
Migration Guide:
Hadoop to Databricks
Data architecture modernization

TECHNICAL GUIDE

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Hadoop is an ecosystem of open source software projects for distributed data storage

and processing. Databricks is a cloud- and Apache Spark™–based big data analytics

service generally available in Amazon Web Services (AWS), Google Cloud Platform

(GCP) and Microsoft Azure. Databricks is the creator of Apache Spark, and Databricks

is a managed cloud platform built atop an optimized version of Spark. The Databricks

Platform offers a development environment focused on collaboration, streaming

and batch data processing for data engineering, data science and BI workloads, and

offers a notebook experience as well as integration with several popular IDEs for code

development, testing and deployment. This guide will assist you with the migration from

Hadoop to Databricks. All the features discussed in this guide are those that are generally

available (GA) and production ready.

There are five Databricks notebooks that accompany this guide. The links to these

notebooks are in this document in various sections. The folder containing all the

notebooks can be downloaded at:

AWS AZURE

Introduction

2Migration Guide: Hadoop to Databricks

https://databricks.com/notebooks/Hadoop%20Migration%20AWS.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Contents The lakehouse architecture 5

Hadoop to Databricks component mapping 6

Databricks deployment 9

Networking and custom configuration 12

Clusters 16

Cluster pools 18

Cluster resource management 19

Cluster monitoring 21

REST API and command line interface 24

Security and governance 25

Data discovery and audit 26

Data sources 29

Data migration 32

Hive metastore 34

HiveQL vs. Spark SQL 37

Delta Lake to optimize data pipelines 40

User-defined functions 42

Sqoop 43

Spark code development on Databricks 44

Notebook and IDE for code development 58

Source code management and CI/CD 61

Job scheduling and submission 66

Next steps 74

C H A P T E R 1

Overview

C H A P T E R 2

Platform
Administration

C H A P T E R 3

Application Development,
Testing and Deployment

C H A P T E R 4

The Path Forward

3Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The lakehouse architecture

Hadoop to Databricks component mapping

01
 CHAPTER

Overview

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Most Hadoop users, planning the future of their data strategy, are frustrated with the cost, complexity and viability of their

existing Hadoop platforms. On-premises Hadoop platforms have failed to deliver on business value due to the lack of data

science capabilities, the high cost of operations, lack of agility and poor performance. As a result, enterprises are looking

to modernize their existing Hadoop platforms to cloud data platforms.

The Databricks Lakehouse Platform is the cloud-native platform that unifies all your data, analytics and AI workloads. The

Lakehouse Platform combines the best elements of data lakes and data warehouses — delivering the data management

and performance typically found in data warehouses with the low cost and flexibility of object stores offered by data lakes.

This unified platform simplifies your data architecture by eliminating the data silos that traditionally separate analytics,

data science and machine learning. It’s built on open source and open standards to maximize flexibility. And, its native

collaborative capabilities accelerate your ability to work across teams and innovate faster.

CHAPTER 1 : OVERVIEW

 The lakehouse
architecture

Data Engineering

DATA M A N AG E M E N T A N D G OV E R N A N C E

O P E N DATA STO R AG E

Structured Unstructured StreamingSemi-Structured

BI and Databricks SQL Data Science and ML Real-Time Data Applications

5Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

When planning your Hadoop migration, it’s important to correctly map legacy Hadoop technologies to modern cloud

capabilities. The following table maps key Hadoop platform capabilities to the Databricks Platform.

CHAPTER 1 : OVERVIEW

 Hadoop to Databricks
component mapping

6Migration Guide: Hadoop to Databricks

D ATA S T O R A G E

• HDFS atop block storage
• Kafka
• HBase

J O B S

• Oozie (workflow automation)

D ATA P R O C E S S I N G

• MapReduce
• Pig
• HiveQL
• Spark

C O D E D E V E LO P M E N T

• Apache Zeppelin notebook
• Jupyter notebook

I N T E R A C T I V E / A D H O C Q U E R Y

• HUE
• Impala/Hive LLAP

E Q U I VA L E N T

• Cloud object storage: S3, ADLS, Azure Blob

• Cloud-native message bus: Kinesis, Azure Event Hubs, Azure IoT Hub

• Cloud-native NoSQL: DynamoDB, CosmosDB

E Q U I VA L E N T

• Databricks job scheduler

• Native integration with Apache Airflow and Azure Data Factory

• Use any scheduler via Databricks APIs

E Q U I VA L E N T

• Databricks Delta Engine: Optimized Apache Spark for 10x–100x improvement

• Databricks SQL: ANSI SQL 2003 compliant

• Code-free ETL: Integrations with Azure Data Factory mapping flows,

Prophecy, Talend and more

E Q U I VA L E N T

• Databricks notebook

• Support for Zeppelin, Jupyter, any notebook or IDE (Pycharm, IntelliJ, etc.)

of your choice via Databricks APIs

E Q U I VA L E N T

• Databricks SQL workspace

• Delta Engine/Photon

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Hadoop provides several distributed programming

frameworks to process your data. They include the

legacy low-level Apache MapReduce API and higher-level

frameworks such as Apache Pig and Apache Hive. Hadoop

also supports Apache Spark. The Databricks Delta Engine

makes data processing easy because the combination of

Spark and Databricks delivers optimizations of 10x–100x

faster performance improvement over open source Spark.

And Spark has APIs to let you code in Java, Scala, Python,

SQL and R. Spark SQL is ANSI SQL 2003 compliant.

Databricks partner integrations with Azure Data Factory,

Prophecy and Talend allow you to develop code-free

data pipelines.

The default workflow and job orchestration tool in Hadoop

is Oozie. Databricks provides a job scheduler in addition

to integration with more advanced scheduling tools, such

as Apache Airflow and Microsoft Azure Data Factory. You

can use your scheduler of choice with Databricks via the

Databricks REST APIs.

For visually interacting with your data, Hadoop lets

you connect Apache Zeppelin notebooks to clusters.

Databricks has a native notebook interface in the cloud.

Databricks also supports Zeppelin and Jupyter notebooks,

and lets you connect your favorite notebook or IDE via the

Databricks REST APIs.

The Databricks SQL workspace can be used for interactive

SQL and ad hoc queries. Databricks SQL is a native SQL

interface for running BI and SQL queries on the lakehouse

with fast performance and high concurrency. It consists of

a user interface with a schema browser, a query editor with

autocomplete, and dashboards to create rich visualizations.

Users can set up query scheduling with alerts. Databricks

SQL automatically and transparently load-balances queries

across multiple clusters to provide high-concurrency

and low-latency query response. Popular BI tools including

Tableau and Microsoft Power BI can connect to

the platform using native JDBC/ODBC connectors.

AWS Databricks SQL Guide

Azure Databricks SQL Guide

7Migration Guide: Hadoop to Databricks

https://docs.databricks.com/sql/index.html
https://docs.microsoft.com/en-us/azure/databricks/scenarios/sql/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks deployment

Networking and custom configuration

Clusters

Cluster pools

Cluster resource management

Cluster monitoring

REST API and command line interface

Security and governance

Data discovery and audit

02
 CHAPTER

Platform Administration

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Your Databricks deployment is also referred to as a

workspace and has a web UI portal that allows you to

administer and manage the platform — and develop, test

and deploy your applications. Access to the portal can be

authenticated via Single Sign-On (SSO) using multi-factor

authentication (MFA) with your organization’s identity

provider. In Azure Databricks, access to the portal is

authenticated via SSO using MFA with your Azure Active

Directory (AAD) account. Only users with an AAD account

can access the portal. In addition to the web UI, a rich

set of REST APIs and a command line interface (CLI) are

also available to automate platform administration and

application development, testing and deployment.

You may have one or more workspaces (deployments),

depending on certain conditions:

Separation of environments: For example,

different workspaces for development, staging,

production and other environments.

Separation of business units: For example,

different workspaces for marketing, finance, risk

management and other departments.

It’s important to understand some basic concepts used

in Databricks. You’ll see some of these as icons on the

left side of the UI, as shown in the following image. These

services are available both in the web application UI as

well as the REST API and CLI. We will quickly introduce

these concepts, and the rest of this guide will cover them

in more detail.

CHAPTER 2: PLATFORM ADMINISTRATION

Databricks
deployment

9Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Workspace

Workspace helps you organize all the work that you

are doing on Databricks. Like a folder structure in your

computer, it allows you to save notebooks and libraries

and share them with other users. Each user in your

organization will have a folder to organize their work into

a directory structure. Workspace has permission settings

that allow you to control who has access to your work.

• For Azure, please see the online documentation to

learn more about Workspace.

• For AWS, click here.

Clusters

Clusters are groups of virtual machines (VMs) that

process your data workloads. Clusters allow you to

execute code from notebooks, libraries and custom code

written via Java/Scala JAR files, and from Python scripts

and wheel/egg files. There are three types of clusters:

1 . S TA N D A R D : Used for single-user workloads and/or

to run single jobs, and are ephemeral or short-lived

clusters.

2 . H I G H C O N C U R R E N C Y : Shared by multiple users

and are meant for long-running clusters.

3 . S I N G L E N O D E : Single VM instance for lightweight

analytics with or without Spark.

Clusters do not store data. Data is always stored in your

cloud storage account and other data sources.

To learn more, see the “Clusters” section of this guide.

Notebooks

Notebooks are a collaborative IDE that allow you to

execute commands in Scala, Python, R, SQL or Markdown.

Notebooks have a default language, but each cell can be

overridden to use another language. Notebooks need to

be connected to a cluster in order to be able to execute

commands, but they are not permanently tied to a

cluster. This allows notebooks to be shared via the web or

downloaded onto your local machine. Dashboards can be

created from notebooks as a way of displaying the output

of cells without the code that generates them. Notebooks

can also be scheduled as jobs in one click either to run a

data pipeline, update a machine learning model or update

a dashboard.

To learn more, see the “Notebook and IDE for code

development” section of this guide.

1 0Migration Guide: Hadoop to Databricks

https://docs.microsoft.com/en-us/azure/databricks/workspace/
https://docs.databricks.com/workspace/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Libraries

Libraries are packages or modules that provide additional

functionality that you need to solve your business

problems. These may be custom-written Scala or Java

JARs, Python egg or wheel files or custom-written

packages. You can write and upload libraries manually

through the UI, use the Libraries API, or install them

directly via package management utilities like PyPi,

Maven or CRAN.

Please see the online documentation to learn more about

libraries:

Data

The data that you interact with in cloud storage can be

organized into structured data represented as databases

consisting of tables with schemas that have column

names and data types. The Data icon from the UI will list

your organization’s structured data assets. Databricks can

work with structured, semi-structured and unstructured

data sources.

To learn more, see the “Data sources” section of this guide.

Jobs

Jobs are how you schedule code execution to occur

either on an already existing cluster or a cluster of its

own. Jobs can be run from code in notebooks as well as

JAR files or Python scripts. They can be created either

manually through the UI or via the REST API or command

line interface (CLI).

To learn more, see the “Job scheduling and submission”

section of this guide.

AWS AZURE

1 1Migration Guide: Hadoop to Databricks

https://docs.databricks.com/libraries.html
https://docs.microsoft.com/en-us/azure/databricks/libraries
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

At a high level, the Databricks deployment architecture consists of a control plane that runs in the Databricks subscription,

and a data plane that runs in the customer subscription. The control plane includes the back-end services that

Databricks manages in its own account. The data plane is managed by your account and is where your data resides

and where data is processed.

To learn more about this architecture, refer to the online documentation:

CHAPTER 2: PLATFORM ADMINISTRATION

Networking and
custom configuration

AWS AZURE

1 2Migration Guide: Hadoop to Databricks

https://docs.databricks.com/getting-started/overview.html
https://docs.microsoft.com/en-us/azure/databricks/getting-started/overview
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Some key features of this architecture:

• Multiple workspaces • No public IPs

• Bring your own VPC/VNET • IP access lists

• Bring your own key

Multiple workspaces

• AWS documentation

• For Azure, you would manage multiple workspaces from your Azure account portal

1 3Migration Guide: Hadoop to Databricks

https://docs.databricks.com/administration-guide/account-api/new-workspace.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

No public IPs

AWS documentation Azure documentation

Bring your own VPC/VNET

AWS documentation Azure documentation

1 4Migration Guide: Hadoop to Databricks

https://docs.databricks.com/security/secure-cluster-connectivity.html
https://docs.microsoft.com/en-us/azure/databricks/security/secure-cluster-connectivity
https://docs.databricks.com/administration-guide/cloud-configurations/aws/customer-managed-vpc.html
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

IP access lists

AWS documentation Azure documentation

Bring your own key

AWS documentation Azure documentation

1 5Migration Guide: Hadoop to Databricks

https://docs.databricks.com/security/network/ip-access-list.html
https://docs.microsoft.com/en-us/azure/databricks/security/network/ip-access-list
https://docs.databricks.com/security/keys/customer-managed-keys-managed-services-aws.html
https://docs.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-key-managed-services-azure
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is a fully managed PaaS offering that

requires no infrastructure administration, management

or maintenance. Users and processes run code on

clusters of VMs for data engineering, data science and

data analytics workloads. This includes batch and real-

time production ETL pipelines, streaming analytics,

ad hoc analytics, machine learning, deep learning and

graph analytics. Clusters can be fixed-size clusters or

autoscaling and, by default, they auto-terminate after 120

minutes of inactivity (this is configurable).

• Fixed-size clusters stay constant for the duration

of the cluster lifecycle. This is a good option to

choose when you know the exact compute capacity

required (CPU cores and RAM), as no time will be

spent allocating and starting additional VMs.

• Autoscaling clusters will dynamically scale out

from a minimum number of cluster VM nodes

to a maximum that you configure. This option is

recommended when you cannot easily predict the

compute capacity required (CPU cores and RAM) —

for instance, because of increasing data volumes or

data skew.

Clusters are divided into three distinct types

1 . S TA N D A R D C L U S T E R S

2 . H I G H C O N C U R R E N C Y C L U S T E R S

3 . S I N G L E N O D E C L U S T E R S

Standard clusters

Standard clusters are recommended for a single user.

They can be fixed-size or autoscaling clusters. They

are typically short-running ephemeral clusters used for

running jobs; however, in the case of streaming jobs, the

cluster might be always-on and long-running. Standard

clusters can run workloads developed in any language:

Java, Python, R, Scala or SQL. Standard clusters are also

used to run individual jobs — for example, streaming,

ETL or machine learning. Since standard clusters run a

single user job and not jobs from multiple users and/or

processes, stronger resource isolation, SLA guarantees

and security can be provided.

High concurrency clusters

A high concurrency cluster is ideal for multiple users

accessing a single cluster to run interactive or automated

jobs. They can be fixed-size or autoscaling clusters. By

default, high concurrency clusters are set to autoscale.

These clusters only support SQL, Python and R. The

key benefits of high concurrency clusters are that they

provide Apache Spark–native fine-grained sharing

for maximum resource utilization and minimum query

latencies so that all users on the cluster can run jobs by

sharing total compute resources (CPU and RAM) among

all the users on the cluster. High concurrency clusters can

help reduce costs for a shared user work environment,

experimentation, testing and execution of some

production workloads.

CHAPTER 2: PLATFORM ADMINISTRATION

Clusters

1 6Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Single node clusters

A single node cluster consists of a Spark driver and no

Spark workers. It supports Spark jobs and all Spark data

sources. In contrast, standard clusters require at least one

Spark worker to run Spark jobs. Single node clusters can

be useful for:

• Running single-node machine learning workloads

that need Spark to load and save data

• Lightweight exploratory data analysis (EDA)

All cluster types can be created and configured via the

UI, REST API or command line interface (CLI). Databricks

supports a variety of VM types for different workloads:

memory-optimized, CPU-optimized, storage-optimized

and GPU-accelerated VMs. Databricks also supports

custom containers to launch clusters with predefined

settings. For example, if you have several libraries that

need to be used on the cluster, you can reduce the cluster

start-up time by creating a custom Docker image that

contains all of your dependencies and then using this

image to launch the Databricks cluster.

Please refer to the online documentation to learn more

about clusters:

Here are some cluster best practices:

• Use autoscaling clusters when the compute

capacity required is unknown

• Set automatic termination when applicable

• Use the latest Databricks Runtime version to

take advantage of recent performance and other

optimizations

• Use high concurrency cluster mode for data

analysis by a team of users via notebooks or a BI

tool, or if you want to enforce data protection via

table ACLs

• Use cluster tags for project- or team-based

chargeback

• Custom Spark configuration settings can be applied

to all nodes in a cluster if needed

• Use the Cluster Event Log and Spark UI to analyze

cluster activities and submitted job performance

• Configure Cluster Log Delivery to deliver Spark

driver and worker logs to cloud storage

• Use Cluster Access Control to configure

permissions for users and groups

• Use Initialization Scripts or Databricks Container

Services to launch clusters with preinstalled

software and libraries. Databricks Container

Services allows you to create your own Docker

image and then launch a Databricks cluster using

this Docker image.

• User Cluster Policies to limit the cluster types that

users can launch

AWS AZURE

1 7Migration Guide: Hadoop to Databricks

https://docs.databricks.com/clusters/index.html
https://docs.microsoft.com/en-us/azure/databricks/clusters/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Cluster start-up time and autoscaling time are gated by

the time it takes to acquire VM instances from the cloud

provider. If this begins to impact SLAs, we recommend

using Databricks cluster pools. Pools reduce cluster start

and autoscaling times by maintaining a set of idle, ready-

to-use instances. When a cluster attached to a pool

needs additional VMs, it first attempts to allocate one of

the pool’s idle VMs. That way, the VMs can instantly be

attached to the cluster with no latency, allowing stronger

guarantees to meet SLAs. There will be an associated

cloud cost associated with VMs allocated to the pool.

However, there will be no Databricks charge for those

instances.

Please refer to the online documentation to learn more

about clusters:

CHAPTER 2: PLATFORM ADMINISTRATION

Cluster pools

AWS AZURE

1 8Migration Guide: Hadoop to Databricks

https://docs.databricks.com/clusters/instance-pools/index.html
https://docs.microsoft.com/en-us/azure/databricks/clusters/instance-pools/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Hadoop users are familiar with Apache YARN for

application resource management and job scheduling.

Using YARN, multiple users and processes can share a

single Hadoop cluster so that cluster resources, such as

CPU and RAM, can be shared.

• Fair scheduling that evenly distributes resources

among all jobs

• Capacity scheduling to define queues with

weighted percentages and assign users and

groups to these queues so that their jobs run

within those queues

YARN will launch jobs and monitor them for their duration

so that if any failures are encountered, YARN will attempt

to restart those jobs.

Databricks takes a different approach to application

resource management and job scheduling for standard

and high concurrency clusters and uses its own resource

manager, which is more similar to the Apache Spark

stand-alone resource manager. A single SparkContext is

shared among multiple sessions on the cluster. Each user

on the cluster will have their own separate SparkSession,

but all users will share the same SparkContext. The

SparkContext allows your Spark application to access the

cluster with the help of the resource manager.

The following Spark configuration settings apply to both

standard and high concurrency clusters:

• The default functionality of Databricks clusters is to

use fair scheduling that evenly distributes CPU and

RAM compute resources among all jobs

spark.scheduler.mode FAIR

• Databricks, by default, does not have capacity

queues similar to those in YARN

• Databricks does use preemption to prevent

overallocation of resources, ensuring that all jobs

have an equal share of resources

spark.databricks.preemption.enabled true

• Each user has their own SparkSession

spark.databricks.session.share false

Resource sharing on standard
vs. high concurrency clusters

Standard clusters are meant to be used for a single

processing job. This could be an interactive session in

which the user submits jobs via the notebook or it could

be an automated job. We don’t recommend sharing a

standard cluster to execute jobs from multiple users and/

or processes. High concurrency clusters are meant to

be shared. Both standard and high concurrency clusters

enable preemption by default, but in high concurrency

clusters, jobs from each user run in a separate fair

scheduler pool with preemption configured to ensure a

fair allocation of resources. High concurrency clusters also

create fault isolation for each user. With fault isolation,

each user’s environment is isolated from others so that a

single user’s process cannot impact the entire cluster.

CHAPTER 2: PLATFORM ADMINISTRATION

Cluster resource
management

1 9Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

A common problem when multiple users share a cluster

is that one user’s faulty code can crash the Spark driver,

bringing down the cluster for all users. In these types of

situations, the Databricks resource manager provides fault

isolation by sandboxing the driver processes belonging to

different users from one another so that a user can safely

run commands that might otherwise crash the driver,

eliminating concern about impacting the experience of

other users.

With preemption on high concurrency clusters, the

following Spark settings can be configured to share a

cluster among multiple jobs in the way that you’d like:

spark.databricks.preemption.threshold 0.5

The fair share fraction to guarantee per user. Setting

this to 1.0 means the scheduler will aggressively attempt

to guarantee perfect fair sharing. Setting this to 0.0

effectively disables preemption. The default setting is 0.5,

which means at worst a user will get half their fair share.

spark.databricks.preemption.timeout 30s

How long a user must remain starved before preemption

kicks in. Setting this to lower values will provide more

interactive response times at the cost of cluster efficiency.

Recommended values are from 1 to 100 seconds.

spark.databricks.preemption.interval 5s

How often the scheduler will check for task preemption.

This should be set to less than the preemption time-out.

Please refer to the online documentation for more

information on preemption:

AWS Azure

In both standard and high concurrency clusters, by

default, all queries started in a notebook run in the same

fair scheduling pool. Therefore, jobs generated by triggers

from all the streaming queries in a notebook run one after

another in first in, first out (FIFO) order. This can cause

unnecessary delays in the queries, because they are not

efficiently sharing the cluster resources. To enable all

streaming queries to execute jobs concurrently and to

share the cluster efficiently, you can set the queries to

execute in separate scheduler pools.

Please refer to the online documentation for more

information:

AWS Azure

High concurrency clusters allow for multiple users to

submit different SQL queries. Databricks can prevent

rogue queries from monopolizing cluster resources by

examining the most common causes of large queries and

terminating queries that pass a threshold. This is a feature

called Query Watchdog.

spark.databricks.queryWatchdog.enabled true

This will enable Query Watchdog

spark.databricks.queryWatchdog.

outputRatioThreshold 1000L
To prevent a query from creating too many output rows

for the number of input rows, you can enable Query

Watchdog and configure the maximum number of output

rows as a multiple of the number of input rows. “1000L”

declares that any given task should never produce more

than 1,000 times the number of input rows.

Please refer to the online documentation for more

information on Query Watchdog:

AWS Azure

2 0Migration Guide: Hadoop to Databricks

https://docs.databricks.com/clusters/preemption.html
https://docs.microsoft.com/en-us/azure/databricks/clusters/preemption#:~:text=The%20Apache%20Spark%20scheduler%20in,with%20many%20concurrently%20running%20jobs.&text=When%20tasks%20are%20preempted%20by,set%20to%20preempted%20by%20scheduler%20
https://docs.databricks.com/spark/latest/structured-streaming/production.html#configure-apache-spark-scheduler-pools-for-efficiency
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/structured-streaming/production#configure-apache-spark-scheduler-pools-for-efficiency
https://docs.databricks.com/spark/latest/spark-sql/query-watchdog.html
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/query-watchdog
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks provides Ganglia metrics to monitor clusters

as jobs run on those clusters. This is native to the

Databricks platform, and no additional setup or integration

is required.

Please refer to the online documentation for more

information:

Advanced monitoring in AWS

You can also implement more advanced application and

infrastructure monitoring by using AWS CloudWatch.

This can be done by installing AWS CloudWatch agents

on the Databricks EC2 nodes so metrics can be sent to

CloudWatch. Databricks allows the installation of third-

party software, and customers are responsible for the

maintenance and support of third-party software. Init

scripts or Databricks Container Services can be used

to install CloudWatch agents on all the nodes in a

Databricks cluster.

• Please refer to the online documentation for

more information about init scripts

• Please refer to the online documentation for more

information about Databricks Container Services

The CloudWatch agent can easily be installed on a

Databricks node. The Databricks EC2 instances allow

for all outbound traffic, and you should be able to

configure the CloudWatch agent to send metrics to

CloudWatch. After installation, the CloudWatch agent

needs to be configured.

CHAPTER 2: PLATFORM ADMINISTRATION

Cluster monitoring

AWS AZURE

2 1Migration Guide: Hadoop to Databricks

https://docs.microsoft.com/en-us/azure/architecture/databricks-monitoring/
https://docs.databricks.com/clusters/custom-containers.html
https://docs.databricks.com/clusters/clusters-manage.html#ganglia-metrics-1
https://docs.microsoft.com/en-us/azure/databricks/clusters/clusters-manage#ganglia-metrics
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Init script to install CloudWatch agent

Here’s an example of what the init script could look like.

This is a working example. The init script would be made

a global init script if you needed the CloudWatch agent

installed on every Databricks cluster node launched:

dbutils.fs.put(“/databricks/init/cloud-watch-agent-install.sh”,”””

#!/bin/bash

install CloudWatch agent

wget https://s3.amazonaws.com/amazoncloudwatch-agent/linux/amd64/latest/AmazonCloudWatchAgent.zip

unzip AmazonCloudWatchAgent.zip

sudo ./install.sh

copy configuration files from root S3 bucket to local file system on Ubuntu nodes

cp /tmp/bmathew/test_script/common-config.toml /opt/aws/amazon-cloudwatch-agent/etc/common-config.toml

cp /tmp/bmathew/test_script/amazon-cloudwatch-agent-schema.json /opt/aws/amazon-cloudwatch-agent/doc/

amazon-cloudwatch-agent-schema.json

start the CloudWatch Agent

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch-config -m ec2 -c file:/

opt/aws/amazon-cloudwatch-agent/doc/amazon-cloudwatch-agent-schema.json -s

“””, True)

2 2Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Configuring CloudWatch agent

1 . O P T I O N A L : Configure common-config.toml to modify

the Common Configuration and Named Profile for

CloudWatch Agent. Modify this file only if you need to

specify proxy settings or if you need the agent to send

metrics to CloudWatch in a different region than where

the instance is located.

 All Databricks EC2 instances have outbound access.

All Databricks clusters will launch into the same region

(although you can specify different availability zones

within the region). Assuming that CloudWatch is

installed in the same region as your Databricks shard

(deployment), this file might not need to be modified.

The IAM role attached to the Databricks cluster needs

the proper permissions to be able to send metrics to

CloudWatch.

 If this file does need to be modified, then this can be

done through the init script:

 The init script would copy the edited/final version

of this config file from the root S3 bucket (dbfs —

databricks file system) and place it into the proper

directory on the Databricks EC2 node (local Linux

file system).

2 . R E Q U I R E D : JSON configuration file. You need to

create a configuration file before you start the agent

on any servers. The agent configuration file is a JSON

file that specifies the metrics and logs that the agent

is to collect. The init script would copy the edited/final

version of the agent configuration file from the root S3

bucket (dbfs — databricks file system) and place it into

the proper directory on the Databricks EC2 node (local

Linux file system).

Please see the official AWS documentation on configuring

the CloudWatch agent.

Advanced monitoring in Azure

In Azure, there is also integration with Azure Monitor, which

is a more familiar solution for Azure customers, as they are

already using Azure Monitor to observe all the activity in

their Azure accounts. With the Azure Databricks and Azure

Monitor integration, you can send job/application logs to

Azure Monitor for detailed monitoring of cluster metrics.

Please refer to the online documentation to complete this

integration.

You can also integrate with the Azure Log Analytics

workspace to easily analyze metrics collection data.

Please refer to the online documentation.

2 3Migration Guide: Hadoop to Databricks

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-first-instanc e.html#CloudWatch-Agent-profile-instance-first
https://docs.microsoft.com/en-us/azure/architecture/databricks-monitoring/
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/account-settings/azure-diagnostic-logs
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks provides a rich set of REST APIs and a powerful

command line interface (CLI) for platform interaction to

perform tasks such as:

• Cluster administration, job submission, library

management, user/group management

• Submit JAR files (Java or Scala) and Python code

(scripts, egg, wheel files) to schedule and run as

streaming or batch jobs

• Develop locally with your favorite editor/IDE and

connect to Databricks: Visual Studio, PyCharm,

IntelliJ, RStudio, Jupyter, Zeppelin and more

• Source code management (SCM) integration:

Develop locally on your laptops, import/export to

Databricks, check-in/check-out with your SCM tool

• Continuous Integration/Continuous Delivery (CI/CD)

• Integrate with third-party schedulers for more

advanced DAG/workflow creation (e.g., Azure Data

Factory, Apache Airflow)

Users authenticate with the REST API and CLI via tokens.

Tokens can be generated from the UI and also by using the

Tokens API. You can store tokens locally in a file: in a .netrc

file and/or a .databrickscfg file. You might be accessing

multiple deployments so your files could have multiple

entries. For example:

Please refer to the online documentation for more

information on using the REST API:

Please refer to the online documentation for more

information on installing and using the command line

interface:

CHAPTER 2: PLATFORM ADMINISTRATION

REST API and
command line
interface

AWS AZURE

AWS AZURE

2 4Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/api/latest/index.html
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/api/latest/
https://docs.databricks.com/dev-tools/cli/index.html
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/cli/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks lets you centrally manage and govern platform

access from the UI or via the REST API to grant, deny and

revoke user access:

• Control data access to databases, tables and views

using RBAC

• Cloud IAM integration for file access

• Audit logs to monitor user activity

• Third-party data catalog integration for master

data management, lineage, data discovery, data

profiling and data classification. Vendor specific

and open source.

Coming from the Hadoop ecosystem, you are probably

already familiar with role-based access control (RBAC)

and attribute-based access control (ABAC). Databricks

provides RBAC for both the platform and your data.

In Databricks, you can use access control lists (ACLs)

to configure permissions to access the workspace,

notebooks, clusters, pools, jobs and Spark SQL tables.

At a platform level, we recommend that you enable audit

logs to track all user interaction with the platform.

Please refer to the online documentation for more

information:

You might be using Apache Ranger today for RBAC and

ABAC access to your data. Similar RBAC functionality

is available in Databricks using database views and

then applying access permissions on those views. For

example, if you have a base Spark SQL table with sensitive

information and you want to control who has access to

it, then you can create one or more Spark SQL views. The

views give you different ways of looking at the data in the

base table. For example, you can create a view with logic

to hash certain fields and filter specific rows, and then

apply table ACLs on the base table and views to restrict

access to certain groups and users. This functionality is

available for clusters running Python and SQL workloads.

Databricks will be releasing Unity Catalog, which will

provide attribute-based access controls, auditing and

lineage information.

For immediate RBAC and ABAC capabilities, we offer

integration with Ranger via our partnership with Immuta

and Privacera. Please consult your Databricks Solutions

Architect for more information on this integration.

Please refer to the online documentation for more

information on security in Databricks:

Please refer to the online documentation for more

information about table access controls:

See the “Data sources” section in this guide for information

on how to securely connect to your data sources.

CHAPTER 2: PLATFORM ADMINISTRATION

Security
and governance

AWS AZURE

AWS AZURE

AWS AZURE

2 5Migration Guide: Hadoop to Databricks

https://databricks.com/product/unity-catalog
https://docs.databricks.com/administration-guide/account-settings/audit-logs.html
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/account-settings/azure-diagnostic-logs
https://docs.databricks.com/security/index.html
https://docs.microsoft.com/en-us/azure/databricks/security/
https://docs.databricks.com/security/access-control/table-acls/index.html
https://docs.microsoft.com/en-us/azure/databricks/security/access-control/table-acls/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Under Databricks, it’s possible to explore your data catalog via the Hive metastore (either embedded or external). This lets

you navigate through databases and, for each database, list available tables and, for each table, display the schema and a

sample of data.

Under workspace

CHAPTER 2: PLATFORM ADMINISTRATION

Data discovery
and audit

2 6Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Under Databricks SQL, the history tab shows all run queries, the author for each query and the execution status. It’s a

seamless way to track access to data.

2 7Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Application Development,
Testing and Deployment

Data sources

Data migration

Hive metastore

HiveQL vs. Spark SQL

Delta Lake to optimize data pipelines

User-defined functions

Sqoop

Spark code development on Databricks

Notebook and IDE for code development

Source code management and CI/CD

Job scheduling and submission

03
 CHAPTER

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is optimized for reading and writing to cloud

storage: S3, Azure Blob, Azure Data Lake Storage Gen 1 and

Azure Data Lake Storage Gen 2 (ADLS).

In AWS, Databricks is optimized for reading and writing to

S3. In addition to S3 cloud storage, Databricks can also

read/write to other storage end points, including relational

databases (Oracle, Redshift, SQL Server, Teradata); HDFS,

Apache Hive, NoSQL (HBase, Cassandra, MongoDB); in-

memory cache (Redis, RocksDB); S3 SQS, message bus

(Kafka, Kinesis); files (delimited text files, JSON, Parquet,

ORC, Avro) and many others. Data sources can be in the

cloud or on-premises.

Please refer to the online documentation to learn more

about the data sources supported in Databricks.

In Azure, Databricks recommends using ADLS Gen 2 for

optimal performance. In addition to Azure cloud storage,

Azure Databricks can also read/write to other storage end

points, including relational databases (Oracle, SQL Server,

Teradata); HDFS, Apache Hive, NoSQL (HBase, Cassandra,

MongoDB); in-memory cache (Redis, RocksDB); message

bus (Kafka); files (delimited text files, JSON, Parquet, ORC,

Avro) and many others. In addition, Azure Databricks has

native integration with several Azure end points, including

SQL Data Warehouse, Cosmos DB, Event Hub, IoT Hub and

more. Data sources can be in the cloud or on-premises.

Please refer to the online documentation to learn more

about the data sources supported in Azure Databricks.

Hadoop users are familiar with the Optimized Row

Columnar (ORC) file format, which Databricks supports.

However, Databricks is optimized for Parquet and Delta

in cloud storage — and we recommend using Delta, an

open source storage layer built atop Parquet that brings

performance, reliability and consistency to cloud storage.

You can easily convert your ORC files to Delta by reading

the data into a Spark DataFrame and then saving it in

the Delta format. To learn more, see the “Delta” section

in this guide.

Databricks created a distributed file system built atop

cloud storage called the Databricks File System, or DBFS.

DBFS is an abstraction over cloud storage when used

with Databricks Utilities (DBUtils) and offers the following

functionality:

• Allows you to mount data from cloud storage so that

you can access data without requiring credentials

(similar to NFS mounts)

• Allows you to interact with cloud storage using UNIX

directory and file commands instead of cloud-

specific APIs

• Persists files to object storage, so you won’t lose

data after you terminate a cluster

• Once you create a mount point from any cluster

in a Databricks workspace, then by default that

mount point will be accessible to all clusters in that

workspace

For more information, refer to these sections in this guide:

• Accessing AWS cloud storage

• Accessing Azure cloud storage

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Data sources

2 9Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data/data-sources/index.html
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Accessing S3 cloud storage
A C C E S S K E Y S

• Easy to set up and use

• Needs to be used with caution — i.e., make sure

notebook permissions are enabled so no one can

read a notebook that contains credentials

• Allows use of the Secrets API with keys to keep the

actual key values hidden

• How to use keys

I A M R O L E S

• More secure

• Limited in that only one IAM role can be attached to

a Databricks cluster

• How to use IAM roles

I A M C R E D E N T I A L PA S S - T H R O U G H

• Each user syncs their credentials with their AWS

account to authenticate which S3 buckets they

have access to

• Requires integration with an identity provider: AWS

identity federation with SAML Single Sign-On

• Using IAM credentials pass-through

Accessing Azure cloud storage
S H A R E D K E Y O R S H A R E D A C C E S S S I G N AT U R E

• Easy to set up and use

• Needs to be used with caution — i.e., make sure

notebook permissions are enabled so no one can

read a notebook that contains credentials

• Allows use of the Secrets API with keys to keep the

actual key values hidden

• How to use keys with Azure Blob storage

• How to use keys with Azure Data Lake Storage

A Z U R E A C T I V E D I R E C T O R Y (A A D) C R E D E N T I A L S

• Access data directly from ADLS Gen 2 using your

AAD credentials

Cloud storage end points are owned by you, and

Databricks does not have direct access to them — with

the exception of a shared cloud storage location called

DBFS Root, which Databricks has read/write access to.

DBFS Root is required and is used by Databricks to store

metadata and logs and can also be used to store data.

We recommend not storing your own data in DBFS Root.

By default, if your code is writing data without specifying

a location, then this data will get stored in the DBFS Root

storage location. For this reason, we recommend that you

always specify the location where you want the data to be

stored. For example, the following code is writing out a file,

but no location is specified. As a result, this data would

get stored in DBFS Root.

3 0Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/api/latest/secrets.html#secrets-api
https://docs.databricks.com/spark/latest/data-sources/aws/amazon-s3.html#mount-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/assume-role.html#secure-access-to-s3-buckets-across-accounts-using-iam-roles-with-an-assumerole-policy
https://docs.databricks.com/security/credential-passthrough/iam-passthrough.html#secure-access-to-s3-buckets-using-iam-credential-passthrough
https://docs.databricks.com/dev-tools/api/latest/secrets.html#secrets-api
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/azure-storage
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/azure-datalake-gen2
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

You should always specify a mount point that is not DBFS Root if you don’t want the data stored there.

Please refer to the online documentation for more

information:

DBFS and DBUtils

DBFS Root

Please refer to the notebook “Connecting to cloud

storage” for examples of how to connect to cloud storage.

The notebook will be submitted with these documents:

AWS AZURE

AWS AZURE

AWS AZURE

3 1Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data/databricks-file-system.html#access-dbfs
https://docs.microsoft.com/en-us/azure/databricks/data/databricks-file-system#access-dbfs
https://docs.databricks.com/data/databricks-file-system.html#dbfs-root-1
https://docs.microsoft.com/en-us/azure/databricks/data/databricks-file-system#dbfs-root
https://databricks.com/notebooks/Hadoop%20Migration%20AWS.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is optimized for cloud object storage: S3 in

Amazon Web Services, Blob and Azure Data Lake Storage

Generation 2 in Microsoft Azure, and Google Cloud

Storage. In addition to cloud storage, Databricks can also

read/write to other storage end points, including relational

databases (Oracle, SQL Server, Teradata), HDFS, Apache

Hive, NoSQL (HBase, Cassandra, Neo4j, MongoDB), in-

memory cache (Redis, RocksDB), message bus (Kafka),

files (delimited text files, JSON, Parquet, ORC, Avro) and

many others. Data sources can be in the cloud or on-

premises, but Databricks is optimized for the cloud.

To get started with data migration, first look at a dual

ingestion strategy. You may already have a defined

process to land data into Hadoop. This might be

implemented via a third-party ingestion tool or perhaps

an in-house built framework. A simple approach could be

to fork the target such that data is landed to both HDFS

and cloud storage. Getting an initial data feed provides

an additional backup location of your data. It will also

allow you to unlock new advanced analytics in the cloud

with Databricks.

The next step is migration of historical data. This step may

take some time based on the amount of data that exists in

HDFS. If possible, try to align data sets with prioritized use

cases that need to be migrated away from Hadoop. This

will help identify the order in which you’ll need to move

data to the cloud.

There are two ways to move historical data from HDFS

to the cloud: the push approach and the pull approach.

The former is more commonly used than the latter,

as data owners and information security teams have

more control over how and when the data is sent to the

cloud. Some customers may opt for the pull approach in

scenarios where workflows need to be managed solely

from the cloud.

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Data migration

3 2Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Here are some options for migrating data from HDFS into

the cloud.

For data volumes up to the hundreds of terabytes:

• Create a secure VPN connection between on-

premises and cloud, or use a private dedicated

connection offered by a cloud service provider (CSP)

• Stream IoT data into a message bus

• Use cloud service provider utilities and other tools

(e.g., DistCp) to move files from Hadoop storage

(HDFS) into cloud storage

• Use third-party tools such as WANdisco, which have

the ability to synchronize HDFS with cloud storage

For data volumes in the petabyte range or higher:

• Use a CSP service that allows you to mail your disks

to them and which then loads them into cloud

storage

• Use a CSP service that will transport your disks from

your data centers to theirs and then load them into

cloud storage

• Some CSPs may offer other data migration services

— look for one that best meets your needs

Once your data has been loaded into cloud storage,

Databricks provides a service, Auto Loader, to quickly and

easily ingest your data into Databricks:

• Auto Loader in AWS

• Auto Loader in Azure

Migrating data to the cloud can be time consuming and

challenging for your data teams. Databricks partners

with vendors that provide tools to securely automate the

migration of your data from on-premises storage to cloud

storage. This can deliver significant economies of scale to

assist with the migration to Databricks cloud — including:

• Reduction in costs

• At least a 2x–3x acceleration in migration timelines

compared to a manual approach

• Overall reduction in end-to-end migration timelines

Please contact Databricks for more information.

For Azure, choose the right solution for data transfer.

For AWS, see the data migration services.

Auto
Loader

3 3Migration Guide: Hadoop to Databricks

https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html
https://docs.microsoft.com/en-us/azure/databricks/delta/delta-ingest
https://docs.microsoft.com/en-us/azure/storage/common/storage-choose-data-transfer-solution?toc=/azure/storage/blobs/toc.json
https://aws.amazon.com/cloud-data-migration/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The metastore RDBMS is the central repository of

Apache Hive metadata. It stores metadata for tables

that include schema information such as column names,

data types, location of data files, partitions and other

metadata. Databricks uses a Hive metastore to store

metadata for Spark SQL tables. The default configuration

in Databricks is to create a managed Hive metastore

that it maintains. This is administered by Databricks per

workspace. Customers can choose to use an existing Hive

metastore and integrate with Databricks as an external

Hive metastore. Various versions of the Hive metastore

are supported and a variety of back-end RDBMSs can

be used, including MySQL, PostgreSQL, Oracle and

SQL Server. Using SQL Server as the back-end Hive

metastore is common with existing Hadoop customers,

and Databricks supports using SQL Server with the latest

version of Hive (3.1 at the time this guide was written).

The default Hive metastore with Databricks, which is

the one Databricks hosts, currently has a limit of 250

connections from each workspace to our hosted Hive

metastore. Each Databricks cluster opens at least two

metastore connections. Thus, if there are 125 clusters

running at the same time in the workspace, then the limit

of 250 for the number of connections will be reached.

For a customer using their own external Hive metastore,

there is no known limit to the number of connections from

a workspace to their own external Hive metastore. Since

the customer manages the external Hive metastore, they

can adjust the database server settings to control the

number of connections.

For more information, see these sections within this guide:

AWS external Hive metastore integration

Azure external Hive metastore integration

Migrating the Hive metastore

If you have an existing Hive metastore from which you

want to migrate some or all of your table definitions to

Databricks, you can use RDBMS functionality and Hive

commands to accomplish this. One way to do this is to

migrate the entire existing Hive metastore to a new RDBMS.

1. On the current (old) RDBMS, take a dump of the Hive

database and write this to a file. For example, if using

MySQL and your Hive database is named “hive,” then

the command would be: mysqldump -u root hive >>

my_dump_outputfile.sql

2. You will have to do some search and replace in the file

for compatibility with Databricks

• The location of the table data files needs to

correspond to a location in Databricks. For

the location path, you can use a mount point location,

such as /path_to_my_directory (see the “Data

sources” section to learn more about mount points),

or use the cloud service provider’s file system client

when specifying the location, such as s3a://my_

bucket/path_to_my_files, if using S3 in AWS. Write

a search and replace function to adjust the location

paths.

• You can continue to use ORC files in Databricks,

but keep in mind that Databricks is optimized for

the Delta Lake file format, which uses open source

Parquet, and we recommend using Delta Lake. Please

refer to the “Delta Lake” section for more information

on this format and the “Spark SQL” section for table

creation commands.

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Hive metastore

3 4Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

• If you are using Parquet instead of Delta Lake and

want to continue with the pure open source Parquet

format, then the Hive style syntax “STORED AS” is

not recommended in Databricks. The correct syntax

to use in Databricks is “USING.” Write a search and

replace function to make this change. Please refer to

the “Spark SQL” section for table creation commands.

3. There may be some other search and replace you have

to do, but the above examples are the most common

issues you will face for Hive to Spark SQL compatibility.

4. After the search and replace is done, on the new

RDBMS, create the Hive database. For example, if using

MySQL, the command would be: create database hive;

5. Run the Hive schematool to initialize the schema

to the exact version of the Hive schema on the old

metastore. For example, if using MySQL, then this would

be: $HIVE_HOME/bin/schematool -dbType mysql

-initSchemaTo <hive_version> -userName <user_

name> -passWord <password> -verbose

6. Import the Hive database from the file. For example, if

using MySQL, this would be: mysql -u root hive < my_

dump_outputfile.sql

7. Upgrade the schema to the latest schema version:

$HIVE_HOME/bin/schematool -upgradeSchema

-dbType mysql -userName <user_name> -passWord

<password> -verbose

To migrate only schemas (databases and tables), you

can generate a DDL file using the following Spark code —

adapting data location and, if necessary, syntax — then

export the DDL file into the new metastore.

dbs = spark.catalog.listDatabases()

for db in dbs:

 f = open(“your_file_name_{}.ddl”.format(db.

name), “w”)

 tables = spark.catalog.listTables(db.name)

 for t in tables:

 DDL = spark.sql(“SHOW CREATE TABLE {}.{}”.

format(db.name, t.name))

 f.write(DDL.first()[0])

 f.write(“\n”)

f.close()

For tables that will not be migrated to Delta tables, you will

need to run MSCK REPAIR TABLE.

3 5Migration Guide: Hadoop to Databricks

https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-ddl-repair-table.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

AWS external Hive metastore
integration

If you are already using AWS, then you might also be

using the AWS Glue Data Catalog. Databricks supports

using the Glue Data Catalog as the metastore. Please refer

to the online documentation for more information on how

to configure this integration.

Please refer to the notebook “External MySQL Hive

Metastore Integration With Databricks.dbc” for an

example of how to use an existing Hive 3.1.0 metastore on

MySQL with Databricks. The notebook will be submitted

with this document.

Databricks also supports using SQL Server as the back

end for the Hive metastore with the latest version of Hive.

Please refer to the notebook “External SQL Server Hive

Metastore Integration With Databricks.dbc” for an example

of how to use an existing Hive 3.1.0 metastore on SQL

Server with Databricks. The notebook will be submitted

with this document.

Please refer to the online documentation for more

information on using an external Hive metastore with

Databricks.

Azure external Hive metastore
integration

Please refer to the notebook “External SQL Server Hive

Metastore Integration With Azure Databricks.dbc” for an

example of how to use an existing Hive 3.1.0 metastore on

SQL Server with Azure Databricks. The notebook will be

submitted with this document.

Please refer to the notebook “External MySQL Hive

Metastore Integration With Azure Databricks.dbc” for an

example of how to use an existing Hive 3.1.0 metastore

on MySQL with Azure Databricks. The notebook will be

submitted with this document.

Please refer to the online documentation for more

information on using an external Hive metastore with

Azure Databricks.

3 6Migration Guide: Hadoop to Databricks

https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://demo.cloud.databricks.com/#notebook/6212627/command/6212628
https://docs.databricks.com/data/metastores/external-hive-metastore.html
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Apache Hive is a data warehouse software project that

was initially built for the Hadoop ecosystem. Hive can

be used on-premises and in the cloud with a variety of

storage mediums, including HDFS, Azure cloud storage,

Amazon Web Services S3 object storage and Google

Cloud Storage. Hive provides an abstraction layer that

represents the data as tables with rows, columns and data

types to query and analyze using a SQL interface called

HiveQL. Hive uses an in-memory distributed engine called

Apache Tez to process the data.

Apache Hive supports transactions (ACID) with Hive LLAP.

Transactions guarantee consistent views of the data in

an environment in which multiple users/processes are

accessing the data at the same time for Create, Read,

Update and Delete (CRUD) operations. Databricks offers

Delta, which is similar to Hive LLAP in that it provides

transaction (ACID) guarantees, but it offers several other

benefits to help with performance and reliability when

accessing the data. Delta is an open source project. More

information about Delta can be found later in this guide.

Spark SQL is Apache Spark’s module for interacting with

structured data represented as tables with rows, columns

and data types. Spark SQL is SQL 2003 compliant

and uses Apache Spark as the distributed engine to

process the data. In addition to the Spark SQL interface,

a DataFrames API can be used to interact with the data

using Java, Scala, Python and R.

Spark SQL is similar to HiveQL. Both use ANSI SQL

syntax, and the majority of Hive functions will run on

Databricks. This includes Hive functions for date/time

conversions and parsing, collections, string manipulation,

mathematical operations and conditional functions. There

are some functions specific to Hive that would need to be

converted to the Spark SQL equivalent or that don’t exist

in Spark SQL on Databricks. You can expect all HiveQL

ANSI SQL syntax to work with Spark SQL on Databricks.

This includes ANSI SQL aggregate and analytical functions.

Hive is optimized for the Optimized Row Columnar (ORC)

file format and also supports Parquet. Databricks is

optimized for Parquet and Delta. We always recommend

using Delta, which uses open source Parquet as the file

format.

Example of a HiveQL table creation using HDFS

CREATE EXTERNAL TABLE CUSTOMER_DB.CUSTOMER

(USER_ID INT, USER_NAME STRING) STORED AS

PARQUET

LOCATION ‘/data/customer’;

Spark SQL on Databricks table creation using
object storage

CREATE TABLE CUSTOMER_DB.CUSTOMER (USER_ID INT,

USER_NAME STRING)

STORED AS PARQUET

LOCATION ‘/data/customer‘;

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

HiveQL vs. Spark SQL

3 7Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

You don’t need to use the keyword EXTERNAL. Once you

specify a location, the table automatically becomes an

external table. For the location path, you can use a mount

point location, such as /path_to_my_directory (see the

“Data sources” section to learn more about mount points),

or use the cloud service provider’s file system client when

specifying the location, such as s3a://my_bucket/path_

to_my_files, if using S3 in AWS.

Or

DROP TABLE IF EXISTS CUSTOMER_DB.MY_TABLE;

CREATE TABLE BMATHEW.MY_TABLE (USER_ID INT,

USER_NAME STRING)

USING DELTA

LOCATION ‘/data/customer‘;

Again, you don’t need to use the keyword EXTERNAL. The

key difference between Hive and Spark SQL on Databricks

when creating tables is that Hive syntax uses “stored

as” whereas Databricks uses “using.” If you are using

Hive LLAP today and migrating to Databricks, then we

strongly recommend that you use Delta — “USING DELTA.”

Delta provides transactions (ACID), is open source and

will improve your data engineering, data science and BI

workloads with improved performance, reliability and

consistency when accessing the data.

There are also many options that you can set for table

configuration. Here are a few common ones Hive users are

familiar with that also work with Spark SQL on Databricks.

LO C AT I O N — This is the cloud storage location

where the data files will be stored. The default path

will always be inside the default root blob storage

account at /user/hive/warehouse/. Without specifying

a location, the table will be created as a managed

table — meaning that once you drop the table, all the

data files will also be deleted. When you specify a

location, the table becomes an unmanaged or external

table — meaning that once you drop the table, the

data remains in the directory. For the location path,

you can use a mount point location, such as /path_to_

my_directory (see the “Data sources” section to learn

more about mount points), or use the cloud service

provider’s file system client when specifying the

location, such as s3a://my_bucket/path_to_my_files,

if using S3 in AWS.

PA R T I T I O N E D B Y — To partition the table by one or

more columns. Always choose partition columns with a

lower number of distinct values (low cardinality).

C L U S T E R E D B Y — For columns with a high number

of values (high cardinality), bucketing could help with

performance.

T B L P R O P E R T I E S — These are additional settings

similar to those in Hive that let you specify certain

configurations.

3 8Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Here is an example using the above properties to create a

table in Databricks using Parquet:

DROP TABLE IF EXISTS BMATHEW.MY_TABLE;

CREATE TABLE BMATHEW.MY_TABLE (

USER_ID INT,

USER_NAME STRING,

TRANSACTION_DATE DATE)

USING PARQUET

PARTITIONED BY (TRANSACTION_DATE)

CLUSTERED BY (USER_ID) SORTED BY (USER_ID) INTO

32 BUCKETS

LOCATION ‘/tmp/bmathew/test_hive_data’

TBLPROPERTIES (‘compression’=’snappy’,

‘owner’=’bmathew’);

It’s important to note that bucketing on Databricks is

supported only when using Parquet, not Delta.

To view the properties of a table including the schema

definition:

DESCRIBE FORMATTED BMATHEW.MY_TABLE;

The Hive style syntax will also work on Databricks:

CREATE TABLE my_table STORED AS PARQUET AS

(select 1 as user_id);

However, we recommend that you don’t use the Hive style

syntax (i.e., stored as parquet). The syntax using parquet

is specific to Spark SQL, and these tables will always use

Databricks optimizations outside of open source for the

Spark SQL Catalyst optimizer. By contrast, stored as

parquet can be used for both Spark and Hive, but not all

Databricks-specific Spark SQL optimizations may work as

expected. Thus, we recommend using “USING PARQUET” if

you don’t want to use Delta.

Please refer to the online documentation for more

information:

Databricks databases and tables

Spark SQL

Hive compatibility

We recommend that you use Delta to store your data.

Please read the next section, “Delta Lake to optimize data

pipelines,” for more information and a notebook example.

AWS AZURE

AWS AZURE

AWS AZURE

3 9Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data/tables.html
https://docs.microsoft.com/en-us/azure/databricks/data/tables
https://docs.databricks.com/spark/latest/spark-sql/index.html
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/
https://docs.databricks.com/spark/latest/spark-sql/compatibility/hive.html
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/compatibility/hive
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Hadoop provides several distributed programming

frameworks to process your data. They include the legacy

low-level MapReduce API, and higher-level frameworks

such as Pig and Hive (with Tez). Hadoop also supports

Spark. The Databricks Delta Engine makes data processing

easy using Spark because the combination of Spark and

Databricks delivers 6x faster performance improvement

over open source Spark. Delta Engine is a 100% Apache

Spark–compatible vectorized query engine that

significantly accelerates query performance on Delta Lake

and makes it easier for you to adopt and scale a lakehouse

architecture.

Apache Hive supports transactions (ACID) with Hive LLAP.

Transactions guarantee consistent views of the data in

an environment in which multiple users and processes

are accessing the data at the same time for Create, Read,

Update and Delete (CRUD) operations. Databricks offers

Delta Lake, which is similar to Hive LLAP in that it provides

transaction (ACID) guarantees, but it offers several other

benefits to help with performance and reliability when

accessing the data. Delta is an open source project.

We recommend using Delta Lake when creating Spark

SQL tables in Databricks. Delta is an open source storage

format that creates an optimized Spark SQL table and

offers these advantages:

• Uses open source Parquet as the underlying file

format

• Creates a transaction log for the Parquet files

• Has ACID properties (that relational databases

offer) to support transactions

• Guarantees consistency and reliability of the data

by allowing multiple users and processes to access

the data simultaneously for Create, Read, Update

and Delete (CRUD) operations

• Employs data-skipping indexes to improve read

performance

• Caches data on the local SSD drives of the VMs so

that subsequent reads of the data will be fetched

from disk on the VMs without connecting back

to cloud storage. This feature will significantly

speed up query performance and only works when

launching the storage-optimized VMs.

• Provides versioning of the data to enable time travel

(e.g., rollback)

• Has schema enforcement

• Has schema evolution

• Uses clustered indexes known as Z-Ordering

• Although it does not support bucketing, Delta’s use

of partitions, data skipping indexes and Z-Ordering

help with performance

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Delta Lake to optimize
data pipelines

4 0Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Please refer to the notebook “Delta on Databricks.dbc”

for how to use Delta to optimize your data processing

workloads. The notebook will be submitted with this

document:

Please refer to the online documentation for more

information about Delta on Databricks:

Please refer to the online documentation for more

information on migrating existing data to Delta format:

We recently announced Delta Live Tables (DLT). This

feature makes it easy to build and manage reliable data

pipelines that deliver high-quality data on Delta Lake. DLT

helps data engineering teams simplify ETL development

and management with declarative pipeline development,

automatic data testing and deep visibility for monitoring

and recovery. This technology can drastically simplify

existing Hadoop data pipelines, which lack built-in

visibility, data quality and lineage information.

 For more information, see the Delta Live Tables page.

AWS AZURE

AWS AZURE

AWS AZURE

4 1Migration Guide: Hadoop to Databricks

https://databricks.com/product/delta-live-tables
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://docs.databricks.com/delta/index.html
https://docs.microsoft.com/en-us/azure/databricks/delta/delta-intro
https://docs.databricks.com/delta/porting.html
https://docs.microsoft.com/en-us/azure/databricks/delta/porting
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Customers often have their own user-defined functions

(UDFs) implemented in Hive to extend its built-in

functionality. UDFs allow developers to enable new

functions in higher-level languages, such as SQL, by

abstracting the lower-level languages in which they were

written (e.g., Java, Scala). Spark on Databricks has options

for integrating UDFs with Spark SQL.

With minor changes, you can use the same Java UDFs

from Hive in Databricks, if needed. To do so, be sure to

import this in your Java source code:

import org.apache.hadoop.hive.ql.exec.UDF;

The above package will always be needed. You might also

need to import:

import org.apache.hadoop.io.*;

You’ll need to upload the JAR file to DBFS, launch a cluster

with the JAR file attached to the cluster, add the JAR

file path in your SQL cell, and then create a temporary

function. Please refer to the UDF examples in the Azure

or AWS archive files. The notebook will be submitted with

this document.

You can also create UDFs in Databricks using Python and

Scala, and call them via Spark SQL:

Python
AWS Azure

Scala
AWS Azure

When you create UDFs in Databricks, as described in

the previous links in this guide, they’ll only be accessible

in your SparkSession. For example, on a shared high-

concurrency cluster, other users will not be able to

access your UDF directly since they’ll have their own

SparkSession. If you want to share a common UDF,

everyone will have to share the same SparkSession.

In order for other users to access your UDF, you’ll

need to share the SparkSession by using the following

configuration setting for the cluster:

spark.databricks.session.share true

You could also write code using Java, Scala or Python to

create libraries that perform the same function and then

attach those libraries to the cluster. In this manner you

would not need to share the SparkSession.

It’s important to note that UDFs are not vectorized, so

they operate on data one row at a time. UDFs written in

Java and Scala will perform better than those written

in Python. Functions written in Java and Scala are used

within the Java Virtual Machine (JVM), whereas with

Python, Spark has to first serialize the data from the

JVM process to a format that Python understands. This

serialization degrades performance. If the performance is

not acceptable, we recommend writing functions in Java

or Scala — you can still call the function from Python.

Vectorized UDFs are possible in Databricks using

pandas with Apache Arrow. Please refer to the online

documentation for more information on using pandas UDFs:

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

User-defined
functions

AWS AZURE

4 2Migration Guide: Hadoop to Databricks

https://databricks.com/notebooks/Hadoop%20Migration%20Azure.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20AWS.dbc
https://databricks.com/notebooks/Hadoop%20Migration%20AWS.dbc
https://docs.databricks.com/spark/latest/spark-sql/udf-python-pandas.html
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/udf-python
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/udf-scala
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/udf-scala
https://docs.databricks.com/spark/latest/spark-sql/udf-python-pandas.html
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/spark-sql/udf-python-pandas
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Sqoop is running MapReduce under the hood, and hence

is one of the main reasons MapReduce is still deployed.

Many customers have moved off Sqoop and started using

Spark to read data directly from relational systems. The

syntax to read from databases in Spark is very simple, and

you have flexibility with how the data is processed and

persisted to a target destination.

You can replace the Sqoop calls in Spark code using

the JDBC source. This spark code will reside in a

Databricks notebook or packaged in a code artifact

(JAR, python whl, etc.).

See the online documentation. Here is an example call:

val jdbcDF = spark.read

 .format(“jdbc”)

 .option(“url”, “jdbc:postgresql:dbserver”)

 .option(“dbtable”, “schema.tablename”)

 .option(“user”, “username”)

 .option(“password”, “password”)

 .load()

Note, with Databricks, you can leverage Secrets to ensure

credentials are not exposed in the code.

The Spark JDBC source also allows you to specify options

similar to Sqoop, such as customized select query, fetch

read and batch write sizes, and isolation settings.

Sqoop provides incremental loads via Sqoop Jobs, and

internally it can track a field to determine new data. This

field is typically a timestamp or may be an ever-increasing

sequence ID. Sqoop will load new data into a target location

and will persist the largest value for this field. This value

is then used to retrieve new data from the source table.

Spark does not support this functionality out of the box.

You will need to track a “last modified timestamp” field or

sequence ID in code and adjust the SQL query that is used

to extract data from the JDBC source.

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Sqoop

4 3Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data/data-sources/sql-databases.html
https://docs.databricks.com/security/secrets/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Hadoop users submitting Spark jobs to a Hadoop cluster via JAR files and scripts each get their own SparkContext, whereas

Databricks shares a single SparkContext among all users on a Databricks Cluster. Both in Hadoop and on Databricks, each

user gets their own SparkSession. When running a job on Databricks — either via Databricks notebooks or by uploading

your own Java/Scala JAR files or Python scripts to DBFS (individual Python scripts or wheel or egg files) — the SparkContext

is created for you. Since Databricks initializes the SparkContext, if you invoke a new SparkContext, your code will fail. For

example, the following code will return an error:

Use the shared SparkContext created by Databricks:

Returning to our example, we would modify the code:

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Spark code
development on
Databricks

4 4Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Since Databricks creates a shared SparkContext for the cluster, you should not terminate the SparkContext, as this

could impact other users who are running jobs on the same cluster. For example, let’s look at two practitioners using the

same cluster.

User 1 terminates the SparkContext by issuing these commands:

OR

User 2 is trying to run a job but now receives an error message because the SparkContext has stopped:

4 5Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Your job will run normally; however, it will end with the failure above.

For more information, please refer to the following documentation.

Let’s look at few examples of how you might be creating a SparkContext in your code today:

Example 1: Migrating Spark RDD code from Hadoop to Databricks

Example 2: Migrating Spark DataFrame code from Hadoop to Databricks

Example 1: Migrating Spark RDD code from Hadoop to Databricks

Existing Hadoop PySpark code using RDD API in a Python script needs to run on Databricks. The following is a working

example of Hadoop PySpark code in a Python script using the RDD API to process data. Notice that in the code sample,

a SparkContext is created. You might be doing this today in your code. In this example, we are accessing an Azure Blob

storage account and need to set the credentials. There are different ways to do this, but here we are setting the credentials

in the code. This could be when you are testing as a developer. Let’s look at the same code in both AWS and Azure.

AWS:

4 6Migration Guide: Hadoop to Databricks

https://docs.databricks.com/jobs.html#use-the-shared-sparkcontext
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Azure:

For this code to run on Databricks, the changes required will depend on how you run the code:

• Running on an existing cluster as a Databricks job

• Running on a new cluster as a Databricks job

4 7Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Running on an existing cluster as a Databricks job

To run this same Python script on an existing Databricks cluster as a Databricks job using spark-submit, we need to edit the

Python script and use the existing SparkContext that Databricks creates — i.e., SparkContext.getOrCreate. Also, you cannot

set the application name in the same way that you would if running on Hadoop with Spark on YARN. Setting the application

name will have no effect.

Here’s a working example of the same code modified to run on Databricks, both for AWS and Azure. You would also make the

same change for Java and Scala code. The rest of your code will remain the same when using any of the Spark APIs.

AWS:

There are other ways to access S3 data sources from Databricks without using keys. Please refer to the “Data sources”

section for more information. Notice in the previous example that we are entering the key. You can use the Secrets API

to prevent the actual key value from being shown. Please refer to the online documentation for more information on the

Secrets API.

4 8Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/api/latest/secrets.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Please refer to the online documentation for more information on accessing S3 storage.

Azure:

If you are running a Java/Scala JAR or Python script using the RDD API as a spark-submit job on a Databricks cluster, you

can set the credentials in your code as shown in the previous example (similar to what you might be doing currently on

Hadoop). However, this only works when using spark-submit to run the job. If you are using a Spark Python task to submit

your Python RDD code as a job on Databricks or if you are running notebook code, then you cannot set the credentials in

the code. For these use cases, you must define the Azure storage credentials as a Spark Config setting for the Databricks

cluster as shown here:

4 9Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data/data-sources/aws/amazon-s3.html#amazon-s3
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Notice in this example that we are entering the key. You can use the Secrets API to prevent the actual key value from

being shown. Please refer to the online documentation for more information on the Secrets API on Azure.

Let’s look at what happens when we try to set the storage credentials directly in a notebook when using Python with the

RDD API. The settings will be ignored, and you will get the following error.

Our notebook code setting the storage credentials:

Error received:

You will also get the same error if you try to run Python RDD code uploaded to DBFS and submit it as a Spark Python

Task. If you are using Python with the DataFrames API, you can set the credentials both in your code and in notebooks.

The next example will show how this is done.

If you are using Scala in a Databricks notebook with the RDD API, you can set the credentials for the storage account

both in your code and from the notebooks. For example:

Please refer to the online documentation for more information on accessing cloud storage using the RDD API.

5 0Migration Guide: Hadoop to Databricks

https://docs.microsoft.com/en-us/azure/databricks/dev-tools/api/latest/secrets
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/azure-storage#access-azure-blob-storage-using-the-rdd-api
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Running on a new cluster as a Databricks job

If we’re running our Hadoop code on a new Databricks cluster that will be used once and only for this job before terminating

— and if we’re using spark-submit on Databricks — we do not need to change how we interact with SparkContext and can

create a new SparkContext. This means our original code, which created the new SparkContext, will work — but only when

using spark-submit on Databricks. If you are not using spark-submit on Databricks, you’ll have to modify your code to use

the existing SparkContext. For example, if you run the code as a job using Spark Python task (and not spark-submit), you will

need to modify the code to use the existing SparkContext.

In AWS, we could change the code to the following — and in Azure, it will be similar:

5 1Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Example 2: Migrating Spark DataFrame code from Hadoop to Databricks

Existing Hadoop PySpark code written using the DataFrame API in a Python script needs to run on Databricks. The following

are working examples of Hadoop PySpark code in a Python script using the DataFrame API to process data.

Using SparkSession

If you are already using the SparkSession in your Hadoop code, similar to the following code sample, you might not need

to make any changes to your code. The SparkSession is a single entry point that lets you interact with Spark using the

DataFrame and data set APIs. If you use the SparkSession, then you don’t need to explicitly create SparkConf, SparkContext

or SQLContext, as they are all encapsulated within the SparkSession. Here are two code examples, one in AWS and one in

Azure.

AWS:

5 2Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

If your Hadoop code is creating a SparkSession like the one shown here, you’ll need to change how you set the S3

credentials. The same is true for Java and Scala code, although Java code has to be submitted as a JAR file to run

as a job on Databricks since Java is not supported in the notebook. There are other ways to access S3 data sources

from Databricks without using keys. Please refer to the “Data sources” section for more information. Remember, the

application name that you set will be ignored in Databricks. The rest of your code will remain the same when using

any of the Spark APIs.

5 3Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Azure:

If your Hadoop code is creating a SparkSession like the one shown here, this code will run exactly as is on Databricks —

both as a Python script and as code executed from within a Databricks notebook. The same is true for Java and Scala

code, although Java code has to be submitted as a JAR file to run as a job on Databricks since Java is not supported in the

notebook. The only thing to note is that setting the application name is not supported on Databricks and will have no impact.

Let’s look at an example in which we create a SparkContext in our Hadoop Spark code.

5 4Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Using SparkContext

Here’s a working example of our Hadoop PySpark code in which a SparkContext is explicitly created. The following example

was run on Azure, but it also applies to other clouds.

For this code to run on Databricks, the changes you’ll need to make will depend on how you run the code:

• Running on an existing cluster as a Databricks job

• Running on a new cluster as a Databricks job

5 5Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Running on an existing cluster as a Databricks job

For this code to run on an existing Databricks cluster as a job, you’ll need to edit and use the existing SparkContext (i.e.,

SparkContext.getOrCreate). You can set the application name, but this does not have any impact in Databricks and it does

not get recorded in the Spark history server UI.

After we make this change, this code can run as a Python script or directly in a Databricks notebook cell. The same change

needs to be made for Java and Scala code. The rest of your code will remain the same when using any of the Spark APIs.

Since we are using the DataFrame API to read from our source file, we could only use the SparkSession since it also

encapsulates SparkConf, SparkContext and SQLContext. This is more in line with current Spark programming practices.

5 6Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Running on a new cluster as a Databricks job

If we’re running our Hadoop code on a new Databricks cluster that will be used once and only for this job before terminating

— and if we’re using spark-submit on Databricks — we do not need to change how we interact with SparkContext and can

create a new SparkContext. This means our original code, which created the new SparkContext, will work — but only when

using spark-submit on Databricks to submit as a job. If you are not using spark-submit on Databricks, you will have to

modify your code to use the existing SparkContext. For example, if you run the code as a job using Spark Python Task (and

not spark-submit), you will need to modify the code to use the existing SparkContext.

A better way to write this code would be to use the SparkSession, which encapsulates SparkConf, SparkContext and

SQLContext. Using SparkSession is more in line with current Spark programming practices. Our code can be simplified as

shown here:

5 7Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Apache Zeppelin is a popular notebook development

environment used with Hadoop to develop and test code

and to query data. Databricks notebooks are similar, but

they offer more features:

Data Access
Quickly access available data sets or connect to any data

source, on-premises or in the cloud.

Multi-Language Support
Explore data using interactive notebooks with support

for multiple programming languages within the same

notebook, including R, Python, Scala and SQL.

Automatic Versioning
Tracking changes and versioning automatically happen so

that you can continue where you left off or revert changes.

Real-Time Coauthoring
Work on the same notebook in real time while tracking

changes with detailed revision history.

Dashboards and Visualizations
Create rich dashboards and visualize insights using point-

and-click visualizations, or use powerful scriptable options

like matplotlib, ggplot and D3.

Data Science
Automatically log experiments, parameters and results from

notebooks directly to MLflow as runs, and quickly see and

load previous runs and code versions from the sidebar.

Notebook Workflows and Job
Scheduling
Create multi-stage pipelines and execute notebooks as

jobs for production pipelines on a specific schedule.

Security
Quickly manage access to each individual notebook —

or a collection of notebooks — and experiments, with one

common security model.

Integrations
Connect to Tableau, Looker, Power BI, RStudio,

Snowflake, etc., allowing data scientists and engineers

to use familiar tools.

Autoscaling and On-Demand Clusters
Quickly attach notebooks to auto-manage clusters to

efficiently and cost-effectively scale up compute at

unprecedented scale.

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Notebook and IDE for
code development

5 8Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Code written in Apache Zeppelin notebooks that are used with Hadoop typically don’t need you to create a SparkContext,

as one is already created for you. This is also true for Databricks notebooks, which don’t need you to explicitly instantiate a

SparkContext or a SparkSession, as this is already done for you. Therefore, the code from Zeppelin notebooks specific to the

Spark APIs may not need changes to run on Azure Databricks.

Creating a new SparkContext will fail on Databricks:

You have to use the existing SparkContext:

5 9Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

With Databricks notebook code development, the SparkSession is already created for you, and the SparkSession itself

encapsulates SparkConf, SparkContext and SQLContext. For example, the following will work in a Databricks notebook, but is

not necessary to do so:

Instead, you could just do the following since the SparkSession is already instantiated for you:

Databricks also offers the option of using other notebooks and IDEs to interact with the platform. This includes using

Zeppelin, Jupyter, Visual Studio, PyCharm, IntelliJ, Eclipse, RStudio and more. Please refer to the online documentation for

more information on using other notebooks and IDEs:

Please refer to the online documentation for the full list of features and more information about using Databricks notebooks:

AWS

AWS

AZURE

AZURE

6 0Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/databricks-connect.html
https://docs.databricks.com/notebooks/index.html
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/databricks-connect
https://docs.microsoft.com/en-us/azure/databricks/notebooks/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks notebooks have basic version control built into them. Please review the online documentation to learn more

about this feature:

Notebooks can also be linked to the following source code management (SCM) systems:

GitHub
Please see the online documentation for more information:

AWS Azure

Bitbucket

Please see the online documentation for more information:

AWS Azure

You can also use the command line interface to sync notebooks and non-notebook code (Java, Scala and Python source

code) with any version control system.

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Source code
management and
CI/CD GitLab

Please see the online documentation for more information:

AWS Azure

Azure DevOps
Please see the online documentation for more information.

AWS AZURE

6 1Migration Guide: Hadoop to Databricks

https://docs.databricks.com/notebooks/github-version-control.html
https://docs.microsoft.com/en-us/azure/databricks/notebooks/github-version-control
https://docs.databricks.com/notebooks/bitbucket-cloud-version-control.html
https://docs.microsoft.com/en-us/azure/databricks/notebooks/bitbucket-cloud-version-control
https://docs.databricks.com/notebooks/gitlab-version-control.html
https://docs.microsoft.com/en-us/azure/databricks/notebooks/gitlab-version-control
https://docs.microsoft.com/en-us/azure/databricks/notebooks/azure-devops-services-version-control
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2
https://docs.databricks.com/notebooks/notebooks-use.html#version-control
https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-use#version-control
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Let’s look at an example. A Databricks user has developed Python scripts and notebooks that need to be checked into the

company’s GitHub repository for the project being worked on. The notebooks were developed in Databricks and the Python

scripts were developed locally on a laptop.

The user is working on a local branch from their laptop and needs to check in the Python scripts and notebook code

and push to the remote SCM server. This can easily be done using the command line interface (CLI) and your SCM tool

commands.

6 2Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

1. From the user’s laptop, we will export the notebooks from the Databricks Workspace and onto the local laptop using the

Databricks CLI.

databricks --profile AZURE_PROD workspace export /Users/binu.mathew@databricks.com/dev/”Data Prep” .

databricks --profile AZURE_PROD workspace export /Users/binu.mathew@databricks.com/dev/”ML Model

Training” .

Now let’s look at our directory on the local laptop. Notice the notebooks were exported:

2. From the user’s laptop, we create a local branch using the SCM tool commands.

3. We add all our code in this local branch. This includes the Python scripts and the notebooks.

6 3Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

4. Push the local branch to remove the SCM server using the SCM tool commands.

5. We can see that the local branch was pushed to the SCM server.

6 4Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

After code has been checked into the source code management system, it can then be sent to the build server and to

different environments for testing and final deployment.

Please refer to the online documentation for more information on CI/CD integration with Databricks:

AWS AZURE

6 5Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/ci-cd/index.html
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/ci-cd/ci-cd-azure-devops
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks allows you to submit code as Java/Scala JAR files, Python scripts and wheel/egg files, or notebook code to run

as scheduled or immediate jobs on a Databricks cluster. A basic cron-style job scheduler is provided with the platform

to schedule and launch jobs. The Databricks job scheduler can be accessed through the UI, REST API or command line

interface. You can also use third-party external job schedulers to create more complex workflows/DAG by utilizing the REST

API interface for Databricks. You can create and launch a workflow from an external job scheduler and have each task in

the workflow execute code on a Databricks cluster (Java/Scala JAR files, Python scripts and wheel/egg, or notebooks) via

REST calls, and then get the return code (exit code) via REST to determine how to proceed in your workflow — i.e., continue

processing or fail the entire workflow.

Azure Data Factory (ADF) and Apache Airflow are popular tools to schedule and launch tasks. Databricks has native

integration with both ADF and Apache Airflow for job scheduling. Please refer to the online documentation for more

information on this integration:

Important considerations for job scheduling on Databricks:

• A workspace may have up to 1,000 jobs that appear in the UI

• The number of jobs a workspace can create in an hour is limited to 5,000 (includes “run now” and “runs submit”).

This limit also affects jobs created by the REST API and notebook workflows.

• The number of actively concurrent runs a workspace can create is limited to 150

• Multiple workspaces can be used if you exceed the above limits

Spark JAR Jobs vs. Spark Submit Jobs

Jobs in Databricks are based on different task types. The task type dictates the type of code to be executed.

The traditional spark-submit syntax is also supported for JAR files. These are the supported task types:

• Notebook

• Spark JAR

• Spark Submit

• Python Script

CHAPTER 3: APPLICATION DEVELOPMENT,

TESTING AND DEPLOYMENT

Job scheduling and
submission

AWS AZURE

6 6Migration Guide: Hadoop to Databricks

https://docs.databricks.com/dev-tools/data-pipelines.html
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/data-pipelines
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

When dealing with JAR files, we recommend using the Spark JAR task type. The Spark Submit task does not support

autoscaling or the use of the Databricks utilities JAR. The latter allows you to leverage the dbutils.* APIs to manage DBFS,

Notebooks, Secrets, etc.

If you would like to convert an existing spark-submit job to an equivalent Spark JAR version, you’ll need to make the

following changes:

• Your code will need to retrieve the SparkContext using SparkContext.getOrCreate()

• Parameters will be passed to the job via task parameter variables in JSON format

AWS Azure

• Any files passed via —FILES must be moved to cloud storage. The corresponding code that accesses the files will need

to reference cloud storage.

• Num-executors will be specified in the cluster configuration for the job as the Max Workers in the cluster configuration

AWS Azure

• Any Spark configuration parameters will be specified in the cluster configuration for the job

Spark Submit jobs

Hadoop users familiar with Spark may already be using spark-submit via YARN to run their Spark applications.

Databricks allows you to execute jobs using spark-submit, similar to how you might be doing this today on Hadoop.

There are some differences between how Spark works on YARN and on Databricks:

• The default functionality on a Databricks cluster is to launch one executor per worker VM and use all the cores on

that worker VM. Much of the RAM will also be used for that single executor minus the RAM used for OS and other

system processes.

• To launch multiple executors on a VM, you

need to configure spark.executor.cores

and spark.executor.memory for the cluster

settings under Spark Config:

Enter your Spark configuration option here.
Provide only one key-value pair per line.
Example:
spark.speculation true
spark.kryo.registrator my.package.MyRegistrator

6 7Migration Guide: Hadoop to Databricks

https://docs.databricks.com/jobs.html#task-parameter-variables
https://docs.microsoft.com/en-us/azure/databricks/jobs#--task-parameter-variables
https://docs.databricks.com/jobs.html#create-a-job
https://docs.microsoft.com/en-us/azure/databricks/jobs#--create-a-job
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

• For example, let’s say you launch a cluster with two worker VMs, with each having 61GB RAM and eight cores.

By default, Databricks will launch a total of two executors:

• If you want two executors per VM, you can configure Spark Config like this:

spark.executor.cores 4
spark.executor.memory 25g

• It’s important to point out for this example that setting the memory to 30g (approximately half)

did not launch multiple executors. A lower value of 25g worked.

• You will now get two executors per worker VM, with each executor using the same IP but a different port:

6 8Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

YARN shares the resources on a Hadoop cluster, allowing for multiple production jobs to be submitted to the same cluster.

The Hadoop cluster is an always-on cluster, whereas Databricks clusters are ephemeral and autoscaling. A Databricks

cluster remains active for the duration of the job and then terminates. For Databricks, we recommend that production jobs

each run on their own autoscaling cluster. After job completion, that cluster will terminate. This provides better isolation

— jobs are run independently, there’s no resource contention with multiple jobs sharing and competing for resources, and

there are stronger job completion guarantees.

Please refer to the online documentation for more information:

Creating and submitting jobs on Databricks

AWS Azure

Migrating production workloads from Apache Spark on Hadoop to Databricks

AWS Azure

Spark job submissions to YARN can be done via spark-submit and you might be doing this today. For example, the following

is a spark-submit command on YARN to run a Python script:

Job submission on Databricks can be done via the UI, REST API and command line interface (CLI). Let’s look at some

examples:

• Job submission via UI

• Job submission via API and CLI

• Job submission to existing cluster

6 9Migration Guide: Hadoop to Databricks

https://docs.databricks.com/data-engineering/jobs/jobs-user-guide.html#create-a-job
https://docs.microsoft.com/en-us/azure/databricks/jobs
https://docs.databricks.com/migration/production.html
https://docs.microsoft.com/en-us/azure/databricks/migration/production
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

1. Job submission via UI

Create a new job, configure spark-submit, configure the cluster, schedule the job and set advanced properties if needed:

7 0Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

2. Job submission via API and CLI

You can use curl to call the REST API and create the job:

Execute the command so that the job gets created. In this example, we created a file containing the command that will

execute as a bash script. This will return a job ID:

Run the job from the CLI using the job ID. This will return a run ID:

We can see from the UI that the job is running:

7 1Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

3. Job submission to existing cluster

Job submission via spark-submit on Databricks can only be executed on new clusters and not on existing clusters. To run a

job on an existing cluster, we can create the job as a spark_python_task:

Execute the command so that the job gets created. In this example, we created a file containing the command. This will

return a job ID:

Run the job from the CLI using the job ID:

We can see from the UI that the job is running:

7 2Migration Guide: Hadoop to Databricks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Next steps

04
 CHAPTER

The Path Forward

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

CHAPTER 4: THE PATH FORWARD

Next steps
Migration of your Hadoop environment to Databricks delivers significant business benefits, including:

Reduction of operational cost

Increased productivity of your data teams

Unlocking of advanced AI and BI capabilities that drive top-line growth

Databricks, along with their preferred community of migration partners, is available to assist with your initiative

by providing the following services:

• Inventorying your existing Hadoop landscape

• Developing a detailed future state reference architecture

• Quantifying the business benefits of migration

• Creating a joint implementation plan with your team

• Co-delivering a migration project

• Retiring your existing Hadoop environment

Please reach out to us at sales@databricks.com if you
are interested in exploring Hadoop to Databricks migration.

MORE RESOURCES AVAILABLE AT DATABRICKS.COM/ MIGRATION.

7 4Migration Guide: Hadoop to Databricks

mailto:sales@databricks.com
databricks.com/migration
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is the data and AI company. More than 5,000 organizations worldwide — including

Comcast, Condé Nast, H&M and over 40% of the Fortune 500 — rely on the Databricks

Lakehouse Platform to unify their data, analytics and AI. Databricks is headquartered in San

Francisco, with offices around the globe. Founded by the original creators of Apache Spark™,

Delta Lake and MLflow, Databricks is on a mission to help data teams solve the world’s

toughest problems. To learn more, follow Databricks on Twitter, LinkedIn and Facebook.

About Databricks

© Databricks 2021. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use

