application.

The executors are responsible for actually executing the work that the driver assigns
them. This means, each executor is responsible for only two things: executing
code assigned to it by the driver and reporting the state of the computation, on that
executor, back to the driver node.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5

D R I V E R P R O C E S S E X E C U T O R S

User Code

Spark Session

C L U S T E R M A N A G E R

The cluster manager controls physical machines and allocates resources to Spark Applications. This can be one
of several core cluster managers: Spark’s standalone cluster manager, YARN, or Mesos. This means that there
can be multiple Spark Applications running on a cluster at the same time. We will talk more in depth about cluster
managers in Part IV: Production Applications of this book.

In the previous illustration we see on the left, our driver and on the right the four executors on the right. In this
diagram, we removed the concept of cluster nodes. The user can specify how many executors should fall on each
node through configurations.

N O T E | Spark, in addition to its cluster mode, also has a local mode. The driver and executors are simply processes,
this means that they can live on the same machine or different machines. In local mode, these both run (as threads)
on your individual computer instead of a cluster. We wrote this book with local mode in mind, so everything should be
runnable on a single machine.

As a short review of Spark Applications, the key points to understand at this point are that:
• �Spark has some cluster manager that maintains an understanding of the resources available.
• �The driver process is responsible for executing our driver program’s commands across the executors in order

to complete our task.

Now while our executors, for the most part, will always be running Spark code. Our driver can be “driven” from
a number of different languages through Spark’s Language APIs.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6

Spark’s Language APIs
Spark’s language APIs allow you to run Spark code from other languages. For the most part, Spark presents some core “concepts” in every language and these concepts
are translated into Spark code that runs on the cluster of machines. If you use the Structured APIs (Part II of this book), you can expect all languages to have the same
performance characteristics.

N O T E | This is a bit more nuanced than we are letting on at this point but for now, it’s the right amount of information for new users. In Part II of this book, we’ll dive into the details
of how this actually works.

SCALA
Spark is primarily written in Scala, making it Spark’s “default” language. This book will include Scala code examples wherever relevant.

JAVA
Even though Spark is written in Scala, Spark’s authors have been careful to ensure that you can write Spark code in Java. This book will focus primarily on Scala but will
provide Java examples where relevant.

PYTHON
Python supports nearly all constructs that Scala supports. This book will include Python code examples whenever we include Scala code examples and a Python API exists.

SQL
Spark supports ANSI SQL 2003 standard. This makes it easy for analysts and non-programmers to leverage the big data powers of Spark. This book will include SQL
code examples wherever relevant

R
Spark has two commonly used R libraries, one as a part of Spark core (SparkR) and another as an R community driven package (sparklyr). We will cover these two
different integrations in Part VII: Ecosystem.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7

JVM

Python Process

R Process

JVM

Spark Session

T
O

 E
X

E
C

U
T

O
R

S

Each language API will maintain the same core concepts that we described above. There is a SparkSession available
to the user, the SparkSession will be the entrance point to running Spark code. When using Spark from a Python or
R, the user never writes explicit JVM instructions, but instead writes Python and R code that Spark will translate into
code that Spark can then run on the executor JVMs.

Spark’s APIs
While Spark is available from a variety of languages, what Spark makes available in those languages is worth
mentioning. Spark has two fundamental sets of APIs: the low level “Unstructured” APIs and the higher level
Structured APIs. We discuss both in this book but these introductory chapters will focus primarily on the higher
level APIs.

Starting Spark
Thus far we covered the basic concepts of Spark Applications. This has all been conceptual in nature. When we
actually go about writing our Spark Application, we are going to need a way to send user commands and data to the
Spark Application. We do that with a SparkSession.

N O T E | To do this we will start Spark’s local mode, just like we did in the previous chapter. This means running
./bin/spark-shell to access the Scala console to start an interactive session. You can also start Python console
with ./bin/pyspark. This starts an interactive Spark Application. There is also a process for submitting standalone
applications to Spark called spark-submit where you can submit a precompiled application to Spark. We’ll show you
how to do that in the next chapter.

When we start Spark in this interactive mode, we implicitly create a SparkSession which manages the Spark
Application. When we start it through a job submission, we must go about creating it or accessing it.

Here’s a simple illustration of this relationship.



https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8

The SparkSession
As discussed in the beginning of this chapter, we control our Spark Application through a driver process. This driver process manifests itself to the user as an object called
the SparkSession. The SparkSession instance is the way Spark executes user-defined manipulations across the cluster. There is a one to one correspondence between a
SparkSession and a Spark Application. In Scala and Python the variable is available as spark when you start up the console. Let’s go ahead and look at the SparkSession in
both Scala and/or Python.

spark

In Scala, you should see something like:

res0: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@27159a24

In Python you’ll see something like:

<pyspark.sql.session.SparkSession at 0x7efda4c1ccd0>

Let’s now perform the simple task of creating a range of numbers. This range of numbers is just like a named column in a spreadsheet.

%scala

val myRange = spark.range(1000).toDF(“number”)

%python

myRange = spark.range(1000).toDF(“number”)

You just ran your first Spark code! We created a DataFrame with one column containing 1000 rows with values from 0 to 999. This range of number represents a distributed
collection. When run on a cluster, each part of this range of numbers exists on a different executor. This is a Spark DataFrame.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

9

Table or DataFrame partitioned
across servers in data center

Spreadsheet on a
single machine

DataFrames
A DataFrame is the most common Structured API and simply represents a table of data with rows and columns.
The list of columns and the types in those columns the schema. A simple analogy would be a spreadsheet with
named columns. The fundamental difference is that while a spreadsheet sits on one computer in one specific
location, a Spark DataFrame can span thousands of computers. The reason for putting the data on more than one
computer should be intuitive: either the data is too large to fit on one machine or it would simply take too long to
perform that computation on one machine.

The DataFrame concept is not unique to Spark. R and Python both have similar concepts. However, Python/R
DataFrames (with some exceptions) exist on one machine rather than multiple machines. This limits what you can
do with a given DataFrame in python and R to the resources that exist on that specific machine. However, since
Spark has language interfaces for both Python and R, it ’s quite easy to convert to Pandas (Python) DataFrames to
Spark DataFrames and R DataFrames to Spark DataFrames (in R).

N O T E | Spark has several core abstractions: Datasets, DataFrames, SQL Tables, and Resilient Distributed Datasets
(RDDs). These abstractions all represent distributed collections of data however they have different interfaces for
working with that data. The easiest and most efficient are DataFrames, which are available in all languages. We
cover Datasets at the end of Part II and RDDs in Part III of this book. The following concepts apply to all of the core
abstractions.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 0

Partitions
In order to allow every executor to perform work in parallel, Spark breaks up the data into chunks, called partitions. A partition is a collection of rows that sit on one physical
machine in our cluster. A DataFrame’s partitions represent how the data is physically distributed across your cluster of machines during execution. If you have one partition,
Spark will only have a parallelism of one even if you have thousands of executors. If you have many partitions, but only one executor Spark will still only have a parallelism of one
because there is only one computation resource.

An important thing to note, is that with DataFrames, we do not (for the most part) manipulate partitions manually (on an individual basis). We simply specify high-level
transformations of data in the physical partitions and Spark determines how this work will actually execute on the cluster. Lower level APIs do exist (via the Resilient Distributed
Datasets interface) and we cover those in Part III of this book.

Transformations
In Spark, the core data structures are immutable meaning they cannot be changed once created. This might seem like a strange concept at first, if you cannot change it, how are
you supposed to use it? In order to “change” a DataFrame you will have to instruct Spark how you would like to modify the DataFrame you have into the one that you want. These
instructions are called transformations. Let’s perform a simple transformation to find all even numbers in our current DataFrame.

%scala

val divisBy2 = myRange.where(“number % 2 = 0”)

%python

divisBy2 = myRange.where(“number % 2 = 0”)

You will notice that these return no output, that’s because we only specified an abstract transformation and Spark will not act on transformations until we call an action, dis-
cussed shortly. Transformations are the core of how you will be expressing your business logic using Spark. There are two types of transformations, those that specify narrow
dependencies and those that specify wide dependencies.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 1

N A R R O W T R A N S F O R M A T I O N S
1 to 1

W I D E T R A N S F O R M A T I O N S
(S H U F F L E S)

1 to 1

Transformations consisting of narrow dependencies (we’ll call them narrow transformations) are those where each
input partition will contribute to only one output partition. In the preceding code snippet, our where statement
specifies a narrow dependency, where only one partition contributes to at most one output partition.

A wide dependency (or wide transformation) style transformation will have input partitions contributing to many
output partitions. You will often hear this referred to as a shuffle where Spark will exchange partitions across the
cluster. With narrow transformations, Spark will automatically perform an operation called pipelining on narrow
dependencies, this means that if we specify multiple filters on DataFrames they’ll all be performed in-memory.
The same cannot be said for shuffles. When we perform a shuffle, Spark will write the results to disk. You’ll see
lots of talks about shuffle optimization across the web because it ’s an important topic but for now all you need to
understand are that there are two kinds of transformations.

We now see how transformations are simply ways of specifying different series of data manipulation. This leads
us to a topic called lazy evaluation.

Lazy Evaluation
Lazy evaluation means that Spark will wait until the very last moment to execute the graph of computation
instructions. In Spark, instead of modifying the data immediately when we express some operation, we build up
a plan of transformations that we would like to apply to our source data. Spark, by waiting until the last minute to
execute the code, will compile this plan from your raw, DataFrame transformations, to an efficient physical plan that
will run as efficiently as possible across the cluster. This provides immense benefits to the end user because Spark
can optimize the entire data flow from end to end. An example of this is something called “predicate pushdown”
on DataFrames. If we build a large Spark job but specify a filter at the end that only requires us to fetch one row
from our source data, the most efficient way to execute this is to access the single record that we need. Spark will
actually optimize this for us by pushing the filter down automatically.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 2

Actions
Transformations allow us to build up our logical transformation plan. To trigger the
computation, we run an action. An action instructs Spark to compute a result from
a series of transformations. The simplest action is count which gives us the total
number of records in the DataFrame.

divisBy2.count()

We now see a result! There are 500 numbers divisible by two from 0 to 999 (big
surprise!). Now count is not the only action. There are three kinds of actions:

• actions to view data in the console;
• actions to collect data to native objects in the respective language;
• and actions to write to output data sources.

In specifying our action, we started a Spark job that runs our filter transformation
(a narrow transformation), then an aggregation (a wide transformation) that performs
the counts on a per partition basis, then a collect with brings our result to a native
object in the respective language. We can see all of this by inspecting the Spark UI,
a tool included in Spark that allows us to monitor the Spark jobs running on a cluster.

Spark UI
During Spark’s execution of the previous code block, users can monitor the progress
of their job through the Spark UI. The Spark UI is available on port 4040 of the driver
node. If you are running in local mode this will just be the http://localhost:4040.
The Spark UI maintains information on the state of our Spark jobs, environment, and
cluster state. It ’s very useful, especially for tuning and debugging. In this case, we can
see one Spark job with two stages and nine tasks were executed.

This chapter avoids the details of Spark jobs and the Spark UI, we cover the Spark UI in
detail in Part IV: Production Applications. At this point you should understand that a
Spark job represents a set of transformations triggered by an individual action and we
can monitor that from the Spark UI.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 3

An End to End Example
In the previous example, we created a DataFrame of a range of numbers; not exactly groundbreaking big data. In this section we will reinforce everything we learned previously
in this chapter with a worked example and explaining step by step what is happening under the hood. We’ll be using some flight data available here from the United States
Bureau of Transportation statistics.

Inside of the CSV folder linked above, you’ll see that we have a number of files. You will also notice a number of other folders with different file formats that we will discuss in
Part II: Reading and Writing Data. We will focus on the CSV files.

Each file has a number of rows inside of it. Now these files are CSV files, meaning that they’re a semi-structured data format with a row in the file representing a row in our
future DataFrame.

$ head /mnt/defg/flight-data/csv/2015-summary.csv

DEST_COUNTRY_NAME,ORIGIN_COUNTRY_NAME,count

United States,Romania,15

United States,Croatia,1

United States,Ireland,344

Spark includes the ability to read and write from a large number of data sources. In order to read this data in, we will use a DataFrameReader that is associated with our
SparkSession. In doing so, we will specify the file format as well as any options we want to specify. In our case, we want to do something called schema inference, we want Spark
to take the best guess at what the schema of our DataFrame should be. The reason for this is that CSV files are not completely structured data formats. We also want to specify
that the first row is the header in the file, we’ll specify that as an option too.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 4

To get this information Spark will read in a little bit of the data and then attempt to
parse the types in those rows according to the types available in Spark. You’ll see that
this works just fine. We also have the option of strictly specifying a schema when we
read in data (which we recommend in production scenarios).

%scala

val flightData2015 = spark

.read

.option(“inferSchema”, “true”)

.option(“header”, “true”)

.csv(“/mnt/defg/flight-data/csv/2015-summary.csv”)

%python

flightData2015 = spark\

.read\

.option(“inferSchema”, “true”)\

.option(“header”, “true”)\

.csv(“/mnt/defg/flight-data/csv/2015-summary.csv”)

Each of these DataFrames (in Scala and Python) each have a set of columns with an
unspecified number of rows. The reason the number of rows is “unspecified” is because
reading data is a transformation, and is therefore a lazy operation. Spark only peeked
at a couple of rows of data to try to guess what types each column should be.

If we perform the take action on the DataFrame, we will be able to see the same
results that we saw before when we used the command line.

flightData2015.take(3)

Array([United States,Romania,15], [United States,Croatia...

C S V F I L E

Read

D A T A F R A M E

Take (N)

Array(Row(...),Row(...))

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 5

Let’s specify some more transformations! Now we will sort our data according to the
count column which is an integer type.

N O T E | Remember, the sort does not modify the DataFrame. We use the sort is a
transformation that returns a new DataFrame by transforming the previous DataFrame.
Let’s illustrate what’s happening when we call take on that resulting DataFrame.

Nothing happens to the data when we call sort because it ’s just a transformation.
However, we can see that Spark is building up a plan for how it will execute this across
the cluster by looking at the explain plan. We can call explain on any DataFrame
object to see the DataFrame’s lineage (or how Spark will execute this query).

flightData2015.sort(“count”).explain()

Congratulations, you’ve just read your first explain plan! Explain plans are a bit arcane,
but with a bit of practice it becomes second nature. Explain plans can be read from
top to bottom, the top being the end result and the bottom being the source(s) of data.
In our case, just take a look at the first keywords. You will see “sort”, “exchange”, and

“FileScan”. That’s because the sort of our data is actually a wide transformation be-
cause rows will have to be compared with one another. Don’t worry too much about
understanding everything about explain plans at this point, they can just be helpful
tools for debugging and improving your knowledge as you progress with Spark.

C S V F I L E

Read

(Narrow) (Wide)

D A T A F R A M E D A T A F R A M E

Sort

(Wide)

take(3)

Array(...)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 6

Now, just like we did before, we can specify an action in order to kick off this plan.
However before doing that, we’re going to set a configuration. By default, when we
perform a shuffle Spark will output two hundred shuffle partitions. We will set this
value to five in order to reduce the number of the output partitions from the shuffle
from two hundred to five.

spark.conf.set(“spark.sql.shuffle.partitions”, “5”)

flightData2015.sort(“count”).take(2)

... Array([United States,Singapore,1], [Moldova,United States,1])

This operation is illustrated in the following image. You’ll notice that in addition to the
logical transformations, we include the physical partition count as well.

C S V F I L E

Read

(Narrow) (Wide)

D A T A F R A M E D A T A F R A M E

Sort

(Wide)

take(3)

Array(...)

1 P A R T I T I O N 5 P A R T I T I O N S

The logical plan of transformations that we build up defines a lineage for the DataFrame so that at any given point in time Spark knows how to recompute any partition by per-
forming all of the operations it had before on the same input data. This sits at the heart of Spark’s programming model, functional programming where the same inputs always
result in the same outputs when the transformations on that data stay constant.

We do not manipulate the physical data, but rather configure physical execution characteristics through things like the shuffle partitions parameter we set above. We got five
output partitions because that’s what we changed the shuffle partition value to. You can change this to help control the physical execution characteristics of your Spark jobs.
Go ahead and experiment with different values and see the number of partitions yourself. In experimenting with different values, you should see drastically different run times.
Remeber that you can monitor the job progress by navigating to the Spark UI on port 4040 to see the physical and logical execution characteristics of our jobs.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 7

DataFrames and SQL
We worked through a simple example in the previous example, let’s now work through
a more complex example and follow along in both DataFrames and SQL. Spark the
same transformations, regardless of the language, in the exact same way. You can
express your business logic in SQL or DataFrames (either in R, Python, Scala, or
Java) and Spark will compile that logic down to an underlying plan (that we see in the
explain plan) before actually executing your code. Spark SQL allows you as a user to
register any DataFrame as a table or view (a temporary table) and query it using pure
SQL. There is no performance difference between writing SQL queries or writing
DataFrame code, they both “compile” to the same underlying plan that we specify in
DataFrame code.

Any DataFrame can be made into a table or view with one simple method call.

%scala

flightData2015.createOrReplaceTempView(“flight_data_2015”)

%python

flightData2015.createOrReplaceTempView(“flight_data_2015”)

Now we can query our data in SQL. To execute a SQL query, we’ll use the spark.sql
function (remember spark is our SparkSession variable?) that conveniently, returns a
new DataFrame. While this may seem a bit circular in logic – that a SQL query against
a DataFrame returns another DataFrame, it ’s actually quite powerful. As a user, you
can specify transformations in the manner most convenient to you at any given
point in time and not have to trade any efficiency to do so! To understand that this is
happening, let’s take a look at two explain plans.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 8

%scala

val sqlWay = spark.sql(“””

SELECT DEST_COUNTRY_NAME, count(1)

FROM flight_data_2015

GROUP BY DEST_COUNTRY_NAME

“””)

val dataFrameWay = flightData2015

.groupBy(‘DEST_COUNTRY_NAME)

.count()

sqlWay.explain

dataFrameWay.explain

%python

sqlWay = spark.sql(“””

SELECT DEST_COUNTRY_NAME, count(1)

FROM flight_data_2015

GROUP BY DEST_COUNTRY_NAME

“””)

dataFrameWay = flightData2015\

.groupBy(“DEST_COUNTRY_NAME”)\

.count()

sqlWay.explain()

dataFrameWay.explain()

== Physical Plan ==

*HashAggregate(keys=[DEST_COUNTRY_NAME#182], functions=[count(1)])

+- Exchange hashpartitioning(DEST_COUNTRY_NAME#182, 5)

 +- *HashAggregate(keys=[DEST_COUNTRY_NAME#182], functions=[partial_

count(1)])

 +- *FileScan csv [DEST_COUNTRY_NAME#182] ...

== Physical Plan ==

*HashAggregate(keys=[DEST_COUNTRY_NAME#182], functions=[count(1)])

+- Exchange hashpartitioning(DEST_COUNTRY_NAME#182, 5)

 +- *HashAggregate(keys=[DEST_COUNTRY_NAME#182], functions=[partial_

count(1)])

 +- *FileScan csv [DEST_COUNTRY_NAME#182] ...

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

1 9

We can see that these plans compile to the exact same underlying plan!

To reinforce the tools available to us, let’s pull out some interesting statistics from
our data. One thing to understand is that DataFrames (and SQL) in Spark already
have a huge number of manipulations available. There are hundreds of functions
that you can leverage and import to help you resolve your big data problems faster.
We will use the max function, to find out what the maximum number of flights to
and from any given location are. This just scans each value in relevant column the
DataFrame and sees if it ’s bigger than the previous values that have been seen. This is
a transformation, as we are effectively filtering down to one row. Let’s see what that
looks like.

spark.sql(“SELECT max(count) from flight_data_2015”).take(1)

%scala

import org.apache.spark.sql.functions.max

flightData2015.select(max(“count”)).take(1)

%python

from pyspark.sql.functions import max

flightData2015.select(max(“count”)).take(1)

Great, that’s a simple example. Let’s perform something a bit more complicated
and find out the top five destination countries in the data? This is our first multi-
transformation query so we’ll take it step by step. We will start with a fairly
straightforward SQL aggregation.

%scala

val maxSql = spark.sql(“””

SELECT DEST_COUNTRY_NAME, sum(count) as destination_total

FROM flight_data_2015

GROUP BY DEST_COUNTRY_NAME

ORDER BY sum(count) DESC

LIMIT 5

“””)

maxSql.collect()

%python

maxSql = spark.sql(“””

SELECT DEST_COUNTRY_NAME, sum(count) as destination_total

FROM flight_data_2015

GROUP BY DEST_COUNTRY_NAME

ORDER BY sum(count) DESC

LIMIT 5

“””)

maxSql.collect()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 0

Now let’s move to the DataFrame syntax that is semantically similar but slightly
different in implementation and ordering. But, as we mentioned, the underlying plans
for both of them are the same. Let’s execute the queries and see their results as a
sanity check.

%scala

import org.apache.spark.sql.functions.desc

flightData2015

.groupBy(“DEST_COUNTRY_NAME”)

.sum(“count”)

.withColumnRenamed(“sum(count)”, “destination_total”)

.sort(desc(“destination_total”))

.limit(5)

.collect()

%python

from pyspark.sql.functions import desc

flightData2015\

.groupBy(“DEST_COUNTRY_NAME”)\

.sum(“count”)\

.withColumnRenamed(“sum(count)”, “destination_total”)\

.sort(desc(“destination_total”))\

.limit(5)\

.collect()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 1

Now there are 7 steps that take us all the way back to the source data. You can see
this in the explain plan on those DataFrames. Illustrated below are the set of steps
that we perform in “code”. The true execution plan (the one visible in explain) will differ
from what we have below because of optimizations in physical execution, however
the illustration is as good of a starting point as any. This execution plan is a directed
acyclic graph (DAG) of transformations, each resulting in a new immutable DataFrame,
on which we call an action to generate a result.

The first step is to read in the data. We defined the DataFrame previously but, as a
reminder, Spark does not actually read it in until an action is called on that DataFrame
or one derived from the original DataFrame.

The second step is our grouping, technically when we call groupBy we end up with a
RelationalGroupedDataset which is a fancy name for a DataFrame that has a group-
ing specified but needs the user to specify an aggregation before it can be queried
further. We can see this by trying to perform an action on it (which will not work). We
basically specified that we’re going to be grouping by a key (or set of keys) and that
now we’re going to perform an aggregation over each one of those keys.

Therefore the third step is to specify the aggregation. Let’s use the sum aggregation
method. This takes as input a column expression or simply, a column name. The result
of the sum method call is a new dataFrame. You’ll see that it has a new schema but
that it does know the type of each column. It ’s important to reinforce (again!) that no
computation has been performed. This is simply another transformation that we’ve
expressed and Spark is simply able to trace the type information we have supplied.

C S V F I L E D A T A F R A M E D A T A F R A M E

D A T A F R A M ED A T A F R A M E

SortCollect Limit

G R O U P E D D A T A S E T

D A T A F R A M E

Array(...)

Rename
Column

Read GroupBy Sum

O N E O P E R A T I O N

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 2

The fourth step is a simple renaming, we use the withColumnRenamed method that takes two arguments, the original column name and the new column name. Of course, this
doesn’t perform computation — this is just another transformation!

The fifth step sorts the data such that if we were to take results off of the top of the DataFrame, they would be the largest values found in the destination_total column.

You likely noticed that we had to import a function to do this, the desc function. You might also notice that desc does not return a string but a Column. In general, many
DataFrame methods will accept Strings (as column names) or Column types or expressions. Columns and expressions are actually the exact same thing.

Penultimately, we’ll specify a limit. This just specifies that we only want five values. This is just like a filter except that it filters by position instead of by value. It ’s safe to say that
it basically just specifies a DataFrame of a certain size.

The last step is our action! Now we actually begin the process of collecting the results of our DataFrame above and Spark will give us back a list or array in the language that
we’re executing. Now to reinforce all of this, let’s look at the explain plan for the above query.

%scala

flightData2015

.groupBy(“DEST_COUNTRY_NAME”)

.sum(“count”)

.withColumnRenamed(“sum(count)”, “destination_total”)

.sort(desc(“destination_total”))

.limit(5)

.explain()

%python

flightData2015\

.groupBy(“DEST_COUNTRY_NAME”)\

.sum(“count”)\

.withColumnRenamed(“sum(count)”, “destination_total”)\

.sort(desc(“destination_total”))\

.limit(5)\

.explain()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 3

== Physical Plan ==

TakeOrderedAndProject(limit=5, orderBy=[destination_total#16194L DESC], output=[DEST_COUNTRY_NAME#7323,...

+- *HashAggregate(keys=[DEST_COUNTRY_NAME#7323], functions=[sum(count#7325L)])

 +- Exchange hashpartitioning(DEST_COUNTRY_NAME#7323, 5)

 +- *HashAggregate(keys=[DEST_COUNTRY_NAME#7323], functions=[partial

sum(count#7325L)])

 +- InMemoryTableScan [DEST_COUNTRY_NAME#7323, count#7325L]

 +- InMemoryRelation [DEST_COUNTRY_NAME#7323, ORIGIN_COUNTRY_NAME#7324, count#7325L]...

 +- *Scan csv [DEST_COUNTRY_NAME#7578,ORIGIN_COUNTRY_NAME#7579,count#7580L]...

While this explain plan doesn’t match our exact “conceptual plan” all of the pieces are there. You can see the limit statement as well as the orderBy (in the first line). You can also
see how our aggregation happens in two phases, in the partial_sum calls. This is because summing a list of numbers is commutative and Spark can perform the sum, parti-
tion by partition. Of course we can see how we read in the DataFrame as well.

Naturally, we don’t always have to collect the data. We can also write it out to any data source that Spark supports. For instance, let’s say that we wanted to store the information
in a database like PostgreSQL or write them out to another file.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 4

In the previous chapter we introduced Spark’s core concepts, like transformations and actions, in the
context of Spark’s Structured APIs. These simple conceptual building blocks are the foundation of Apache
Spark’s vast ecosystem of tools and libraries. Spark is composed of the simple primitives, the lower level
APIs and the Structured APIs, then a series of “standard libraries” included in Spark.

Developers use these tools for a variety of different tasks, from graph analysis and machine learning to
streaming and integrations with a host of libraries and databases. This chapter will present a whirlwind
tour of much of what Spark has to offer. Each section in this chapter are elaborated upon by other parts of
this book, this chapter is simply here to show you what’s possible.

This chapter will cover:
• �Production applications with spark-submit
• �Datasets: structured and type safe APIs
• �Structured Streaming
• �Machine learning and advanced analytics
• �Spark’s lower level APIs
• �SparkR
• �Spark’s package ecosystem

The entire book covers these topics in depth, the goal of this chapter is simply to provide a whirlwind tour
of Spark. Once you’ve gotten the tour, you’ll be able to jump to many different parts of the book to find
answers to your questions about particular topics. This chapter aims for breadth, instead of depth. Let’s
get started!

CHAPTER 2: �A Tour of Spark’s Toolset

S T R U C T U R E D A P I S

DataFrames SQL Datasets

Structured
streaming

Advanced analytics
ML graph

Deep learning

Ecosystem
+

Packages

L O W L E V E L A P I S

Distributed variables RDDs

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 5

Production Applications
Spark makes it easy to make simple to reason about and simple to evolve big data
programs. Spark also makes it easy to turn in your interactive exploration into
production applications with a tool called spark-submit that is included in the core
of Spark. spark-submit does one thing, it allows you to submit your applications to a
currently managed cluster to run. When you submit this, the application will run until
the application exists or errors. You can do this with all of Spark’s support cluster
managers including Standalone, Mesos, and YARN.

In the process of doing so, you have a number of knobs that you can turn and control
to specify the resources this application has as well, how it should be run, and the
parameters for your specific application.

You can write these production applications in any of Spark’s supported languages
and then submit those applications for execution. The simplest example is one that
you can do on your local machine by running the following command line snippet on
your local machine in the directory into which you downloaded Spark.

./bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master local \

 ./examples/jars/spark-examples_2.11-2.2.0.jar 10

What this will do is calculate the digits of pi to a certain level of estimation. What
we’ve done here is specified that we want to run it on our local machine, specified
which class and which jar we would like to run as well as any command line
arguments to that particular class.

We can do this in Python with the following command line arguments.

./bin/spark-submit \

 --master local \

 ./examples/src/main/python/pi.py 10

By swapping out the path to the file and the cluster configurations, we can write and
run production applications. Now Spark provides a lot more than just DataFrames
that we can run as production applications. The rest of this chapter will walk through
several different APIs that we can leverage to run all sorts of production applications.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 6

Datasets: Type-Safe Structured APIs
The next topic we’ll cover is a type-safe version of Spark’s structured API for Java and
Scala, called Datasets. This API is not available in Python and R, because those are
dynamically typed languages, but it is a powerful tool for writing large applications in
Scala and Java.

Recall that DataFrames, which we saw earlier, are a distributed collection of objects
of type Row, which can hold various types of tabular data. The Dataset API allows
users to assign a Java class to the records inside a DataFrame, and manipulate it
as a collection of typed objects, similar to a Java ArrayList or Scala Seq. The APIs
available on Datasets are type-safe, meaning that you cannot accidentally view the
objects in a Dataset as being of another class than the class you put in initially. This
makes Datasets especially attractive for writing large applications where multiple
software engineers must interact through well-defined interfaces.

The Dataset class is parametrized with the type of object contained inside:
Dataset<T> in Java and Dataset[T] in Scala. As of Spark 2.0, the types T supported
are all classes following the JavaBean pattern in Java, and case classes in Scala.
These types are restricted because Spark needs to be able to automatically analyze
the type T and create an appropriate schema for the tabular data inside your Dataset.

The awesome thing about Datasets is that we can use them only when we need or
want to. For instance, in the follow example I’ll define my own object and manipulate it
via arbitrary map and filter functions. Once we’ve performed our manipulations, Spark
can automatically turn it back into a DataFrame and we can manipulate it further
using the hundreds of functions that Spark includes. This makes it easy to drop down
to lower level, perform type-safe coding when necessary, and move higher up to SQL
for more rapid analysis. We cover this material extensively in the next part of this
book, but here is a small example showing how we can use both type-safe functions
and DataFrame-like SQL expressions to quickly write business logic.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 7

%scala

// A Scala case class (similar to a struct) that will automatically

// be mapped into a structured data table in Spark

case class Flight(DEST_COUNTRY_NAME: String, ORIGIN_COUNTRY_NAME: String, count: BigInt)

val flightsDF = spark.read.parquet(“/mnt/defg/flight-data/parquet/2010-summary.parquet/”)

val flights = flightsDF.as[Flight]

One final advantage is that when you call collect or take on a Dataset, we’re going to collect to objects of the proper type in your Dataset, not DataFrame Rows. This makes it
easy to get type safety and safely perform manipulation in a distributed and a local manner without code changes.

%scala

flights

 .filter(flight_row => flight_row.ORIGIN_COUNTRY_NAME != “Canada”)

 .take(5)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 8

Structured Streaming
Structured Streaming is a high-level API for stream processing that became
production-ready in Spark 2.2. Structured Streaming allows you to take the same
operations that you perform in batch mode using Spark’s structured APIs, and run
them in a streaming fashion. This can reduce latency and allow for incremental
processing. The best thing about Structured Streaming is that it allows you to rapidly
and quickly get value out of streaming systems with virtually no code changes. It
also makes it easy to reason about because you can write your batch job as a way to
prototype it and then you can convert it to streaming job. The way all of this works is
by incrementally processing that data.

Let’s walk through a simple example of how easy it is to get started with Structured
Streaming. For this we will use a retail dataset. One that has specific dates and times
for us to be able to use. We will use the “by-day” set of files where one file represents
one day of data.

We put it in this format to simulate data being produced in a consistent and regular
manner by a different process. Now this is retail data so imagine that these are
being produced by retail stores and sent to a location where they will be read by our
Structured Streaming job.

It ’s worth sharing a sample of the data so you can reference what the data looks like.

InvoiceNo,StockCode,Description,Quantity,InvoiceDate,UnitPrice,CustomerID,Country

536365,85123A,WHITE HANGING HEART T-LIGHT HOLDER,6,2010-12-01 08:26:00,2.55,17850.0,United Kingdom

536365,71053,WHITE METAL LANTERN,6,2010-12-01 08:26:00,3.39,17850.0,United Kingdom

536365,84406B,CREAM CUPID HEARTS COAT HANGER,8,2010-12-01 08:26:00,2.75,17850.0,United Kingdom

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

2 9

Now in order to ground this, let’s first analyze the data as a static dataset and create
a DataFrame to do so. We’ll also create a schema from this static dataset. There are
ways of using schema inference with streaming that we will touch on in the Part V of
this book.

%scala

val staticDataFrame = spark.read.format(“csv”)

.option(“header”, “true”)

.option(“inferSchema”, “true”)

.load(“/mnt/defg/retail-data/by-day/*.csv”)

staticDataFrame.createOrReplaceTempView(“retail_data”)

val staticSchema = staticDataFrame.schema

%python

staticDataFrame = spark.read.format(“csv”)\

.option(“header”, “true”)\

.option(“inferSchema”, “true”)\

.load(“/mnt/defg/retail-data/by-day/*.csv”)

staticDataFrame.createOrReplaceTempView(“retail_data”)

staticSchema = staticDataFrame.schema

Now since we’re working with time series data it ’s worth mentioning how we might
go along grouping and aggregating our data. In this example we’ll take a look at the
largest sale hours where a given customer (identified by CustomerId) makes a large
purchase. For example, let’s add a total cost column and see on what days a customer
spent the most.

The window function will include all data from each day in the aggregation. It ’s
simply a window over the time series column in our data. This is a helpful tool for
manipulating date and timestamps because we can specify our requirements in a
more human form (via intervals) and Spark will group all of them together for us.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 0

%scala

import org.apache.spark.sql.functions.{window, column, desc, col}

staticDataFrame

.selectExpr(

“CustomerId”,

“(UnitPrice * Quantity) as total_cost”,

“InvoiceDate”)

.groupBy(

col(“CustomerId”), window(col(“InvoiceDate”), “1 day”))

.sum(“total_cost”)

.show(5)

%python

from pyspark.sql.functions import window, column, desc, col

staticDataFrame\

.selectExpr(

“CustomerId”,

“(UnitPrice * Quantity) as total_cost” ,

“InvoiceDate”)\

.groupBy(

col(“CustomerId”), window(col(“InvoiceDate”), “1 day”))\

.sum(“total_cost”)\

.show(5)

It ’s worth mentioning that we can also run this as SQL code, just as we saw in the
previous chapter.

Here’s a sample of the output that you’ll see.

+----------+--------------------+------------------+

|CustomerId| window| sum(total_cost)|

+----------+--------------------+------------------+

| 17450.0|[2011-09-20 00:00...| 71601.44|

| null|[2011-11-14 00:00...| 55316.08|

| null|[2011-11-07 00:00...| 42939.17|

| null|[2011-03-29 00:00...| 33521.39999999998|

| null|[2011-12-08 00:00...|31975.590000000007|

+----------+--------------------+------------------+

The null values represent the fact that we don’t have a customerId for some
transactions.

That’s the static DataFrame version, there shouldn’t be any big surprises in there
if you’re familiar with the syntax. Now we’ve seen how that works, let’s take a
look at the streaming code! You’ll notice that very little actually changes about
our code. The biggest change is that we used readStream instead of read,
additionally you’ll notice maxFilesPerTrigger option which simply specifies the
number of files we should read in at once. This is to make our demonstration more

“streaming” and in a production scenario this would be omitted.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 1

Now since you’re likely running this in local mode, it ’s a good practice to set the
number of shuffle partitions to something that’s going to be a better fit for local mode.
This configuration simple specifies the number of partitions that should be created
after a shuffle, by default the value is two hundred but since there aren’t many
executors on this machine it ’s worth reducing this to five. We did this same operation
in the previous chapter, so if you don’t remember why this is important feel free to flip
back to the previous chapter to review.

%scala

val streamingDataFrame = spark.readStream

.schema(staticSchema)

.option(“maxFilesPerTrigger”, 1)

.format(“csv”)

.option(“header”, “true”)

.load(“d/mnt/defg/retail-data/by-day/*.csv”)

%python

streamingDataFrame = spark.readStream\

.schema(staticSchema)\

.option(“maxFilesPerTrigger”, 1)\

.format(“csv”)\

.option(“header”, “true”)\

.load(“/mnt/defg/retail-data/by-day/*.csv”)

Now we can see the DataFrame is streaming.

streamingDataFrame.isStreaming // returns true

Let’s set up the same business logic as the previous DataFrame manipulation, we’ll
perform a summation in the process.

%scala

val purchaseByCustomerPerHour = streamingDataFrame

.selectExpr(

“CustomerId”,

“(UnitPrice * Quantity) as total_cost”,

“InvoiceDate”)

.groupBy(

$”CustomerId”, window($”InvoiceDate”, “1 day”))

.sum(“total_cost”)

%python

purchaseByCustomerPerHour = streamingDataFrame\

.selectExpr(

“CustomerId”,

“(UnitPrice * Quantity) as total_cost” ,

“InvoiceDate”)\

.groupBy(

col(“CustomerId”), window(col(“InvoiceDate”), “1 day”))\

.sum(“total_cost”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 2

This is still a lazy operation, so we will need to call a streaming action to start the execution of this data flow.

N O T E | Before kicking off the stream, we will set a small optimization that will allow this to run better on a single machine. This simply limits the number of output partitions after a
shuffle, a concept we discussed in the last chapter. We discuss this in Part VI of the book.

spark.conf.set(“spark.sql.shuffle.partitions”, “5”)

Streaming actions are a bit different from our conventional static action because we’re going to be populating data somewhere instead of just calling something like count
(which doesn’t make any sense on a stream anyways). The action we will use will out to an in-memory table that we will update after each trigger. In this case, each trigger is
based on an individual file (the read option that we set). Spark will mutate the data in the in-memory table such that we will always have the highest value as specified in our
aggregation above.

%scala

purchaseByCustomerPerHour.writeStream

.format(“memory”) // memory = store in-memory table

.queryName(“customer_purchases”) // counts = name of the in-memory table

.outputMode(“complete”) // complete = all the counts should be in the table

.start()

%python

purchaseByCustomerPerHour.writeStream\

.format(“memory”)\

.queryName(“customer_purchases”)\

.outputMode(“complete”)\

.start()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 3

Once we start the stream, we can run queries against the stream to debug what our
result will look like if we were to write this out to a production sink.

%scala

spark.sql(“””

SELECT *

FROM customer_purchases

ORDER BY `sum(total_cost)` DESC

“””)

.show(5)

%python

spark.sql(“””

SELECT *

FROM customer_purchases

ORDER BY `sum(total_cost)` DESC

“””)\

.show(5)

You’ll notice that as we read in more data - the composition of our table changes! With
each file the results may or may not be changing based on the data. Naturally since
we’re grouping customers we hope to see an increase in the top customer purchase
amounts over time (and do for a period of time!). Another option you can use is to just
simply write the results out to the console.

purchaseByCustomerPerHour.writeStream

.format(“console”)

.queryName(“customer_purchases_2”)

.outputMode(“complete”)

.start()

Neither of these streaming methods should be used in production but they do make
for convenient demonstration of Structured Streaming’s power. Notice how this win-
dow is built on event time as well, not the time at which the data Spark processes the
data. This was one of the shortcoming of Spark Streaming that Structured Streaming
as resolved. We cover Structured Streaming in depth in Part V of this book.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 4

Machine Learning and Advanced Analytics
Another popular aspect of Spark is its ability to perform large scale machine learning
with a built-in library of machine learning algorithms called MLlib. MLlib allows for
preprocessing, munging, training of models, and making predictions at scale on
data. You can even use models trained in MLlib to make predictions in Strucutred
Streaming. Spark provides a sophisticated machine learning API for performing a
variety of machine learning tasks, from classification to regression, clustering to deep
learning. To demonstrate this functionality, we will perform some basic clustering on
our data using a common algorithm called K-Means.

WHAT IS K-MEANS? K-means is a clustering algorithm where “K” centers are
randomly assigned within the data. The points closest to that point are then

“assigned” to a particular cluster. Then a new center for this cluster is computed
(called a centroid). We then label the points closest to that centroid, to the
centroid’s class, and shift the centroid to the new center of that cluster of points.
We repeat this process for a finite set of iterations or until convergence (where
our centroid and clusters stop changing.

Spark includes a number of preprocessing methods out of the box. To demonstrate
these methods, we will start with some raw data, build up transformations before
getting the data into the right format at which point we can actually train our model
and then serve predictions.

staticDataFrame.printSchema()

root

 |-- InvoiceNo: string (nullable = true)

 |-- StockCode: string (nullable = true)

 |-- Description: string (nullable = true)

 |-- Quantity: integer (nullable = true)

 |-- InvoiceDate: timestamp (nullable = true)

 |-- UnitPrice: double (nullable = true)

 |-- CustomerID: double (nullable = true)

 |-- Country: string (nullable = true)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 5

Machine learning algorithms in MLlib require data to be represented as numerical
values. Our current data is represented by a variety of different types including
timestamps, integers, and strings. Therefore we need to transform this data into
some numerical representation. In this instance, we will use several DataFrame
transformations to manipulate our date data.

%scala

import org.apache.spark.sql.functions.date_format

val preppedDataFrame = staticDataFrame

.na.fill(0)

.withColumn(“day_of_week”, date_format($“InvoiceDate”, “EEEE”))

.coalesce(5)

%python

from pyspark.sql.functions import date_format, col

preppedDataFrame = staticDataFrame\

.na.fill(0)\

.withColumn(“day_of_week”, date_format(col(“InvoiceDate”), “EEEE”))\

.coalesce(5)

Now we are also going to need to split our data into training and test sets. In this
instance we are going to do this manually by the data that a certain purchase
occurred however we could also leverage MLlib’s transformation APIs to create a
training and test set via train validation splits or cross validation. These topics are
covered extensively in Part VI of this book.

%scala

val trainDataFrame = preppedDataFrame

.where(“InvoiceDate < ‘2011-07-01’”)

val testDataFrame = preppedDataFrame

.where(“InvoiceDate >= ‘2011-07-01’”)

%python

trainDataFrame = preppedDataFrame\

.where(“InvoiceDate < ‘2011-07-01’”)

testDataFrame = preppedDataFrame\

.where(“InvoiceDate >= ‘2011-07-01’”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 6

Now that we prepared our data, let’s split it into a training and test set. Since this is a
time-series set of data, we will split by an arbitrary date in the dataset. While this may
not be the optimal split for our training and test, for the intents and purposes of this
example it will work just fine. We’ll see that this splits our dataset roughly in half.

trainDataFrame.count()

trainDataFrame.count()

Now these transformations are DataFrame transformations, covered extensively in
part two of this book. Spark’s MLlib also provides a number of transformations that
allow us to automate some of our general transformations. One such transformer is a
StringIndexer.

%scala

import org.apache.spark.ml.feature.StringIndexer

val indexer = new StringIndexer()

.setInputCol(“day_of_week”)

.setOutputCol(“day_of_week_index”)

%python

from pyspark.ml.feature import StringIndexer

indexer = StringIndexer()\

.setInputCol(“day_of_week”)\

.setOutputCol(“day_of_week_index”)

This will turn our days of weeks into corresponding numerical values. For example,
Spark may represent Saturday as 6 and Monday as 1. However with this numbering
scheme, we are implicitly stating that Saturday is greater than Monday (by
pure numerical values). This is obviously incorrect. Therefore we need to use a
OneHotEncoder to encode each of these values as their own column. These boolean
flags state whether that day of week is the relevant day of the week.

%scala

import org.apache.spark.ml.feature.OneHotEncoder

val encoder = new OneHotEncoder()

.setInputCol(“day_of_week_index”)

.setOutputCol(“day_of_week_encoded”)

%python

from pyspark.ml.feature import OneHotEncoder

encoder = OneHotEncoder()\

.setInputCol(“day_of_week_index”)\

.setOutputCol(“day_of_week_encoded”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 7

Each of these will result in a set of columns that we will “assemble” into a vector. All
machine learning algorithms in Spark take as input a Vector type, which must be a
set of numerical values.

%scala

import org.apache.spark.ml.feature.VectorAssembler

val vectorAssembler = new VectorAssembler()

.setInputCols(Array(“UnitPrice”, “Quantity”, “day_of_week_encoded”))

.setOutputCol(“features”)

%python

from pyspark.ml.feature import VectorAssembler

vectorAssembler = VectorAssembler()\

.setInputCols([“UnitPrice”, “Quantity”, “day_of_week_encoded”])\

.setOutputCol(“features”)

We can see that we have 3 key features, the price, the quantity, and the day of week.
Now we’ll set this up into a pipeline so any future data we need to transform can go
through the exact same process.

%scala

import org.apache.spark.ml.Pipeline

val transformationPipeline = new Pipeline()

.setStages(Array(indexer, encoder, vectorAssembler))

%python

from pyspark.ml import Pipeline

transformationPipeline = Pipeline()\

.setStages([indexer, encoder, vectorAssembler])

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 8

Now preparing for training is a two step process. We first need to fit our transformers
to this dataset. We cover this in depth, but basically our StringIndexer needs to
know how many unique values there are to be index. Once those exist, encoding is
easy but Spark must look at all the distinct values in the column to be indexed in order
to store those values later on.

%scala

val fittedPipeline = transformationPipeline.fit(trainDataFrame)

%python

fittedPipeline = transformationPipeline.fit(trainDataFrame)

Once we fit the training data, we are now create to take that fitted pipeline and use it
to transform all of our data in a consistent and repeatable way.

%scala

val transformedTraining = fittedPipeline.transform(trainDataFrame)

%python

transformedTraining = fittedPipeline.transform(trainDataFrame)

At this point, it ’s worth mentioning that we could have included our model training in
our pipeline. We chose not to in order to demonstrate a use case for caching the data.
At this point, we’re going to perform some hyperparameter tuning on the model, since
we do not want to repeat the exact same transformations over and over again, we’ll
leverage an optimization we discuss in Part IV of this book, caching.

This will put a copy of this intermediately transformed dataset into memory, allowing
us to repeatedly access it at much lower cost than running the entire pipeline again.
If you’re curious to see how much of a difference this makes, skip this line and run
the training without caching the data. Then try it after caching, you’ll see the results
are significant.

transformedTraining.cache()

Now we have a training set, now it ’s time to train the model. First we’ll import the
relevant model that we’d like to use and instantiate it.

%scala

import org.apache.spark.ml.clustering.KMeans

val kmeans = new KMeans()

.setK(20)

.setSeed(1L)

%python

from pyspark.ml.clustering import KMeans

kmeans = KMeans()\

.setK(20)\

.setSeed(1L)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

3 9

In Spark, training machine learning models is a two phase process. First we initialize
an untrained model, then we train it. There are always two types for every algorithm
in MLlib’s DataFrame API. They following the naming pattern of Algorithm, for the
untrained version, and AlgorithmModel for the trained version. In our case, this is
KMeans and then KMeansModel.

Predictors in MLlib’s DataFrame API share roughly the same interface that we saw
above with our preprocessing transformers like the StringIndexer. This should
come as no surprise because it makes training an entire pipeline (which includes the
model) simple. In our case we want to do things a bit more step by step, so we chose
to not do this at this point.

%scala

val kmModel = kmeans.fit(transformedTraining)

%python

kmModel = kmeans.fit(transformedTraining)

We can see the resulting cost at this point. Which is quite high, that’s likely because
we didn’t necessary scale our data or transform.

kmModel.computeCost(transformedTraining)

%scala

val transformedTest = fittedPipeline.transform(testDataFrame)

%python

transformedTest = fittedPipeline.transform(testDataFrame)

kmModel.computeCost(transformedTest)

Naturally we could continue to improve this model, layering more preprocessing as
well as performing hyperparameter tuning to ensure that we’re getting a good model.
We leave that discussion for Part VI of this book.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 0

Lower Level APIs
Spark includes a number of lower level primitives to allow for arbitrary Java and
Python object manipulation via Resilient Distributed Datasets (RDDs). Virtually
everything in Spark is built on top of RDDs. As we will cover in the next chapter,
DataFrame operations are built on top of RDDs and compile down to these lower level
tools for convenient and extremely efficient distributed execution. There are some
things that you might use RDDs for, especially when you’re reading or manipulating
raw data, but for the most part you should stick to the Structured APIs. RDDs are
lower level that DataFrames because they reveal physical execution characteristics
(like partitions) to end users.

One thing you might use RDDs for is to parallelize raw data you have stored in memory
on the driver machine. For instance let’s parallelize some simple numbers and create
a DataFrame after we do so. We can then convert that to a DataFrame to use it with
other DataFrames.

%scala

spark.sparkContext.parallelize(Seq(1, 2, 3)).toDF()

%python

from pyspark.sql import Row

spark.sparkContext.parallelize([Row(1), Row(2), Row(3)]).toDF()

RDDs are available in Scala as well as Python. However, they’re not equivalent. This
differs from the DataFrame API (where the execution characteristics are the same)
due to some underlying implementation details. We cover lower level APIs, including
RDDs in Part IV of this book. As end users, you shouldn’t need to use RDDs much in
order to perform many tasks unless you’re maintaining older Spark code. There are
basically no instances in modern Spark where you should be using RDDs instead
of the structured APIs beyond manipulating some very raw unprocessed and
unstructured data.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 1

SparkR
SparkR is a tool for running R on Spark. It follows the same principles as all of Spark’s
other language bindings. To use SparkR, we simply import it into our environment
and run our code. It ’s all very similar to the Python API except that it follows R’s
syntax instead of Python. For the most part, almost everything available in Python is
available in SparkR.

%r

library(SparkR)

sparkDF <- read.df(“/mnt/defg/flight-data/csv/2015-summary.csv”,

 source = “csv”, header=”true”, inferSchema = “true”)

take(sparkDF, 5)

%r

collect(orderBy(sparkDF, “count”), 20)

R users can also leverage other R libraries like the pipe operator in magrittr in order to
make Spark transformations a bit more R like. This can make it easy to use with other
libraries like ggplot for more sophisticated plotting.

%r

library(magrittr)

sparkDF %>%

orderBy(desc(sparkDF$count)) %>%

groupBy(“ORIGIN_COUNTRY_NAME”) %>%

count() %>%

limit(10) %>%

collect()

We cover SparkR more in the Ecosystem Part of this book along with short discussion
of PySpark specifics (PySpark is covered heavily through this book), and the new
sparklyr package.

Spark’s Ecosystem and Packages
One of the best parts about Spark is the ecosystem of packages and tools that the
community has created. Some of these tools even move into the core Spark project
as they mature and become widely used. The list of packages is rather large at over
300 at the time of this writing and more are added frequently. The largest index of
Spark Packages can be found at spark-packages.org, where any user can publish to
this package repository. There are also various other projects and packages that can
be found through the web, for example on GitHub.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://spark-packages.org/

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 2

In the previous chapter, we covered basic DataFrame concepts and abstractions. This chapter will cover building
expressions, which are the bread and butter of Spark’s structured operations.

This chapter will cover working with a variety of different kinds of data including:
• Booleans
• Numbers
• Strings
• Dates and Timestamps
• Handling Null
• Complex Types
• User Defined Functions

CHAPTER 3: �Working with Different
Types of Data

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 3

Where to Look for APIs
Before we get started, it ’s worth explaining where you as a user should start looking
for transformations. Spark is a growing project and any book (including this one) is a
snapshot in time. Therefore it is our priority to educate you as a user as to where you
should look for functions in order to transform your data. The key places to look for
transformations are:

DataFrame (Dataset) Methods. This is actually a bit of a trick because a DataFrame
is just a Dataset of Row types so you’ll actually end up looking at the Dataset
methods. These are available here.

Dataset sub-modules like DataFrameStatFunctions and
DataFrameNaFunctions have more methods that solve specific sets of problems.
For example, DataFrameStatFunctions holds a variety of statistically related
functions while DataFrameNaFunctions refers to functions that are relevant when
working with null data.

• �Null Functions available here.
• �Stat Functions vailable here.

Column Methods. These were introduced for the most part in the previous chapter
are hold a variety of general column related methods like alias or contains. These
are available here.

org.apache.spark.sql.functions contains a variety of functions for a variety of
different data types. Often you’ll see the entire package imported because they are
used so often. These are available here.

Now this may feel a bit overwhelming but have no fear, the majority of these functions
are ones that you will find in SQL and analytics systems. All of these tools exist to
achieve one purpose, to transform rows of data in one format or structure to another.
This may create more rows or reduce the number of rows available. To get started,
let’s read in the DataFrame that we’ll be using for this analysis.

%scala

val df = spark.read.format(“csv”)

.option(“header”, “true”)

.option(“inferSchema”, “true”)

.load(“/mnt/defg/retail-data/by-day/2010-12-01.csv”)

df.printSchema()

df.createOrReplaceTempView(“dfTable”)

%python

df = spark.read.format(“csv”)\

.option(“header”, “true”)\

.option(“inferSchema”, “true”)\

.load(“/mnt/defg/retail-data/by-day/2010-12-01.csv”)

df.printSchema()

df.createOrReplaceTempView(“dfTable”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameNaFunctions
https://spark.apache.org/docs/latest/api/scala/index html#org.apache.spark.sql.Column
https://spark.apache.org/docs/ latest/api/scala/index.html#org.apache.spark.sql.functions$

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 4

Here’s the result of the schema and a small sample of the data.

root

|-- InvoiceNo: string (nullable = true)

|-- StockCode: string (nullable = true)

|-- Description: string (nullable = true)

|-- Quantity: integer (nullable = true)

|-- InvoiceDate: timestamp (nullable = true)

|-- UnitPrice: double (nullable = true)

|-- CustomerID: double (nullable = true)

|-- Country: string (nullable = true)

+---------+---------+--------------------+--------+-------------------+---------+----------+--------------+

|InvoiceNo|StockCode| Description|Quantity| InvoiceDate|UnitPrice|CustomerID| Country|

+---------+---------+--------------------+--------+-------------------+---------+----------+--------------+

| 536365| 85123A|WHITE HANGING HEA...| 6|2010-12-01 08:26:00| 2.55| 17850.0|United Kingdom|

| 536365| 71053| WHITE METAL LANTERN| 6|2010-12-01 08:26:00| 3.39| 17850.0|United Kingdom|

| 536365| 84406B|CREAM CUPID HEART...| 8|2010-12-01 08:26:00| 2.75| 17850.0|United Kingdom|

| 536365| 84029G|KNITTED UNION FLA...| 6|2010-12-01 08:26:00| 3.39| 17850.0|United Kingdom|

...

| 536367| 21754|HOME BUILDING BLO...| 3|2010-12-01 08:34:00| 5.95| 13047.0|United Kingdom|

| 536367| 21755|LOVE BUILDING BLO...| 3|2010-12-01 08:34:00| 5.95| 13047.0|United Kingdom|

| 536367| 21777|RECIPE BOX WITH M...| 4|2010-12-01 08:34:00| 7.95| 13047.0|United Kingdom|

+---------+---------+--------------------+--------+-------------------+---------+----------+--------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 5

Converting to Spark Types
One thing you’ll see us do throughout this chapter is convert native types into Spark
types. We do this with our first function, the lit function. The lit with take a type in
a native language and convert it into the Spark representation. Here’s how we can
convert a couple of different kinds of Scala and Python values into their respective
Spark types.

%scala

import org.apache.spark.sql.functions.lit

df.select(lit(5), lit(“five”), lit(5.0))

%python

from pyspark.sql.functions import lit

df.select(lit(5), lit(“five”), lit(5.0))

There’s no equivalent function necessary in SQL, so we can just use the values directly.

%sql

SELECT 5, “five”, 5.0

Working with Booleans
Booleans are foundational when it comes to data analysis because they are the
foundation for all filtering. Boolean statements consist of four elements: and, or, true
and false. We use these simple structures to build logical statements that evaluate
to either true or false. These statements are often used as conditional requirements
where a row of data must either pass this test (evaluate to true) or else it will be
filtered out.

Let’s use our retail dataset to explore working with booleans. We can specify equality
as well as less or greater than.

%scala

import org.apache.spark.sql.functions.col

df.where(col(“InvoiceNo”).equalTo(536365))

.select(“InvoiceNo”, “Description”)

.show(5, false)

N O T E | Scala has some particular semantics around the use of == and ===. In Spark, if
you wish to filter by equality you should use === (equal) or =!= (not equal). You can also
use not function and the equalTo method.

%scala

import org.apache.spark.sql.functions.col

df.where(col(“InvoiceNo”) === 536365)

.select(“InvoiceNo”, “Description”)

.show(5, false)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 6

Python keeps a more conventional notation.

%python

from pyspark.sql.functions import col

df.where(col(“InvoiceNo”) != 536365)\

.select(“InvoiceNo”, “Description”)\

.show(5, False)

+---------+-----------------------------+

|InvoiceNo|Description |

+---------+-----------------------------+

|536366 |HAND WARMER UNION JACK |

...

|536367 |POPPY’S PLAYHOUSE KITCHEN |

+---------+-----------------------------+

Another option, and probably the cleanest, is to specify the predicate as an
expression in a string. This is valid for Python or Scala. Note that this also gives us
access to another way of expressing “does not equal”.

df.where(“InvoiceNo = 536365”)

.show(5, false)

df.where(“InvoiceNo <> 536365”)

.show(5, false)

Now we mentioned that we can specify boolean expressions with multiple parts
when we use and or or. In Spark you should always chain together and filters as a
sequential filter.

The reason for this is that even if boolean expressions are expressed serially (one after
the other) Spark will flatten all of these filters into one statement and perform the filter
at the same time, creating the and statement for us. While you may specify your
statements explicitly using and if you like, it’s often easier to reason about and to read if
you specify them serially. or statements need to be specified in the same statement.

%scala

val priceFilter = col(“UnitPrice”) > 600

val descripFilter = col(“Description”).contains(“POSTAGE”

df.where(col(“StockCode”).isin(“DOT”))

.where(priceFilter.or(descripFilter))

.show()

%python

from pyspark.sql.functions import instr

priceFilter = col(“UnitPrice”) > 600

descripFilter = instr(df.Description, “POSTAGE”) >= 1

df.where(df.StockCode.isin(“DOT”))\

.where(priceFilter | descripFilter)\

.show()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 7

%sql

SELECT

*

FROM dfTable

WHERE

StockCode in (“DOT”) AND

(UnitPrice > 600 OR

instr(Description, “POSTAGE”) >= 1)

+---------+---------+--------------+--------+-------------------+---------+----------+--------------+

|InvoiceNo|StockCode| Description|Quantity| InvoiceDate|UnitPrice|CustomerID| Country|

+---------+---------+--------------+--------+-------------------+---------+----------+--------------+

| 536544| DOT|DOTCOM POSTAGE| 1|2010-12-01 14:32:00| 569.77| null|United Kingdom|

| 536592| DOT|DOTCOM POSTAGE| 1|2010-12-01 17:06:00| 607.49| null|United Kingdom|

+---------+---------+--------------+--------+-------------------+---------+----------+--------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 8

Boolean expressions are not just reserved to filters. In order to filter a DataFrame we
can also just specify a boolean column.

%scala

val DOTCodeFilter = col(“StockCode”) === “DOT”

val priceFilter = col(“UnitPrice”) > 600

val descripFilter = col(“Description”).contains(“POSTAGE”)

df.withColumn(“isExpensive”,

DOTCodeFilter.and(priceFilter.or(descripFilter)))

.where(“isExpensive”)

.select(“unitPrice”, “isExpensive”)

.show(5)

%python

from pyspark.sql.functions import instr

DOTCodeFilter = col(“StockCode”) == “DOT”

priceFilter = col(“UnitPrice”) > 600

descripFilter = instr(col(“Description”), “POSTAGE”) >= 1

df.withColumn(“isExpensive”,

DOTCodeFilter & (priceFilter | descripFilter))\

.where(“isExpensive”)\

.select(“unitPrice”, “isExpensive”)\

.show(5)

%sql

SELECT

UnitPrice,

(StockCode = ‘DOT’ AND

(UnitPrice > 600 OR

instr(Description, “POSTAGE”) >= 1)) as isExpensive

FROM dfTable

WHERE

(StockCode = ‘DOT’ AND

(UnitPrice > 600 OR

instr(Description, “POSTAGE”) >= 1))

Notice how we did not have to specify our filter as an expression and how we could
use a column name without any extra work.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

4 9

If you’re coming from a SQL background all of these statements should seem quite
familiar. Indeed, all of them can be expressed as a where clause. In fact, it ’s often
easier to just express filters as SQL statements than using the programmatic
DataFrame interface and Spark SQL allows us to do this without paying any
performance penalty. For example, the two following statements are equivalent.

%scala

import org.apache.spark.sql.functions.{expr, not, col}

df.withColumn(“isExpensive”, not(col(“UnitPrice”).leq(250)))

.filter(“isExpensive”)

.select(“Description”, “UnitPrice”)

.show(5)

df.withColumn(“isExpensive”, expr(“NOT UnitPrice <= 250”))

.filter(“isExpensive”)

.select(“Description”, “UnitPrice”)

.show(5)

Here’s our state definition.

%python

from pyspark.sql.functions import expr

df.withColumn(“isExpensive”, expr(“NOT UnitPrice <= 250”))\

.where(“isExpensive”)\

.select(“Description”, “UnitPrice”)

.show(5)

W A R N I N G | One “gotcha” that can come up is working with null data when creating
boolean expressions. If there is a null in your data, you’re going to have to treat things a
bit differently. Here’s how we can ensure that we perform a null safe equivalence test.

df.where(col(“Description”).eqNullSafe(“hello”)).show()

While not currently available (Spark 2.2), IS [NOT] DISTINCT FROM will be coming in
Spark 2.3 to do the same thing in SQL.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 0

Converting to Spark Types
When working with big data, the second most common task you will do after filtering
things is counting things. For the most part, we simply need to express our computation
and that should be valid assuming we’re working with numerical data types.

To fabricate a contrived example, let’s imagine that we found out that we misrecorded
the quantity in our retail dataset and true quantity is equal to (the current quantity *
the unit price) ˆ 2 + 5. This will introduce our first numerical function as well the pow
function that raises a column to the expressed power.

%scala

import org.apache.spark.sql.functions.{expr, pow}

val fabricatedQuantity = pow(col(“Quantity”) * col(“UnitPrice”), 2) + 5

df.select(

expr(“CustomerId”),

fabricatedQuantity.alias(“realQuantity”))

.show(2)

%python

from pyspark.sql.functions import expr, pow

fabricatedQuantity = pow(col(“Quantity”) * col(“UnitPrice”), 2) + 5

df.select(

expr(“CustomerId”),

fabricatedQuantity.alias(“realQuantity”))\

.show(2)

+----------+------------------+

|CustomerId| realQuantity|

+----------+------------------+

| 17850.0|239.08999999999997|

| 17850.0| 418.7156|

+----------+------------------+

You’ll notice that we were able to multiply our columns together because they were
both numerical. Naturally we can add and subtract as necessary as well. In fact we
can do all of this a SQL expression as well.

%scala

df.selectExpr(

“CustomerId”,

“(POWER((Quantity * UnitPrice), 2.0) + 5) as realQuantity”)

.show(2)

%python

df.selectExpr(

“CustomerId”,

“(POWER((Quantity * UnitPrice), 2.0) + 5) as realQuantity”)

.show(2)

%sql

SELECT

customerId,

(POWER((Quantity * UnitPrice), 2.0) + 5) as realQuantity

FROM dfTable

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 1

Another common numerical task is rounding. Now if you’d like to just round to a whole
number, often times you can cast it to an integer and that will work just fine. However
Spark also has more detailed functions for performing this explicitly and to a certain
level of precision. In this case we will round to one decimal place.

%scala

import org.apache.spark.sql.functions.{round, bround}

df.select(

round(col(“UnitPrice”), 1).alias(“rounded”),

col(“UnitPrice”))

.show(5)

By default, the round function will round up if you’re exactly in between two numbers.
You can round down with the bround.

%scala

import org.apache.spark.sql.functions.lit

df.select(

round(lit(“2.5”)),

bround(lit(“2.5”)))

.show(2)

%python

from pyspark.sql.functions import lit, round, bround

df.select(

round(lit(“2.5”)),

bround(lit(“2.5”)))\

.show(2)

%sql

SELECT

round(2.5),

bround(2.5)

+-------------+--------------+

|round(2.5, 0)|bround(2.5, 0)|

+-------------+--------------+

| 3.0| 2.0|

| 3.0| 2.0|

+-------------+--------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 2

Another numerical task is to compute the correlation of two columns. For example,
we can see the Pearson Correlation Coefficient for two columns to see if cheaper
things are typically bought in greater quantities. We can do this through a function as
well as through the DataFrame statistic methods.

%scala

import org.apache.spark.sql.functions.{corr}

df.stat.corr(“Quantity”, “UnitPrice”)

df.select(corr(“Quantity”, “UnitPrice”)).show()

%python

from pyspark.sql.functions import corr

df.stat.corr(“Quantity”, “UnitPrice”)

df.select(corr(“Quantity”, “UnitPrice”)).show()

%sql

SELECT

corr(Quantity, UnitPrice)

FROM

dfTable

+-------------------------+

|corr(Quantity, UnitPrice)|

+-------------------------+

| -0.04112314436835551|

+-------------------------+

A common task is to compute summary statistics for a column or set of columns.
We can use the describe method to achieve exactly this. This will take all numeric
columns and calculate the count, mean, standard deviation, min, and max. This should
be used primarily for viewing in the console as the schema may change in the future.

%scala

df.describe().show()

%python

df.describe().show()

+-------+------------------+------------------+------------------+

|Summary| Quantity| UnitPrice| CustomerID|

+-------+------------------+------------------+------------------+

| count| 3108| 3108| 1968|

| mean| 8.627413127413128| 4.151946589446603|15661.388719512195|

| stddev|26.371821677029203|15.638659854603892|1854.4496996893627|

| min| -24| 0.0| 12431.0|

| max| 600| 607.49| 18229.0|

+-------+------------------+------------------+------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 3

If you need these exact numbers you can also perform this as an aggregation yourself
by importing the functions and applying them to the columns that you need.

%scala

import org.apache.spark.sql.functions.{count, mean, stddev_pop, min, max}

%python

from pyspark.sql.functions import count, mean, stddev_pop, min, max

There are a number of statistical functions available in the StatFunctions Package.
These are DataFrame methods that allow you to calculate a variety of different things.
For instance, we can calculate either exact or approximate quantiles of our data using
the approxQuantile method.

%scala

val colName = “UnitPrice”

val quantileProbs = Array(0.5)

val relError = 0.05

df.stat.approxQuantile(“UnitPrice”, quantileProbs, relError) // 2.51

%python

colName = “UnitPrice”

quantileProbs = [0.5]

relError = 0.05

df.stat.approxQuantile(“UnitPrice”, quantileProbs, relError) # 2.51

We can also use this to see a cross tabulation or frequent item pairs (Be careful, this
output will be large and is omitted for this reason).

%scala

df.stat.crosstab(“StockCode”, “Quantity”).show()

%python

df.stat.crosstab(“StockCode”, “Quantity”).show()

%scala

df.stat.freqItems(Seq(“StockCode”, “Quantity”)).show()

%python

df.stat.freqItems([“StockCode”, “Quantity”]).show()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 4

As a last note, we can also add a unique id to each row using the monotonically_
increasing_id function. This function will generate a unique value for each row,
starting with 0.

%scala

import org.apache.spark.sql.functions.monotonically_increasing_id

df.select(monotonically_increasing_id()).show(2)

%python

from pyspark.sql.functions import monotonically_increasing_id

df.select(monotonically_increasing_id()).show(2)

There are functions added every release and so by the time you’re reading this, it may
already not include everything. For instance, there are some random data generation
tools (rand() randn()) that allow you to randomly generate data however there are
potential determinism issues when doing so. Discussions of these challenges can
be found on the Spark mailing list. There are also a number of more advanced tasks
like bloom filtering and sketching algorithms available in the stat functions that we
mentioned (and linked to) at the beginning of this chapter. Be sure to search the API
documentation for more information and functions.

Working with Strings
String manipulation shows up in nearly every data flow and its worth explaining
what you can do with strings. You may be manipulating log files performing regular
expression extraction or substitution, or checking for simple string existence, or
simply making all strings upper or lower case.

We will start with the last task as it ’s one of the simplest. The initcap function will
capitalize every word in a given string when that word is separated from another via
whitespace.

%scala

import org.apache.spark.sql.functions.{initcap}

df.select(initcap(col(“Description”))).show(2, false)

%python

from pyspark.sql.functions import initcap

df.select(initcap(col(“Description”))).show()

%sql

SELECT

initcap(Description)

FROM

dfTable

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 5

+----------------------------------+

|initcap(Description) |

+----------------------------------+

|White Hanging Heart T-light Holder|

|White Metal Lantern |

+----------------------------------+

As mentioned above, we can also quite simply lower case and upper case strings
as well.

%scala

import org.apache.spark.sql.functions.{lower, upper}

df.select(

col(“Description”),

lower(col(“Description”)),

upper(lower(col(“Description”))))

.show(2)

%python

from pyspark.sql.functions import lower, upper

df.select(

col(“Description”),

lower(col(“Description”)),

upper(lower(col(“Description”))))\

.show(2)

%sql

SELECT

Description,

lower(Description),

Upper(lower(Description))

FROM

dfTable

+--------------------+--------------------+-------------------------+

| Description| lower(Description)|upper(lower(Description))|

+--------------------+--------------------+-------------------------+

|WHITE HANGING HEA...|white hanging hea...| WHITE HANGING HEA...|

| WHITE METAL LANTERN| white metal lantern| WHITE METAL LANTERN|

+--------------------+--------------------+-------------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 6

Another trivial task is adding or removing whitespace around a string. We can do this
with lpad, ltrim, rpad and rtrim, trim.

%scala

import org.apache.spark.sql.functions.{lit, ltrim, rtrim, rpad, lpad,

trim}

df.select(

ltrim(lit(“ HELLO “)).as(“ltrim”),

rtrim(lit(“ HELLO “)).as(“rtrim”),

trim(lit(“ HELLO “)).as(“trim”),

lpad(lit(“HELLO”), 3, “ “).as(“lp”),

rpad(lit(“HELLO”), 10, “ “).as(“rp”))

.show(2)

%python

from pyspark.sql.functions import lit, ltrim, rtrim, rpad, lpad, trim

df.select(

ltrim(lit(“ HELLO “)).alias(“ltrim”),

rtrim(lit(“ HELLO “)).alias(“rtrim”),

trim(lit(“ HELLO “)).alias(“trim”),

lpad(lit(“HELLO”), 3, “ “).alias(“lp”),

rpad(lit(“HELLO”), 10, “ “).alias(“rp”))\

.show(2)

%sql

SELECT

ltrim(‘ HELLLOOOO ‘),

rtrim(‘ HELLLOOOO ‘),

trim(‘ HELLLOOOO ‘),

lpad(‘HELLOOOO ‘, 3, ‘ ‘),

rpad(‘HELLOOOO ‘, 10, ‘ ‘)

FROM

dfTable

+---------+---------+-----+---+----------+

| ltrim| rtrim| trim| lp| rp|

+---------+---------+-----+---+----------+

|HELLO | HELLO|HELLO| HE|HELLO |

|HELLO | HELLO|HELLO| HE|HELLO |

+---------+---------+-----+---+----------+

You’ll notice that if lpad or rpad takes a number less than the length of the string, it
will always remove values from the right side of the string.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 7

Regular Expressions
Probably one of the most frequently performed tasks is searching for the existence of
one string on another or replacing all mentions of a string with another value. This is
often done with a tool called “Regular Expressions” that exist in many programming
languages. Regular expressions give the user an ability to specify a set of rules to use
to either extract values from a string or replace them with some other values.

Spark leverages the complete power of Java Regular Expressions. The Java RegEx
syntax departs slightly from other programming languages so it is worth reviewing
before putting anything into production. There are two key functions in Spark that
you’ll need to perform regular expression tasks: regexp_extract and regexp_
replace. These functions extract values and replace values respectively.

Let’s explore how to use the regexp_replace function to replace substitute colors
names in our description column.

%scala

import org.apache.spark.sql.functions.regexp_replace

val simpleColors = Seq(“black”, “white”, “red”, “green”, “blue”)

val regexString = simpleColors.map(_.toUpperCase).mkString(“|”)

// the | signifies `OR` in regular expression syntax

df.select(

regexp_replace(col(“Description”), regexString, “COLOR”)

.alias(“color_cleaned”),

col(“Description”))

.show(2)

%python

from pyspark.sql.functions import regexp_replace

regex_string = “BLACK|WHITE|RED|GREEN|BLUE”

df.select(

regexp_replace(col(“Description”), regex_string, “COLOR”)

.alias(“color_cleaned”),

col(“Description”))\

.show(2)

%sql

SELECT

regexp_replace(Description, ‘BLACK|WHITE|RED|GREEN|BLUE’, ‘COLOR’)

as color_cleaned,

Description

FROM

dfTable

+--------------------+--------------------+

| color_cleaned| Description|

+--------------------+--------------------+

|COLOR HANGING HEA...|WHITE HANGING HEA...|

| COLOR METAL LANTERN| WHITE METAL LANTERN|

+--------------------+--------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 8

Another task may be to replace given characters with other characters. Building
this as regular expression could be tedious so Spark also provides the translate
function to replace these values. This is done at the character level and will replace all
instances of a character with the indexed character in the replacement string.

%scala

import org.apache.spark.sql.functions.translate

df.select(

translate(col(“Description”), “LEET”, “1337”),

col(“Description”))

.show(2)

%python

from pyspark.sql.functions import translate

df.select(

translate(col(“Description”), “LEET”, “1337”),

col(“Description”))\

.show(2)

%sql

SELECT

translate(Description, ‘LEET’, ‘1337’),

Description

FROM

dfTable

+----------------------------------+--------------------+

|translate(Description, LEET, 1337)| Description|

+----------------------------------+--------------------+

| WHI73 HANGING H3A...|WHITE HANGING HEA...|

| WHI73 M37A1 1AN73RN| WHITE METAL LANTERN|

+----------------------------------+--------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

5 9

We can also perform something similar like pulling out the first mentioned color.

%scala

import org.apache.spark.sql.functions.regexp_extract

val regexString = simpleColors

.map(_.toUpperCase)

.mkString(“(“, “|”, “)”)

// the | signifies OR in regular expression syntax

df.select(

regexp_extract(col(“Description”), regexString, 1)

.alias(“color_cleaned”),

col(“Description”))

.show(2)

%python

from pyspark.sql.functions import regexp_extract

extract_str = “(BLACK|WHITE|RED|GREEN|BLUE)”

df.select(

regexp_extract(col(“Description”), extract_str, 1)

.alias(“color_cleaned”),

col(“Description”))\

.show(2)

%sql

SELECT

regexp_extract(Description, ‘(BLACK|WHITE|RED|GREEN|BLUE)’, 1),

Description

FROM

dfTable

+-------------+--------------------+

|color_cleaned| Description|

+-------------+--------------------+

| WHITE|WHITE HANGING HEA...|

| WHITE| WHITE METAL LANTERN|

+-------------+--------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 0

Sometimes, rather than extracting values, we simply want to check for existence.
We can do this with the contains method on each column. This will return a boolean
declaring whether it can find that string in the column’s string.

%scala

val containsBlack = col(“Description”).contains(“BLACK”)

val containsWhite = col(“DESCRIPTION”).contains(“WHITE”)

df.withColumn(“hasSimpleColor”, containsBlack.or(containsWhite))

.filter(“hasSimpleColor”)

.select(“Description”)

.show(3, false)

In Python we can use the instr function.

%python

from pyspark.sql.functions import instr

containsBlack = instr(col(“Description”), “BLACK”) >= 1

containsWhite = instr(col(“Description”), “WHITE”) >= 1

df.withColumn(“hasSimpleColor”, containsBlack | containsWhite)\

.filter(“hasSimpleColor”)\

.select(“Description”)\

.show(3, False)

%sql

SELECT

Description

FROM

dfTable

WHERE

instr(Description, ‘BLACK’) >= 1 OR

instr(Description, ‘WHITE’) >= 1

+----------------------------------+

|Description |

+----------------------------------+

|WHITE HANGING HEART T-LIGHT HOLDER|

|WHITE METAL LANTERN |

|RED WOOLLY HOTTIE WHITE HEART. |

+----------------------------------+

only showing top 3 rows

This is trivial with just two values but gets much more complicated with more values.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 1

Let’s work through this in a more dynamic way and take advantage of Spark’s ability
to accept a dynamic number of arguments. When we convert a list of values into a set
of arguments and pass them into a function, we use a language feature called varargs.
This feature allows us to effectively unravel an array of arbitrary length and pass it
as arguments to a function. This, coupled with select allows us to create arbitrary
numbers of columns dynamically.

%scala

val simpleColors = Seq(“black”, “white”, “red”, “green”, “blue”)

val selectedColumns = simpleColors.map(color => {

col(“Description”)

.contains(color.toUpperCase)

.alias(s”is_$color”)

}):+expr(“*”) // could also append this value

df

.select(selectedColumns:_*)

.where(col(“is_white”).or(col(“is_red”)))

.select(“Description”)

.show(3, false)

+----------------------------------+

|Description |

+----------------------------------+

|WHITE HANGING HEART T-LIGHT HOLDER|

|WHITE METAL LANTERN |

|RED WOOLLY HOTTIE WHITE HEART. |

+----------------------------------+

We can also do this quite easily in Python. In this case we’re going to use a different
function locate that returns the integer location (1 based location). We then convert
that to a boolean before using it as a the same basic feature.

%python

from pyspark.sql.functions import expr, locate

simpleColors = [“black”, “white”, “red”, “green”, “blue”]

def color_locator(column, color_string):

“””This function creates a column declaring whether or not a given

pySpark column contains the UPPERCASED color. Returns a new column

type that can be used in a select statement.“””

return locate(color_string.upper(), column)\

.cast(“boolean”)\

.alias(“is_” + c)

selectedColumns = [color_locator(df.Description, c) for c in simple-

Colors]

selectedColumns.append(expr(“*”)) # has to a be Column type

df\

.select(*selectedColumns)\

.where(expr(“is_white OR is_red”))\

.select(“Description”)\

.show(3, False)

This simple feature is often one that can help you programmatically generate columns
or boolean filters in a way that is simple to reason about and extend. We could extend
this to calculating the smallest common denominator for a given input value or
whether or not a number is a prime.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 2

Working with Dates and Timestamps
Dates and times are a constant challenge in programming languages and databases.
It ’s always necessary to keep track of timezones and make sure that formats are
correct and valid. Spark does its best to keep things simple by focusing explicitly on
two kinds of time related information. There are dates, which focus exclusively on
calendar dates, and timestamps that include both date and time information. Spark,
as we saw with our current dataset, will make a best effort to correctly identify column
types, including dates and timestamps when we enable inferSchema. We can see
that this worked quite well with our current dataset because it was able to identify
and read our date format without us having to provide some specification for it.

Now as we hinted at above, working with dates and timestamps closely relates to
working with strings because we often store our timestamps or dates as strings and
convert them into date types at runtime. This is less common when working with
databases and structured data but much more common when we are working with
text and csv files. We will experiment with that shortly.

W A R N I N G | There are a lot of caveats, unfortunately, when working with dates and
timestamps, especially when it comes to timezone handling. In 2.1 and before, Spark
will parse according to the machine’s timezone if timezones are not explicitly specified
in the value that you are parsing. You can set a session local timezone if necessary by
setting spark.conf.sessionLocalTimeZone in the SQL configurations. This should
be set according to the Java TimeZone format.

df.printSchema()

root

|-- InvoiceNo: string (nullable = true)

|-- StockCode: string (nullable = true)

|-- Description: string (nullable = true)

|-- Quantity: integer (nullable = true)

|-- InvoiceDate: timestamp (nullable = true)

|-- UnitPrice: double (nullable = true)

|-- CustomerID: double (nullable = true)

|-- Country: string (nullable = true)

While Spark will do this on a best effort basis, sometimes there will be no getting
around working with strangely formatted dates and times. Now the key to reasoning
about the transformations that you are going to need to apply is to ensure that you
know exactly what type and format you have at each given step of the way. Another
common gotcha is that Spark’s TimestampType only supports second-level precision,
this means that if you’re going to be working with milliseconds or microseconds,
you’re going to have to work around this problem by potentially operating on them as
longs. Any more precision when coercing to a TimestampType will be removed.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 3

Spark can be a bit particular about what format you have at any given point in time.
It ’s important to be explicit when parsing or converting to make sure there are
no issues in doing so. At the end of the day, Spark is working with Java dates and
timestamps and therefore conforms to those standards. Let’s start with the basics
and get the current date and the current timestamps.

%scala

import org.apache.spark.sql.functions.{current_date, current_timestamp}

val dateDF = spark.range(10)

.withColumn(“today”, current_date())

.withColumn(“now”, current_timestamp())

dateDF.createOrReplaceTempView(“dateTable”)

%python

from pyspark.sql.functions import current_date, current_timestamp

dateDF = spark.range(10)\

.withColumn(“today”, current_date())\

.withColumn(“now”, current_timestamp())

dateDF.createOrReplaceTempView(“dateTable”)

dateDF.printSchema()

root

|-- id: long (nullable = false)

|-- today: date (nullable = false)

|-- now: timestamp (nullable = false)

Now that we have a simple DataFrame to work with, let’s add and subtract 5 days
from today. These functions take a column and then the number of days to either add
or subtract as the arguments.

%scala

import org.apache.spark.sql.functions.{date_add, date_sub}

dateDF

.select(

date_sub(col(“today”), 5),

date_add(col(“today”), 5))

.show(1)

%python

from pyspark.sql.functions import date_add, date_sub

dateDF\

.select(

date_sub(col(“today”), 5),

date_add(col(“today”), 5))\

.show(1)

%sql

SELECT

date_sub(today, 5),

date_add(today, 5)

FROM

dateTable

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 4

+------------------+------------------+

|date_sub(today, 5)|date_add(today, 5)|

+------------------+------------------+

| 2017-06-12| 2017-06-22|

+------------------+------------------+

Another common task is to take a look at the difference between two dates. We can
do this with the datediff function that will return the number of days in between
two dates. Most often we just care about the days although since months can have a
strange number of days there also exists a function months_between that gives you
the number of months between two dates.

%scala

import org.apache.spark.sql.functions.{datediff, months_between, to_date}

dateDF

.withColumn(“week_ago”, date_sub(col(“today”), 7))

.select(datediff(col(“week_ago”), col(“today”)))

.show(1)

dateDF

.select(

to_date(lit(“2016-01-01”)).alias(“start”),

to_date(lit(“2017-05-22”)).alias(“end”))

.select(months_between(col(“start”), col(“end”)))

.show(1)

%python

from pyspark.sql.functions import datediff, months_between, to_date

dateDF\

.withColumn(“week_ago”, date_sub(col(“today”), 7))\

.select(datediff(col(“week_ago”), col(“today”)))\

.show(1)

dateDF\

.select(

to_date(lit(“2016-01-01”)).alias(“start”),

to_date(lit(“2017-05-22”)).alias(“end”))\

.select(months_between(col(“start”), col(“end”)))\

.show(1)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 5

%sql

SELECT

to_date(‘2016-01-01’),

months_between(‘2016-01-01’, ‘2017-01-01’),

datediff(‘2016-01-01’, ‘2017-01-01’)

FROM

dateTable

+-------------------------+

|datediff(week_ago, today)|

+-------------------------+

| -7|

+-------------------------+

+-------------------------+

|months_between(start,end)|

+-------------------------+

| -16.67741935|

+-------------------------+

You’ll notice that I introduced a new function above, the to_date function. The
to_date function allows you to convert a string to a date, optionally with a specified
format. We specify our format in the Java simpleDateFormat which will be important
to reference if you use this function.

%scala

import org.apache.spark.sql.functions.{to_date, lit}

spark.range(5).withColumn(“date”, lit(“2017-01-01”))

.select(to_date(col(“date”)))

.show(1)

%python

from pyspark.sql.functions import to_date, lit

spark.range(5).withColumn(“date”, lit(“2017-01-01”))\

.select(to_date(col(“date”)))\

.show(1)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 6

W A R N I N G | Spark will not throw an error if it cannot parse the date, it’ll just return null.
This can be a bit tricky in larger pipelines because you may be expecting your data in
one format and getting it in another. To illustrate, let’s take a look at the date format that
has switched from year-month-day to year-day-month. Spark will fail to parse this date
and silently return null instead.

dateDF.select(to_date(lit(“2016-20-12”)),to_date(lit(“2017-12-11”))).

show(1)

+-------------------+-------------------+

|to_date(2016-20-12)|to_date(2017-12-11)|

+-------------------+-------------------+

| null| 2017-12-11|

+-------------------+-------------------+

We find this to be an especially tricky situation for bugs because some dates may
match the correct format while others do not. See how above, the second date is
show to be December 11th instead of the correct day, November 12th? Spark doesn’t
throw an error because it cannot know whether the days are mixed up or if that
specific row is incorrect.

Let’s fix this pipeline, step by step and come up with a robust way to avoid these
issues entirely. The first step is to remember that we need to specify our date format
according to the Java SimpleDateFormat standard as documented here.

We will use two functions to fix this, to_date and to_timestamp. The former
optionally expects a format while the latter requires one.

import org.apache.spark.sql.functions.{unix_timestamp, from_unixtime}

val dateFormat = “yyyy-dd-MM”

val cleanDateDF = spark.range(1)

.select(

to_date(lit(“2017-12-11”), dateFormat)

.alias(“date”),

to_date(lit(“2017-20-12”), dateFormat)

.alias(“date2”))

cleanDateDF.createOrReplaceTempView(“dateTable2”)

%python

from pyspark.sql.functions import unix_timestamp, from_unixtime

dateFormat = “yyyy-dd-MM”

cleanDateDF = spark.range(1)\

.select(

to_date(unix_timestamp(lit(“2017-12-11”), dateFormat).cast(“time-

stamp”))\

.alias(“date”),

to_date(unix_timestamp(lit(“2017-20-12”), dateFormat).cast(“time-

stamp”))\

.alias(“date2”))

cleanDateDF.createOrReplaceTempView(“dateTable2”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https: //docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 7

+----------+----------+

| date| date2|

+----------+----------+

|2017-11-12|2017-12-20|

+----------+----------+

%sql

SELECT

to_date(date, ‘yyyy-dd-MM’),

 to_date(date2, ‘yyyy-dd-MM’),

 to_date(date)

FROM

dateTable2

Now let’s use an example of to_timestamp which always requires a format to be
specified.

%scala

import org.apache.spark.sql.functions.to_timestamp

cleanDateDF

.select(

to_timestamp(col(“date”), dateFormat))

.show()

%python

from pyspark.sql.functions import to_timestamp

cleanDateDF\

.select(

to_timestamp(col(“date”), dateFormat))\

.show()

+----------------------------------+

|to_timestamp(`date`, ‘yyyy-dd-MM’)|

+----------------------------------+

| 2017-11-12 00:00:00|

+----------------------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 8

We can check all of this from SQL.

%sql

SELECT

to_timestamp(date, ‘yyyy-dd-MM’),

to_timestamp(date2, ‘yyyy-dd-MM’)

FROM

dateTable2

Casting between dates and timestamps is simple in all languages, in SQL we would do
it in the following way.

%sql

SELECT cast(to_date(“2017-01-01”, “yyyy-dd-MM”) as timestamp)

Once we’ve gotten our date or timestamp into the correct format and type, comparing
between them is actually quite easy. We just need to be sure to either use a date/
timestamp type or specify our string according to the right format of yyyy-MM-dd if
we’re comparing a date.

cleanDateDF.filter(col(“date2”) > lit(“2017-12-12”)).show()

One minor point is that we can also set this as a string which Spark parses to a literal.

cleanDateDF.filter(col(“date2”) > “’2017-12-12’”).show()

W A R N I N G | Implicit type casting is an easy way to shoot yourself in the foot,
especially when dealing with null values or dates in different timezones or formats. We
recommend that you parse them explicitly instead of relying on implicit changes.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

6 9

Working with Nulls in Data
As a best practice, you should always use nulls to represent missing or empty data
in your DataFrames. Spark can optimize working with null values more than it can
if you use empty strings or other values. The primary way of interacting with null
values, at DataFrame scale, is to use the .na subpackage on a DataFrame. There are
also several functions for performing operations and explicitly specifying how Spark
should handle null values. See the previous chapter where we discuss ordering and
the section on boolean expressions previously in this chapter.

W A R N I N G | Nulls are a challenge part of all programming and Spark is no exception.
We recommend being explicit is always better than being implicit when handling null
values. For instance, in this part of the book we saw how we can define columns as
having null types. However, this comes with a catch. When we declare a column as not
having a null time, that is not actually enforced. To reiterate, when you define a schema
where all columns are declared to not have null values - Spark will not enforce that and
will happily let null values into that column. The nullable signal is somply to help Spark
SQL optimize for handling that column. If you have null values in columns that should not
have null values, you can get an incorrect result or see strange exceptions that can be
hard to debug.

There are two things you can do with null values. You can explicitly drop nulls or you
can fill them with a value (globally or on a per column basis). Let’s experiment with
each of these now.

Coalesce
Spark includes a function to allow you to select the first null value from a set of
columns by using the coalesce function. In this case there are no null values, so it
simply returns the first column.

%scala

import org.apache.spark.sql.functions.coalesce

df.select(coalesce(col(“Description”), col(“CustomerId”))).show()

%python

from pyspark.sql.functions import coalesce

df.select(coalesce(col(“Description”), col(“CustomerId”))).show()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 0

NullIf, Ifnull, nvl, and nvl2
There are several SQL functions that allow us to achieve similar things. ifnull allows
you to select the second value if the first is null, and defaults to the first. nullif
allows you to return null if the two values are equal or else return the second if they
are not. nvl will return the second value if the first is null, but defaults to the first.
Lastly, nvl2 will return the second value is the first is not null, otherwise it will return
last specified value (else_value below).

%sql

SELECT

ifnull(null, ‘return_value’),

nullif(‘value’, ‘value’),

nvl(null, ‘return_value’),

nvl2(‘not_null’, ‘return_value’, “else_value”)

FROM dfTable

LIMIT 1

+------------+----+------------+------------+

| a| b| c| d|

+------------+----+------------+------------+

|return_value|null|return_value|return_value|

+------------+----+------------+------------+

Naturally, we can use these in select expressions on DataFrames as well.

Drop
The simplest is probably drop, which simply removes rows that contain nulls. The
default is to drop any row where any value is null.

df.na.drop()

df.na.drop(“any”)

In SQL we have to do this column by column.

%sql

SELECT

*

FROM

dfTable

WHERE

Description IS NOT NULL

Passing in “any” as an argument will drop a row if any of the values are null. Passing in
“all” will only drop the row if all values are null or NaN for that row.

df.na.drop(“all”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 1

We can also apply this to certain sets of columns by passing in an array of columns.

%scala

df.na.drop(“all”, Seq(“StockCode”, “InvoiceNo”))

%python

df.na.drop(“all”, subset=[“StockCode”, “InvoiceNo”])

Fill
Fill allows you to fill one or more columns with a set of values. This can be done by
specifying a map, specific value and a set of columns.

For example to fill all null values in String columns I might specify.

df.na.fill(“All Null values become this string”)

We could do the same for integer columns with df.na.fill(5:Integer) or for
Doubles df.na.fill(5:Double). In order to specify columns, we just pass in an array
of column names like we did above.

%scala

df.na.fill(5, Seq(“StockCode”, “InvoiceNo”))

%python

df.na.fill(“all”, subset=[“StockCode”, “InvoiceNo”])

We can also do with with a Scala Map where the key is the column name and the value
is the value we would like to use to fill null values.

%scala

val fillColValues = Map(

“StockCode” -> 5,

“Description” -> “No Value”

)

df.na.fill(fillColValues)

%python

fill_cols_vals = {

“StockCode”: 5,

“Description” : “No Value”

}

df.na.fill(fill_cols_vals)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 2

Replace
In addition to replacing null values like we did with drop and fill, there are more
flexible options that we can use with more than just null values. Probably the most
common use case is to replace all values in a certain column according to their current
value. The only requirement is that this value be the same type as the original value.

%scala

df.na.replace(“Description”, Map(“” -> “UNKNOWN”))

%python

df.na.replace([“”], [“UNKNOWN”], “Description”)

Ordering
As discussed in the previous chapter, you can use asc_nulls_first, desc_nulls_
first, asc_nulls_last, or desc_nulls_last to specify where we would like our
null values to appear in an ordered DataFrame.

Working with Complex Types
Complex types can help you organize and structure your data in ways that make more
sense for the problem you are hoping to solve. There are three kinds of complex types,
structs, arrays, and maps.

Structs
You can think of structs as DataFrames within DataFrames. A worked example will
illustrate this more clearly. We can create a struct by wrapping a set of columns in
parenthesis in a query.

df.selectExpr(“(Description, InvoiceNo) as complex”, “*”)

df.selectExpr(“struct(Description, InvoiceNo) as complex”, “*”)

%scala

import org.apache.spark.sql.functions.struct

val complexDF = df

.select(struct(“Description”, “InvoiceNo”).alias(“complex”))

complexDF.createOrReplaceTempView(“complexDF”)

%python

from pyspark.sql.functions import struct

complexDF = df\

.select(struct(“Description”, “InvoiceNo”).alias(“complex”))

complexDF.createOrReplaceTempView(“complexDF”)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 3

We now have a DataFrame with a column complex. We can query it just as we might
another DataFrame, the only difference is that we use a dot syntax to do so or the
column method getField.

complexDF.select(“complex.Description”)

complexDF.select(col(“complex”).getField(“Description”)

We can also query all values in the struct with *. This brings up all the columns to the
top level DataFrame.

complexDF.select(“complex.*”)

%sql

SELECT

complex.*

FROM

complexDF

Arrays
To define arrays, let’s work through a use case. With our current data, our object is to
take every single word in our Description column and convert that into a row in our
DataFrame.

The first task is to turn our Description column into a complex type, an array.

split
We do this with the split function and specify the delimiter.

%scala

import org.apache.spark.sql.functions.split

df.select(split(col(“Description”), “ “)).show(2)

%python

from pyspark.sql.functions import split

df.select(split(col(“Description”), “ “)).show(2)

%sql

SELECT

split(Description, ‘ ‘)

FROM

dfTable

+---------------------+

|split(Description,)|

+---------------------+

| [WHITE, HANGING, ...|

| [WHITE, METAL, LA...|

+---------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 4

This is quite powerful because Spark will allow us to manipulate this complex type as
another column. We can also query the values of the array with a python-like syntax.

%scala

df.select(split(col(“Description”), “ “).alias(“array_col”))

.selectExpr(“array_col[0]”)

.show(2)

%python

df.select(split(col(“Description”), “ “).alias(“array_col”))\

.selectExpr(“array_col[0]”)\

.show(2)

%sql

SELECT

split(Description, ‘ ‘)[0]

FROM

dfTable

+------------+

|array_col[0]|

+------------+

| WHITE|

| WHITE|

+------------+

Array Length
We can query the array’s length by querying for its size.

%scala

import org.apache.spark.sql.functions.size

df.select(size(split(col(“Description”), “ “))).show(2) // shows 5 and 3

%python

from pyspark.sql.functions import size

df.select(size(split(col(“Description”), “ “))).show(2) # shows 5 and 3

Array Contains
For instance we can see if this array contains a value.

%scala

import org.apache.spark.sql.functions.array_contains

df.select(array_contains(split(col(“Description”), “ “), “WHITE”)).

show(2)

%python

from pyspark.sql.functions import array_contains

df.select(array_contains(split(col(“Description”), “ “), “WHITE”)).

show(2)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 5

“Hello World” , “other col”

S P L I T E X P L O D E

[“Hello” , “World”] , “other col” “Hello” , “other col”

 “World” , “other col”

This is quite powerful because Spark will allow us to manipulate this complex type as
another column. We can also query the values of the array with a python-like syntax.

%sql

SELECT

array_contains(split(Description, ‘ ‘), ‘WHITE’)

FROM

dfTable

LIMIT 2

+--+

|array_contains(split(Description,), WHITE)|

+--+

| true|

| true|

+--+

However this does not solve our current problem. In order to convert a complex type
into a set of rows (one per value in our array), we use the explode function.

Explode
The explode function takes a column that consists of arrays and creates one row (with
the rest of the values duplicated) per value in the array. The following figure illustrates
the process.

%scala

import org.apache.spark.sql.functions.{split, explode}

df.withColumn(“splitted”, split(col(“Description”), “ “))

.withColumn(“exploded”, explode(col(“splitted”)))

.select(“Description”, “InvoiceNo”, “exploded”)

.show(2)

%python

from pyspark.sql.functions import split, explode

df.withColumn(“splitted”, split(col(“Description”), “ “))\

.withColumn(“exploded”, explode(col(“splitted”)))\

.select(“Description”, “InvoiceNo”, “exploded”)\

.show(2)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 6

%sql

SELECT

Description,

InvoiceNo,

exploded

FROM

(SELECT

*,

split(Description, “ “) as splitted

FROM

dfTable)

LATERAL VIEW explode(splitted) as exploded

LIMIT 2

+--------------------+---------+--------+

| Description|InvoiceNo|exploded|

+--------------------+---------+--------+

|WHITE HANGING HEA...| 536365| WHITE|

|WHITE HANGING HEA...| 536365| HANGING|

+--------------------+---------+--------+

Maps
Maps are used less frequently but are still important to cover. We create them with
the map function and key value pairs of columns. Then we can select them just like
we might select from an array.

%scala

import org.apache.spark.sql.functions.map

df.select(map(col(“Description”), col(“InvoiceNo”)).alias(“complex_

map”))

.selectExpr(“complex_map[‘Description’]”)

.show(2)

%python

from pyspark.sql.functions import create_map

df.select(create_map(col(“Description”), col(“InvoiceNo”)).alias(“com-

plex_map”))\

.show(2)

%sql

SELECT

map(Description, InvoiceNo) as complex_map

FROM

dfTable

WHERE

Description IS NOT NULL

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 7

+--------------------+

| complex_map|

+--------------------+

|Map(WHITE HANGING...|

|Map(WHITE METAL L...|

+--------------------+

We can query them by using the proper key. A missing key returns null.

%scala

df.select(map(col(“Description”), col(“InvoiceNo”)).alias(“complex_map”))

.selectExpr(“complex_map[‘WHITE METAL LANTERN’]”)

.show(2)

%python

df.select(map(col(“Description”), col(“InvoiceNo”)).alias(“complex_map”))\

.selectExpr(“complex_map[‘WHITE METAL LANTERN’]”)\

.show(2)

+--------------------------------+

|complex_map[WHITE METAL LANTERN]|

+--------------------------------+

| null|

| 536365|

+--------------------------------+

We can also explode map types which will turn them into columns.

%scala

df.select(map(col(“Description”), col(“InvoiceNo”)).alias(“complex_

map”))

.selectExpr(“explode(complex_map)”)

.show(2)

%python

df.select(map(col(“Description”), col(“InvoiceNo”)).alias(“complex_

map”))\

.selectExpr(“explode(complex_map)”)\

.show(2)

+--------------------+------+

| key| value|

+--------------------+------+

|WHITE HANGING HEA...|536365|

| WHITE METAL LANTERN|536365|

+--------------------+------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 8

Working with JSON
Spark has some unique support for working with JSON data. You can operate directly
on strings of JSON in Spark and parse from JSON or extract JSON objects. Let’s start
by creating a JSON column.

%scala

val jsonDF = spark.range(1)

.selectExpr(“””

‘{“myJSONKey” : {“myJSONValue” : [1, 2, 3]}}’ as jsonString

“””)

%python

jsonDF = spark.range(1)\

.selectExpr(“””

‘{“myJSONKey” : {“myJSONValue” : [1, 2, 3]}}’ as jsonString

“””)

We can use the get_json_object to inline query a JSON object, be it a dictionary or
array. We can use json_tuple if this object has only one level of nesting.

%scala

import org.apache.spark.sql.functions.{get_json_object, json_tuple}

jsonDF.select(

get_json_object(col(“jsonString”), “$.myJSONKey.myJSONValue[1]”),

json_tuple(col(“jsonString”), “myJSONKey”))

.show(2)

%python

from pyspark.sql.functions import get_json_object, json_tuple

jsonDF.select(

get_json_object(col(“jsonString”), “$.myJSONKey.myJSONValue[1]”),

json_tuple(col(“jsonString”), “myJSONKey”))\

.show(2)

The equivalent in SQL would be.

jsonDF.selectExpr(“json_tuple(jsonString, ‘$.myJSONKey.myJSONValue[1]’)

as res”)

+------+--------------------+

|column| c0|

+------+--------------------+

| 2|{“myJSONValue”:[1...|

+------+--------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

7 9

We can also turn a StructType into a JSON string using the to_json function.

%scala

import org.apache.spark.sql.functions.to_json

df.selectExpr(“(InvoiceNo, Description) as myStruct”)

.select(to_json(col(“myStruct”)))

%python

from pyspark.sql.functions import to_json

df.selectExpr(“(InvoiceNo, Description) as myStruct”)\

.select(to_json(col(“myStruct”)))

This function also accepts a dictionary (map) of parameters that are the same as the
JSON data source. We can use the from_json function to parse this (or other json)
back in. This naturally requires us to specify a schema and optionally we can specify
a Map of options as well.

%scala

import org.apache.spark.sql.functions.from_json

import org.apache.spark.sql.types._

val parseSchema = new StructType(Array(

new StructField(“InvoiceNo”,StringType,true),

new StructField(“Description”,StringType,true)))

df.selectExpr(“(InvoiceNo, Description) as myStruct”)

.select(to_json(col(“myStruct”)).alias(“newJSON”))

.select(from_json(col(“newJSON”), parseSchema), col(“newJSON”))

%python

from pyspark.sql.functions import from_json

from pyspark.sql.types import *

parseSchema = StructType((

StructField(“InvoiceNo”,StringType(),True),

StructField(“Description”,StringType(),True)))

df.selectExpr(“(InvoiceNo, Description) as myStruct”)\

.select(to_json(col(“myStruct”)).alias(“newJSON”))\

.select(from_json(col(“newJSON”), parseSchema), col(“newJSON”))\

+----------------------+--------------------+

|jsontostructs(newJSON)| newJSON|

+----------------------+--------------------+

| [536365,WHITE HAN...|{“InvoiceNo”:”536...|

| [536365,WHITE MET...|{“InvoiceNo”:”536...|

+----------------------+--------------------+

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 0

User-Defined Functions
One of the most powerful things that you can do in Spark is define your own functions.
These allow you to write your own custom transformations using Python or Scala and
even leverage external libraries like numpy in doing so. These functions are called
user defined functions or UDFs and can take and return one or more columns
as input. Spark UDFs are incredibly powerful because they can be written in several
different programming languages and do not have to be written in an esoteric format
or DSL. They’re just functions that operate on the data, record by record. By default,
these functions are registered as temporary functions to be used in that specific
SparkSession or Context.

While we can write our functions in Scala, Python, or Java, there are performance
considerations that you should be aware of. To illustrate this, we’re going to walk
through exactly what happens when you create UDF, pass that into Spark, and then
execute code using that UDF.

The first step is the actual function, we’ll just a take a simple one for this example.
We’ll write a power3 function that takes a number and raises it to a power of three.

%scala

val udfExampleDF = spark.range(5).toDF(“num”)

def power3(number:Double):Double = {

number * number * number

}

power3(2.0)

%python

udfExampleDF = spark.range(5).toDF(“num”)

def power3(double_value):

return double_value ** 3

power3(2.0)

In this trivial example, we can see that our functions work as expected. We are able to
provide an individual input and produce the expected result (with this simple test case).
Thus far our expectations for the input are high, it must be a specific type and cannot
be a null value. See the section in this chapter titled “Working with Nulls in Data”.

Now that we’ve created these functions and tested them, we need to register them
with Spark so that we can used them on all of our worker machines. Spark will
serialize the function on the driver and transfer it over the network to all executor
processes. This happens regardless of language.

Once we go to use the function, there are essentially two different things that occur. If
the function is written in Scala or Java then we can use that function within the JVM.
This means there will be little performance penalty aside from the fact that we can’t
take advantage of code generation capabilities that Spark has for built-in functions.
There can be performance issues if you create or use a lot of objects which we will
cover in the optimization section.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 1

S P A R K S E S S I O N

E X E C U T O R P R O C E S S E S W O R K E R P Y T H O N P R O C E S S

S C A L A U D F

P Y T H O N U D F

1. Function serialized
 and sent to workers

3. Python returns
 answer

2. Spark starts Python process
 and sends data

Driver

If the function is written in Python, something quite
different happens. Spark will start up a python process
on the worker, serialize all of the data to a format that
python can understand (remember it was in the JVM
before), execute the function row by row on that data in
the python process, before finally returning the results
of the row operations to the JVM and Spark.

W A R N I N G | Starting up this Python process is
expensive but the real cost is in serializing the data to
Python. This is costly for two reasons, it is an expensive
computation but also once the data enters Python,
Spark cannot manage the memory of the worker. This
means that you could potentially cause a worker to fail
if it becomes resource constrained (because both the
JVM and python are competing for memory on the same
machine). We recommend that you write your UDFs in
Scala - the small amount of time it should take you to
write the function in Scala will always yield significant
speed ups and on top of that, you can still use the
function from Python!

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 2

Now that we have an understanding of the process, let’s work through our example.
First we need to register the function to be available as a DataFrame function.

%scala

import org.apache.spark.sql.functions.udf

val power3udf = udf(power3(_:Double):Double)

Now we can use that just like any other DataFrame function.

%scala

udfExampleDF.select(power3udf(col(“num”))).show()

The same applies to Python, we first register it.

%python

from pyspark.sql.functions import udf

power3udf = udf(power3)

Then we can use it in our DataFrame code.

%python

from pyspark.sql.functions import col

udfExampleDF.select(power3udf(col(“num”))).show()

+-----------+

|power3(num)|

+-----------+

| 0|

| 1|

+-----------+

Now as of now, we can only use this as DataFrame function. That is to say, we can’t
use it within a string expression, only on an expression. However, we can also register
this UDF as a Spark SQL function. This is valuable because it makes it simple to use
this function inside of SQL as well as across languages.

Let’s register the function in Scala.

%scala

spark.udf.register(“power3”, power3(_:Double):Double)

udfExampleDF.selectExpr(“power3(num)”).show(2)

Now because this function is registered with Spark SQL, and we’ve learned that any
Spark SQL function or epxression is valid to use as an expression when working with
DataFrames, we can turn around and use the UDF that we wrote in Scala, in Python.
However rather than using it as a DataFrame function we use it as a SQL expression.

%python

udfExampleDF.selectExpr(“power3(num)”).show(2)

registered in Scala

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 3

We can also register our Python function to be available as SQL function and use that
in any language as well.

One thing we can also do to make sure that our functions are working correctly is specify
a return type. As we saw in the beginning of this section, Spark manages its own
type information that does not align exactly with Python’s types. Therefore it ’s a best
practice to define the return type for your function when you define it. It is important
to note that specifying the return type is not necessary but is a best practice.

If you specify the type that doesn’t align with the actual type returned by the function —
Spark will not error but rather just return null to designate a failure. You can see this
if you were to switch the return type in the below function to be a DoubleType.

%python

from pyspark.sql.types import IntegerType, DoubleType

spark.udf.register(“power3py”, power3, DoubleType())

%python

udfExampleDF.selectExpr(“power3py(num)”).show(2)

registered via Python

This is because the range above creates Integers. When Integers are operated on in
Python, Python won’t convert them into floats (the corresponding type to Spark’s
Double type), therefore we see null. We can remedy this by ensuring our Python
function returns a float instead of an Integer and the function will behave correctly.

Naturally we can use either of these from SQL too once we register them.

%sql

SELECT

power3py(12), -- doesn’t work because of return type

power3(12)

When you want to optionally return a value from a UDF, you should return None in
python and an Option type in Scala.

Hive UDFs
As a last note, users can also leverage UDF/UDAF creation via a Hive syntax. To allow
for this, first you must enable Hive support when they create their SparkSession (via
SparkSession.builder().enableHiveSupport()) then you can register UDFs in
SQL. This is only supported with pre-compiled Scala and Java packages so you’ll have
to specify them as a dependency.

%sql

CREATE TEMPORARY FUNCTION myFunc AS

‘com.organization.hive.udf.FunctionName’

Additionally, you can register this as a permanent function in the Hive Metastore by
removing TEMPORARY.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 4

Delta Lake is an open-source storage layer that brings data reliability to data lakes. Delta Lake provides ACID
transactions, can handle metadata at scale, and can unify streaming and batch data processing. Delta Lake runs on
top of your existing data lake and is fully compatible with Apache Spark APIs.

How to start using Delta Lake
The Delta Lake package is available as with the--packages option. In our example, we will also demonstrate
the ability to VACUUM files and execute Delta Lake SQL commands within Apache Spark. As this is a short
demonstration, we will also enable the following configurations:

• �spark.databricks.delta.retentionDurationCheck.enabled=false to allow us to vacuum files shorter
than the default retention duration of 7 days. Note, this is only required for the SQL command VACUUM.

• �spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension to enable Delta Lake SQL commands
within Apache Spark; this is not required for Python or Scala API calls.

Using Spark Packages

./bin/pyspark --packages io.delta:delta-core_2.11:0.4.0 --conf “spark.databricks.

delta.retentionDurationCheck.enabled=false” --conf “spark.sql.extensions=io.delta.sql.

DeltaSparkSessionExtension”

CHAPTER 3: Delta Lake Quickstart

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 5

Loading and saving our Delta Lake data
This scenario will be using the On-time flight performance or Departure Delays
dataset generated from the RITA BTS Flight Departure Statistics; some examples of
this data in action include the 2014 Flight Departure Performance via d3.js Crossfilter
and On-Time Flight Performance with GraphFrames for Apache Spark™. This dataset
can be downloaded locally from this github location. Within pyspark, start by reading
the dataset.

Location variables

tripdelaysFilePath = “/root/data/departuredelays.csv”

pathToEventsTable = “/root/deltalake/departureDelays.delta”

Read flight delay data

departureDelays = spark.read \

.option(“header”, “true”) \

.option(“inferSchema”, “true”) \

.csv(tripdelaysFilePath)

Next, let’s save our departureDelays dataset to a Delta Lake table. By saving this table
to Delta Lake storage, we will be able to take advantage of its features including ACID
transactions, unified batch and streaming, and time travel.

Save flight delay data into Delta Lake format

departureDelays \

.write \

.format(“delta”) \

.mode(“overwrite”) \

.save(“departureDelays.delta”)

N O T E | This approach is similar to how you would normally save Parquet data;
instead of specifying format(“parquet”), you will now specify format(“delta”). If
you were to take a look at the underlying file system, you will notice four files created
for the departureDelays Delta Lake table.

/departureDelays.delta$ ls -l

.

..

_delta_log

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

N O T E | The _delta_log is the folder that contains the Delta Lake transaction log.
For more information, refer to Diving Into Delta Lake: Unpacking The Transaction Log.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
http://apps.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryDepatures.xml
https://dennyglee.com/2014/06/06/2014-flight-departure-performance-via-d3-js-crossfilter/
https://databricks.com/blog/2016/03/16/on-time-flight-performance-with-graphframes-for-apache-spark.html
https://github.com/dennyglee/databricks/blob/master/misc/departuredelays.csv.gz
https://databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 6

Now, let’s reload the data but this time our DataFrame will be backed by Delta Lake.

Load flight delay data in Delta Lake format

delays_delta = spark \

.read \

.format(“delta”) \

.load(“departureDelays.delta”)

Create temporary view

delays_delta.createOrReplaceTempView(“delays_delta”)

How many flights are between Seattle and San Francisco

park.sql(“select count(1) from delays_delta where origin = ‘SEA’ and destination = ‘SFO’”).show()

Finally, let’s determine the number of flights originating from Seattle to San Francisco; in this dataset, there are 1698 flights.

In-place Conversion to Delta Lake
If you have existing Parquet tables, you have the ability to perform in-place conversions your tables to Delta Lake thus not needing to rewrite your table. To convert the table, you
can run the following commands.

from delta.tables import *

Convert non partitioned parquet table at path ‘/path/to/table’

deltaTable = DeltaTable.convertToDelta(spark, “parquet.`/path/to/table`”)

Convert partitioned parquet table at path ‘/path/to/table’ and partitioned by integer column named ‘part’ partitionedDeltaTable = DeltaTable.convert-

ToDelta(spark, “parquet.`/path/to/table`”, “part int”)

park.sql(“select count(1) from delays_delta where origin = ‘SEA’ and destination = ‘SFO’”).show()

For more information, including how to do this conversion in Scala and SQL, refer to Convert to Delta Lake.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://docs.delta.io/0.4.0/delta-utility.html#convert-to-delta

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 7

Delete our Flight Data
To delete data from your traditional Data Lake table, you will need to:

1. Select all of the data from your table not including the rows you want to delete
2. Create a new table based on the previous query
3. Delete the original table
4. Rename the new table to the original table name for downstream dependencies.

Instead of performing all of these steps, with Delta Lake, we can simplify this process
by running a DELETE statement. To show this, let’s delete all of the flights that had
arrived early or on-time (i.e. delay < 0).

from delta.tables import *

from pyspark.sql.functions import *

Access the Delta Lake table

deltaTable = DeltaTable.forPath(spark, pathToEventsTable

)

Delete all on-time and early flights

deltaTable.delete(“delay < 0”)

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’”).show()

After we delete (more on this below) all of the on-time and early flights, as you can
see from the preceding query there are 837 late flights originating from Seattle
to San Francisco. If you review the file system, you will notice there are more files
even though you deleted data.

/departureDelays.delta$ ls -l

_delta_log

part-00000-a2a19ba4-17e9-4931-9bbf-3c9d4997780b-c000.snappy.parquet

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00001-a0423a18-62eb-46b3-a82f-ca9aac1f1e93-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

part-00002-bfaa0a2a-0a31-4abf-aa63-162402f802cc-c000.snappy.parquet

part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

part-00003-b0247e1d-f5ce-4b45-91cd-16413c784a66-c000.snappy.parquet

In traditional data lakes, deletes are performed by re-writing the entire table
excluding the values to be deleted. With Delta Lake, deletes instead are performed
by selectively writing new versions of the files containing the data be deleted
and only marks the previous files as deleted. This is because Delta Lake uses
multiversion concurrency control to do atomic operations on the table: for
example, while one user is deleting data, another user may be querying the
previous version of the table. This multi-version model also enables us to travel
back in time (i.e. time travel) and query previous versions as we will see later.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://databricks.com/glossary/data-lake
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 8

Update our Flight Data
To update data from your traditional Data Lake table, you will need to:

1. Select all of the data from your table not including the rows you want to modify
2. Modify the rows that need to be updated/changed
3. Merge these two tables to create a new table
4. Delete the original table
5. Rename the new table to the original table name for downstream dependencies.

Instead of performing all of these steps, with Delta Lake, we can simplify this process by running an UPDATE statement. To show this, let’s update all of the flights originating
from Detroit to Seattle.

Update all flights originating from Detroit to now be originating from Seattle

deltaTable.update(“origin = ‘DTW’”, { “origin”: “’SEA’” })

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and destination = ‘SFO’”).show()

With the Detroit flights now tagged as Seattle flights, we now have 986 flights originating from Seattle to San Francisco. If you were to list the file system for
your departureDelays folder (i.e. $../departureDelays/ls -l), you will notice there are now 11 files (instead of the 8 right after deleting the files and the
four files after creating the table)

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

8 9

Merge our Flight Data
A common scenario when working with a data lake is to continuously append data to your table. This often results in duplicate data (rows you do not want inserted into your
table again), new rows that need to be inserted, and some rows that need to be updated. With Delta Lake, all of this can be achieved by using the merge operation (similar to the
SQL MERGE statement).

Let’s start with a sample dataset that you will want to be updated, inserted, or deduplicated with the following query.

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

The output of this query looks like the table at left. Note, the color-coding has been added to this blog to clearly identify
which rows are deduplicated (blue), updated (yellow), and inserted (green).

Next, let’s generate our own merge_table that contains data we will insert, update or de-duplicate with the following
code snippet.

items = [(1010710, 31, 590, ‘SEA’, ‘SFO’), (1010521, 10, 590, ‘SEA’, ‘SFO’), (1010822, 31, 590, ‘SEA’, ‘SFO’)]

cols = [‘date’, ‘delay’, ‘distance’, ‘origin’, ‘destination’]

merge_table = spark.createDataFrame(items, cols)

merge_table.toPandas()

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

9 0

In the preceding table (merge_table), there are three rows that with a unique date value:
1. �1010521: this row needs to update the flights table with a new delay value (yellow)
2. �1010710: this row is a duplicate (blue)
3. �1010832: this is a new row to be inserted (green)

With Delta Lake, this can be easily achieved via a merge statement as noted in the following code snippet.

Merge merge_table with flights

deltaTable.alias(“flights”) \

 .merge(merge_table.alias(“updates”),”flights.date = updates.date”) \

 .whenMatchedUpdate(set = { “delay” : “updates.delay” }) \

 .whenNotMatchedInsertAll() \

 .execute()

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

All three actions of de-duplication, update, and insert was efficiently completed with one statement.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

9 1

View Table History
As previously noted, after each of our transactions (delete, update), there were more files created within the file system. This is because for each transaction, there are different
versions of the Delta Lake table. This can be seen by using the DeltaTable.history() method as noted below.

N O T E | You can also perform the same task with SQL: spark.sql(“DESCRIBE HISTORY ‘” + pathToEventsTable + “’”).show()

As you can see, there are three rows representing the different versions of the table (below is an abridged version to help make it easier to read) for each of the operations
(create table, delete, and update):

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

9 2

Travel Back in Time with Table History
With Time Travel, you can see review the Delta Lake table as of the version or timestamp. For more information, refer to Delta Lake documentation > Read older versions of data
using Time Travel. To view historical data, specify the version or Timestamp option; in the code snippet below, we will specify the version option

Load DataFrames for each version

dfv0 = spark.read.format(“delta”).option(“versionAsOf”, 0).load(“departureDelays.delta”)

dfv1 = spark.read.format(“delta”).option(“versionAsOf”, 1).load(“departureDelays.delta”)

dfv2 = spark.read.format(“delta”).option(“versionAsOf”, 2).load(“departureDelays.delta”)

Calculate the SEA to SFO flight counts for each version of history

cnt0 = dfv0.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt1 = dfv1.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt2 = dfv2.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

Print out the value

print(“SEA -> SFO Counts: Create Table: %s, Delete: %s, Update: %s” % (cnt0, cnt1, cnt2))

Output

SEA -> SFO Counts: Create Table: 1698, Delete: 837, Update: 986

Whether for governance, risk management, and compliance (GRC) or rolling back errors, the Delta Lake table contains both the metadata (e.g. recording the fact that a delete
had occurred with these operators) and data (e.g. the actual rows deleted). But how do we remove the data files either for compliance or size reasons?

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

9 3

Cleanup Old Table Versions with Vacuum
The Delta Lake vacuum method will delete all of the rows (and files) by default that are
older than 7 days (reference: Delta Lake Vacuum). If you were to view the file system,
you’ll notice the 11 files for your table.

/departureDelays.delta$ ls -l

_delta_log

part-00000-5e52736b-0e63-48f3-8d56-50f7cfa0494d-c000.snappy.parquet

part-00000-69eb53d5-34b4-408f-a7e4-86e000428c37-c000.snappy.parquet

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-20893eed-9d4f-4c1f-b619-3e6ea1fdd05f-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00001-d4823d2e-8f9d-42e3-918d-4060969e5844-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00002-3027786c-20a9-4b19-868d-dc7586c275d4-c000.snappy.parquet

part-00002-f2609f27-3478-4bf9-aeb7-2c78a05e6ec1-c000.snappy.parquet

part-00003-850436a6-c4dd-4535-a1c0-5dc0f01d3d55-c000.snappy.parquet

part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

To delete all of the files so that you only keep the current snapshot of data, you will
specify a small value for the vacuum method (instead of the default retention of 7 days).

Remove all files older than 0 hours old.

deltaTable.vacuum(0)

N O T E | You perform the same task via SQL syntax:

Remove all files older than 0 hours old

spark.sql(“VACUUM ‘” + pathToEventsTable + “‘ RETAIN 0 HOURS”)

Once the vacuum has completed, when you review the file system you will notice
fewer files as the historical data has been removed.

/departureDelays.delta$ ls -l

_delta_log

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

N O T E | The ability to time travel back to a version older than the retention period is lost
after running vacuum.

What’s Next
Try out Delta Lake today by trying out the preceding code snippets on your Apache
Spark 2.4.3 (or greater) instance. By using Delta Lake, you can make your data lakes
more reliable (whether you create a new one or migrate an existing data lake). To learn
more, refer to delta.io and join the Delta Lake community via Slack and Google Group.
You can track all the upcoming releases and planned features in github milestones.

https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://docs.delta.io/0.4.0/delta-utility.html#vacuum
https://delta.io/
https://delta-users.slack.com/join/shared_invite/enQtNTY1NDg0ODcxOTI1LWE3YjMxOTM4MmM0YWNhNjE2YmI2OGI4N2Y3MTRhOWQ1YzE3MTMyYTM5YzRiZWZlYzMwYzk0M2JiZmJhY2Q4NWI
https://groups.google.com/forum/#!forum/delta-users
https://github.com/delta-io/delta/milestones

D A T A E N G I N E E R S G U I D E T O
A P A C H E S P A R K A N D D E L T A L A K E

The datasets used in the book are also available for you to explore:

Get started with a free trial of Databricks and take your
big data and data science projects to the next level today.

Contact us for a personalized demo

© Databricks 2020. All rights reserved. Apache, Apache Spark, Spark, and the Spark Logo are trademarks of the Apache Software Foundation.
Delta Lake is a trademark of the Linux Foundation.

S T A R T Y O U R F R E E T R I A L

S P A R K : T H E D E F I N I T I V E G U I D E D A T A S E T S

C O N T A C T

https://apache.org/
https://www.linuxfoundation.org
https://databricks.com/try-databricks?utm_source=definitive-de-ebook&utm_medium=referral&utm_campaign=20170921-definitive-guide-for-de
https://github.com/databricks/Spark-The-Definitive-Guide/tree/master/data
https://databricks.com/company/contact

