
Big Book of Machine
Learning Use Cases
A collection of technical
blogs, including code
samples and notebooks

eBook

22
NDND

ED I T I O
N

ED IT I O
N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

CHAPTER 1 : 	

Introduction	 3

CHAPTER 2 : 	

Moneyball 2.0: Improving Pitch-by-Pitch Decision-Making With MLB’s Statcast Data	 4

CHAPTER 3: 	

Improving On-Shelf Availability for Items With Out-of-Stock Modeling	 14

CHAPTER 4: 	

Using Dynamic Time Warping and MLflow to Detect Sales Trends	

Part 1: Understanding Dynamic Time Warping	 20

Part 2: Using Dynamic Time Warping and MLflow to Detect Sales Trends	 26

CHAPTER 5: 	

Detecting Financial Fraud at Scale With Decision Trees and MLflow on Databricks	 34

CHAPTER 6: 	

Fine-Grained Time Series Forecasting at Scale With Prophet and Apache SparkTM	 45

CHAPTER 7: 	

Applying Image Classification With PyTorch Lightning on Databricks	 52

CHAPTER 8: 	

Processing Geospatial Data at Scale With Databricks 	 63

CHAPTER 9 : 	

Exploring Twitter Sentiment and Crypto Price Correlation Using Databricks 	 77

CHAPTER 1 0: 	

Customer Case Studies	 86

Contents

2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Organizations across many industries are using machine learning to power

new customer experiences, optimize business processes and improve

employee productivity. From detecting financial fraud to improving the

play-by-play decision-making for professional sports teams, this book

brings together a multitude of practical use cases to get you started on

your machine learning journey. The collection also serves as a guide —

including code samples and notebooks — so you can roll up your sleeves

and dive into machine learning on the Databricks Lakehouse.

CHAPTER 1 :

Introduction

3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Introduction

The Oakland Athletics baseball team in 2002 used data analysis and quantitative modeling to identify

undervalued players and create a competitive lineup on a limited budget. The book “Moneyball,” written

by Michael Lewis, highlighted the A’s ‘02 season and gave an inside glimpse into how unique the

team’s strategic data modeling was for its time. Fast-forward 20 years — the use of data science and

quantitative modeling is now a common practice among all sports franchises and plays a critical role

in scouting, roster construction, game-day operations and season planning.

By Max Wittenberg

CHAPTER 2 :

Moneyball 2.0:
Improving Pitch-by-Pitch
Decision-Making With
MLB’s Statcast Data

Figure 1: Position and scope of Hawkeye cameras at a baseball stadium

4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

In 2015, Major League Baseball (MLB) introduced Statcast, a set of cameras and

radar systems installed in all 30 MLB stadiums. Statcast generates up to seven

terabytes of data during a game, capturing every imaginable data point and

metric related to pitching, hitting, running and fielding, which the system collects

and organizes for consumption. This explosion of data has created opportunities

to analyze the game in real time, and with the application of machine learning,

teams are now able to make decisions that influence the outcome of the game,

pitch by pitch. It’s been 20 seasons since the A’s first introduced the use of data

modeling to baseball. Here’s an inside look at how professional baseball teams

use technologies like Databricks to create the modern-day “Moneyball” and gain

competitive advantages that data teams provide to coaches and players on

the field.

Figure 3: Sample of data collected by Statcast

Figure 2: Numbers represent events during a play captured by Statcast

5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/Statcast
https://www.databricks.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Background

Data teams need to be faster than ever to provide analytics to coaches and

players so they can make decisions as the game unfolds. The decisions made from

real-time analytics can dramatically change the outcome of a game and a team’s

season. One of the more memorable examples of this was in game six of the 2020

World Series. The Tampa Bay Rays were leading the Los Angeles Dodgers 1-0 in

the sixth inning when Rays pitcher Blake Snell was pulled from the mound while

pitching arguably one of the best games of his career, a decision head coach Kevin

Cash said was made with the insights from their data analytics. The Rays went on

to lose the game and World Series. Hindsight is always 20-20, but it goes to show

how impactful data has become to the game. Coaching staff task their data teams

with assisting them in making critical decisions — for example, should a pitcher

throw another inning or make a substitution to avoid a potential injury? Does a

player have a greater probability of success stealing from first to second base,

or from second to third?

I have had the opportunity to work with many MLB franchises and discuss what

their priorities and challenges are related to data analytics. Typically, I hear three

recurring themes their data teams are focused on that have the most value in

helping set their team up for success on the field:

1. Speed: Since every MLB team has access to the Statcast data during a game,

one way to create a competitive advantage is to ingest and process the data

faster than your opponent. The average length of time between pitches is

	 23 seconds, and this window of time represents a benchmark from which 	

Statcast data can be ingested and processed for coaches to use to make

decisions that can impact the outcome of the game.

2. Real-Time Analytics: Another competitive advantage for teams is the

creation of insights from their machine learning models in real time.

An example of this is knowing when to substitute out a pitcher from fatigue,

where a model interprets pitcher movement and data points created

from the pitch itself and is able to forecast deterioration of performance

pitch by pitch.

3. Ease of Use: Analytics teams run into problems ingesting the volumes of

data Statcast produces when running data pipelines on their local computers.

This gets even more complicated when trying to scale their pipelines to

capture minor league data and integrate with other technologies. Teams want

a collaborative, scalable analytics platform that automates data ingestion

with performance, creating the ability to impact in-game decision-making.

Baseball teams using Databricks have developed solutions for these priorities

and several others. They have shaped what the modern-day version of

“Moneyball” looks like. What follows is their successful framework explained

in an easy-to-understand way.

6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.sportingnews.com/us/mlb/news/blake-snell-kevin-cash-analytics-explained-world-series/15ja52nunza2b1b37untxyltk3
https://www.databricks.com/blog/2020/06/04/how-the-minnesota-twins-scaled-pitch-scenario-analysis-to-measure-player-performance-part-1.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Getting the data

When a pitcher throws a baseball, Hawkeye cameras collect the data and save it

to an application that teams are able to access using an application programming

interface (API) owned by MLB. You can think of an API as an intermediate

connection between two computers to exchange information. The way this works

is: a user sends a request to an API, the API confirms that the user has permission

to access the data and then sends back the requested data for the user to

consume. To use a restaurant as an analogy – a customer tells a waiter what they

want to eat, the waiter informs the kitchen what the customer wants to eat, the

waiter serves the food to the customer. The waiter in this scenario is the API.

	

	 Figure 4: Example of how an API works, using a restaurant analogy

This simple method of retrieving data is called a “batch” style of data collection

and processing, where data is gathered and processed once. As noted earlier,

however, data is typically available through the API every 23 seconds (the average

time between pitches). This means data teams need to make continuous requests

to the API in a method known as “streaming,” where data is continuously

collected and processed. Just as a waiter can quickly become overworked

fulfilling customers’ needs, making continuous API requests for data creates some

challenges in data pipelines. With the assistance from these data teams, however,

we have created code to accommodate continuously collecting Statcast data

during a game. You can see an example of the code using a test API below.

from pathlib import Path
import json

class sports_api:
 def _init_(self, endpoint, api_key):
 self.endpoint = endpoint
 self.api_key = api_key
 self.connection = self.endpoint + self.api_key

 def fetch_payload(self, request_1, request_2, adls_path):
 url = f”{self.connection}&series_id={request_1}{request_2}-
99.M”
 r = requests.get(url)
 json_data = r.json()
 now = time.strftime(“%Y%m%d-%H%M%S”)
 file_name = f”json_data_out_{now}”
 file_path = Path(“dbfs:/”) / Path(adls_path) / Path(file_name)
 dbutils.fs.put(str(file_path), json.dumps(json_data), True)
 return str(file_path)

Figure 5: Interacting with an API to retrieve and save data

This code decouples the steps of getting data from the API and transforming

it into usable information, which in the past, we have seen, can cause latency

in data pipelines. Using this code, the Statcast data is saved as a file to cloud

storage automatically and efficiently. The next step is to ingest it for processing.

7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Automatically load data with Auto Loader

As pitch and play data is continuously saved to cloud storage, it can be ingested

automatically using a Databricks feature called Auto Loader. Auto Loader scans

files in the location they are saved in cloud storage and loads the data into

Databricks where data teams begin to transform it for their analytics. Auto Loader

is easy to use and incredibly reliable when scaling to ingest larger volumes of data

in batch and streaming scenarios. In other words, Auto Loader works just as well

for small and large data sizes in batch and streaming scenarios. The Python code

below shows how to use Auto Loader for streaming data.

df = spark.readStream.format(“cloudFiles”) \
 .option(,) \
 .schema() \
 .load()

df.writeStream.format(“delta”) \
 .option(“checkpointLocation”,) \
 .trigger() \
 .start()

Figure 6: Setup of Auto Loader to stream data

One challenge in this process is working with the file format in which the Statcast

is saved, a format called JSON. We are typically privileged to work with data that is

already in a structured format, such as the CSV file type, where data is organized

in columns and rows. The JSON format organizes data into arrays and despite its

wide use and adoption, I still find it difficult to work with, especially in large sizes.

Here’s a comparison of data saved in a CSV format and a JSON format.

Figure 7: Comparison of CSV and JSON formats

It should be obvious which of these two formats data teams prefer to work

with. The goal then is to load Statcast data in the JSON format and transform it

into the friendlier CSV format. To do this, we can use the semi-structured data

support available in Databricks, where basic syntax allows us to extract and

transform the nested data you see in the JSON format to the structured CSV style

format. Combining the functionality of Auto Loader and the simplicity of semi-

structured data support creates a powerful data ingestion method that makes the

transformation of JSON data easy.

8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Using Databricks’ semi-structured data support with Auto Loader

spark.readStream.format(“cloudFiles”) \
 .option(“cloudFiles.format”, “json”) \
 .option(“cloudFiles.schemaLocation”, “”) \
 .load(“”) \
 .selectExpr(
 “*”,
 “tags:page.name”, # extracts {“tags”:{“page”:{“name”:...}}}
 “tags:page.id::int”, # extracts {“tags”:{“page”:{“id”:...}}} and
casts to int
 “tags:eventType” # extracts {“tags”:{“eventType”:...}}
)

As the data is loaded in, we save it to a Delta table to start working with it further.

Delta Lake is an open format storage layer that brings reliability, security and

performance to a data lake for both streaming and batch processing and is the

foundation of a cost-effective, highly scalable data platform. Semi-structured

support with Delta allows you to retain some of the nested data if needed. The

syntax allows flexibility to maintain nested data objects as a column within a Delta

table without the need to flatten out all of the JSON data. Baseball analytics teams

use Delta to version Statcast data and enforce specific needs to run their analytics

on while organizing it in a friendly structured format.

Auto Loader writing data to a Delta table as a stream

Define the schema and the input, checkpoint, and output paths.
read_schema = (“id int, “ +
 “firstName string, “ +
 “middleName string, “ +
 “lastName string, “ +
 “gender string, “ +
 “birthDate timestamp, “ +
 “ssn string, “ +
 “salary int”)
json_read_path = ‘/FileStore/streaming-uploads/people-10m’
checkpoint_path = ‘/mnt/delta/people-10m/checkpoints’
save_path = ‘/mnt/delta/people-10m’

people_stream = (spark \
 .readStream \
 .schema(read_schema) \
 .option(‘maxFilesPerTrigger’, 1) \
 .option(‘multiline’, True) \
 .json(json_read_path))

people_stream.writeStream \
 .format(‘delta’) \
 .outputMode(‘append’) \
 .option(‘checkpointLocation’, checkpoint_path) \
 .start(save_path)

With Auto Loader continuously streaming in data after each pitch, semi-structured

data support transforming it into a consumable format, and Delta Lake organizing

it for use, data teams are now ready to build analytics that gives their team the

competitive edge on the field.

9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Machine learning for insights

Recall the Rays pulling Blake Snell from the mound during the World Series — that

decision came from insights coaches saw in their predictive models. Statistical

analysis of Snell’s historical Statcast data provided by Billy Heylen of sportingnews.

com indicated Snell had not pitched more than six innings since July 2019, had a

lower probability of striking out a batter when facing them for the third time in a

game, and was being relieved by teammate Nick Anderson, whose own pitch data

suggests was one the strongest closers in MLB, with a 0.55 earned run average

(ERA) and 0.49 walks and hits per innings pitched (WHIP) during the 19 regular-

season games he pitched in 2020. Predictive models analyze data like this in real

time and provide supporting evidence and recommendations coaches use to

make critical decisions.

Machine learning models are relatively easy to build and use, but data teams often

struggle to implement them into streaming use cases. Add in the complexity of

how models are managed and stored and machine learning can quickly become

out of reach. Fortunately, data teams use MLflow to manage their machine learning

models and implement them into their data pipelines. MLflow is an open source

platform for managing the end-to-end machine learning lifecycle and includes

support for tracking predictive results, a model registry for centralizing models that

are in use and others in development, and a serving capability for using models in

data pipelines.

Figure 8: MLflow overview

1 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://docs.databricks.com/applications/mlflow/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

To implement machine learning algorithms and models to real-time use cases,

data teams use the model registry where a model is able to read data sitting in

a Delta table and create predictions that are then used during the game. Here’s

an example of how to use a machine learning model while data is automatically

loaded with Auto Loader:

Getting a machine learning model from the registry and using it with

Auto Loader

#get model from the model registry
model = mlflow.spark.load_model(
 model_uri=f”models:/{model_name}/{‘Production’}”)

#read data from bronze table as a stream
events = spark.readStream \
 .format(“delta”) \
 #.option(“cloudFiles.maxFilesPerTrigger”, 1)\
 .schema(schema) \
 .table(“baseball_stream_bronze”)

#pass stream through model
model_output = model.transform(events)

#write stream to silver delta table
events.writeStream \
 .format(‘delta’) \
 .outputMode(“append”) \
 .option(‘checkpointLocation’, “/tmp/baseball/”) \
 .table(“default.baseball_stream_silver”)

The outputs a machine learning model creates can then be displayed in a data

visualization or dashboard and used as printouts or shared on a tablet during a

game. MLB franchises working on Databricks are developing fascinating use cases

that are being used during games throughout the season. Predictive models are

proprietary to the individual teams, but here’s an actual use case running on

Databricks that demonstrates the power of real-time analytics in baseball.

1 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Bringing it all together with spin ratios and sticky stuff

MLB introduced a new rule for the 2021 season meant to discourage pitcher’s use

of “sticky stuff,” a substance hidden in mitts, belts or hats that when applied to a

baseball can dramatically increase the spin ratio of a pitch, making it difficult for

batters to hit. The rule suspends for 10 games pitchers discovered using sticky

stuff. Coaches on opposing teams have the ability to request an umpire check for

the substance if they suspect a pitcher to be using it during a game. Spin ratio is a

data point that is captured by Hawkeye cameras, and with real-time analytics and

machine learning, teams are now able to make justified requests to umpires with

the hopes of catching a pitcher using the material.

Figure 9: Illustration of how spin affects a pitch

Figure 10: Trending spin rate of fastballs per season and after rule introduction on

June 3, 2021

How spin affects a pitch

Following the same framework outlined above, we ingest Statcast data pitch by

pitch and have a dashboard that tracks the spin ratio of the ball for all pitchers

during all MLB games. Using machine learning models, predictions are sent to the

dashboard that flag outliers against historical data and the pitcher’s performance

in the active game, which can alert coaches when they fall outside of ranges

anticipated by the model. With Auto Loader, Delta Lake and MLflow, all data

ingestion and analytics happen in real time.

1 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.washingtonpost.com/sports/2021/06/15/mlb-pitchers-sticky-stuff-enforcement-suspensions/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Figure 11: Dashboard for “sticky stuff” detection in real time

Technologies like Statcast and Databricks have brought real-time analytics to

sports and changed the paradigm of what it means to be a data-driven team.

As data volumes continue to grow, having the right architecture in place to capture

real-time insights will be critical to staying one step ahead of the competition.

Real-time architectures will be increasingly important as teams acquire and

develop players, plan for the season and develop an analytically enhanced

approach to their franchise. Ask about our Solution Accelerator with Databricks

partner Lovelytics, which provides sports teams with all the resources they need

to quickly create use cases like the ones described in this blog.

1 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/company/contact
https://lovelytics.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Introduction

Retailers are missing out on nearly $1 trillion in global sales because they don’t have on hand what

customers want to buy in their stores. Adding to the challenge, a study of 600 households and several

retailers by research firm IHL Group details that shoppers encounter out-of-stocks (OOS) as often as

one in three shopping trips, according to the report. And a study by IRI found that 20% of all out-of-

stocks remain unresolved for more than 3 days.

Overall, studies show that the average OOS rate is about 8%. That means that one out of 13 products

is not purchasable at the exact moment the customer wants to get it in the store. OOS is one of the

biggest problems in retail, but thankfully it can be solved with real-time data and analytics.

In this write-up, we showcase the new Tredence-Databricks combined On-Shelf Availability Solution

Accelerator. The accelerator is a robust quick-start guide that is the foundation for a full out-of-stock

or supply chain solution. We outline how to approach out-of-stocks with the Databricks Lakehouse to

solve for on-shelf availability in real time.

And the impact of solving this problem? A 2% improvement in on-shelf availability is worth 1% in

increased sales for retailers.

By Rich Williams, Morgan Seybert,

Rob Saker and Bryan Smith

CHAPTER 3:

Improving On-Shelf
Availability for Items With
AI Out-of-Stock Modeling

This post was written in collaboration with Databricks partner

Tredence. We thank Rich Williams, Vice President Data

Engineering, and Morgan Seybert, Chief Business Officer, of

Tredence for their contributions.

1 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.retaildive.com/news/out-of-stocks-could-be-costing-retailers-1t/526327/
https://www.retaildive.com/news/out-of-stocks-could-be-costing-retailers-1t/526327/
https://cdn.ymaws.com/www.theipm.org.uk/resource/resmgr/communities/connected_shopper/osa_white_paper_-_final__1_.pdf
https://www.winsightgrocerybusiness.com/operations/inventory-management-out-time-out-stocks
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Growth in e-commerce makes item availability
more important

The significance of this problem has been amplified by the availability of

e-commerce for delivery and curbside pickup orders. While customers that face

an out-of-stock at the store level may just not purchase that item, they are likely to

purchase other items in the store. Buying online means that they may just switch

to a different retailer.

The impact is not just limited to a bottom line loss in revenue. Research from

NielsenIQ shows that 30% of shoppers will visit new stores when they can’t find

the product they are looking for, leading to a loss in long-term loyalty. Members of

e-commerce membership programs are most likely to switch retailers in the event

of an out-of-stock. IHL estimates that “upwards of 24% of Amazon’s current retail

revenue comes from customers who first tried to buy the product in-store.”

Retailers have responded to this with a variety of tactics including over-ordering

of items, which increases carrying costs and lowers margins when they are forced

to sell excess inventory at a discount. In some instances, retailers and distributors

will rush order products or use intra-delivery “hot shots” for additional deliveries,

which come at an additional cost. Some retailers have invested in robotics, but

many pull out of their pilots citing costs. And other retailers are experimenting with

computer vision, although these approaches merely notify them when an item is

unavailable and don’t predict item availability.

It’s not just retailers that are impacted by OOS. Retailers, consumer goods

companies, distributors, brokers and other firms each invest in third-party audits,

which typically involve employees visiting stores to identify gaps on the shelf. On

any given day, tens of thousands of individuals are visiting stores to validate item

availability. Is this really the best use of time and resources?

1 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Why hasn’t technology solved out-of-stocks yet?

Out-of-stock issues have been around for decades, so why hasn’t the retail

industry been able to solve an issue of this magnitude that impacts shoppers,

retailers and brands alike? The seemingly simple solution is to require employees

to manually count the items on hand. But with potentially hundreds of thousands

of individual SKUs distributed across a large format retail location that may be

servicing customers nearly 24 hours a day, this simply isn’t a realistic task to

perform on a regular basis.

Individual stores do perform inventory counts periodically and then rely on point-

of-sale (POS) and inventory management software to track changes that drive unit

counts up and down. But with so much activity within a store location, some of the

day-to-day recordkeeping falls through the cracks, not to mention the impact of

shrinkage, which can be hard to detect, on in-store supplies.

So the industry falls back on modeling. But given fundamental problems in data

accuracy, these approaches can drive a combination of false positives and false

negatives that make model predictions difficult to employ. Time sensitivities

further exacerbate the problem, as the large volume of data that often must be

crunched in order to arrive at model predictions must be handled fast enough for

the results to be actionable. The problem of building a reliable system for stockout

prediction and alerting is not as straightforward as it might appear.

Introducing the On-Shelf Availability Solution Accelerator

Our partners at Tredence approached us with the idea of publishing a Solution

Accelerator that they’ve created as the core of a broader Supply Chain Control

Tower offering. Tredence works with the largest retailers on the planet and

understands the nuances of modeling OOS and knew that Databricks’ processing

and their advanced data science capabilities were a winning combination.

While the OSA solution focuses on driving sales through improved stock availability

on the shelves, the broader Retail Supply Chain Control Tower solves for multiple

adjacent merchandising problems – inventory design for the stores, efficient store

replenishments, design of store network for omnichannel operations, etc. Knowing

how big a problem this is in retail, we immediately took them up on their offer.

The first step in addressing OSA challenges is to examine their occurrence in

the historical data. Past occurrences point to systemic issues with suppliers and

internal processes, which will continue to cause problems if not addressed.

To support this analysis, Tredence made available a set of historical inventory and

sales data. These data sets were simulated, given the obvious sensitivities any

retailer would have around this information, but were created in a manner that

frequently observed OSA challenges manifested in the data. These challenges were:

1. Phantom inventory			 3. Zero-sales events

2. Safety stock violations			 4. On-shelf availability

1 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Phantom inventory

In a phantom inventory scenario, the units reported to be on hand do not align

with units expected based on reported sales and replenishment.

Poor tracking of replenishment units, unreported or undetected shrinkage,

and out-of-band processes coupled with infrequent and sometimes inaccurate

inventory counts create a situation where retailers believe they have more

units on hand than they actually do. If large enough, this phantom inventory

may delay or even prevent the ordering of replenishment units, leading to an

out-of-stock scenario.

Safety stock violations

Most organizations establish a threshold for a given product’s inventory, below

which replenishment orders are triggered. If set too low, inadequate lead times or

even minor disruptions to the supply chain may lead to an out-of-stock scenario

while new units are moving through the replenishment pipeline.

The flip side of this is that if set too high, retailers risk overstocking products that

may expire, risk damage or theft, or otherwise consume space and capital that

may be better employed in other areas. Finding the right safety stock level for a

product in a specific location is a critical task for effective inventory management.

Figure 1: The misalignment of reported inventory, with inventory expected based on sales and

replenishment, creating phantom inventory

Figure 2: Safety stock levels not providing adequate lead time to prevent out-of-stock issues

1 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Zero-sales events

Phantom inventory and safety stock violations are the two most common

causes of out-of-stocks. Regardless of the cause, out-of-stock events manifest

themselves in periods when no units of a product are sold.

Not every occurrence of a zero-sales event reflects an out-of-stock concern.

Some products don’t sell every day, and for some slow-moving products,

multiple days may go by within which zero units are sold while the product

remains adequately stocked.

The trick for scrutinizing zero-sales events at the item level is to understand the

probability of which at least one unit of a product sells on a given day and to then

set a cumulative probability threshold for consecutive days reflecting zero-sales.

When the cumulative probability of back-to-back zero-sales events exceeds the

threshold, it’s time for the inventory of that product to be examined.

On-shelf availability

While understanding scenarios in which items are not in stock is critical, it’s

equally important to recognize when products are technically available for sale

but underperforming because of non-optimal inventory management practices.

These merchandising problems may be due to poor placement of displays within

the store, the stocking of products deep within a shelf, the slow transfer of product

from the backroom to shelves, or a myriad of other scenarios in which inventory

is adequate to meet demand but customers cannot easily view or access it.

To detect these kinds of problems, it is helpful to compare actual sales to

those forecasted for the period. While not every missed sales goal indicates

an on-shelf availability problem, a sustained miss might signal a problem that

requires further attention.

Figure 3: Examining the cumulative probability of consecutive zero-sales events to identify potential

out-of-stock issues

Figure 4: Depressed sales due to poor product placement leading to an on-shelf availability problem

1 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

How we approach out-of-stocks with the Databricks
Lakehouse Platform

The evaluation of phantom inventories, safety stock violations, zero-sales events

and on-shelf availability problems requires a platform capable of performing a

wide range of tasks. Inventory and sales data must be aggregated and reconciled

at a per-period level. Complex logic must be applied across these data to examine

aggregate and series patterns. Forecasts may need to be generated for a wide

range of products across numerous locations. And the results of all this work

must be made accessible to the business analysts responsible for scrutinizing the

findings before soliciting action from those in the field.

Databricks provides a single platform capable of all this work. The elastic

scalability of the platform ensures that the processing of large volumes of

data can be performed in an efficient and timely manner. The flexibility of its

development environment allows data engineers to pivot between common

languages, such as SQL and Python, to perform data analysis in a variety of modes.

Pre-integrated libraries provide support for classic time series forecasting

algorithms and techniques, and easy programmatic installations of alternative

libraries such as Facebook Prophet allow data scientists to deliver the right

forecast for the business’s needs. Scalable patterns ensure data science tasks

are also tackled in an efficient and timely manner with little deviation from the

standard approaches data scientists typically employ.

And the SQL Analytics interface, as well as robust integrations with Tableau and

Power BI, allows analysts to consume the results of the data scientists’ and data

engineers’ work without having to first port the data to alternative platforms.

Getting started

Be sure to check out and download the notebooks for out-of-stock modeling.

As with any of our Solution Accelerators, these are a foundation for a full solution.

If you would like help with implementing a full out-of-stock or supply chain

solution, go visit our friends at Tredence.

To see these features in action, please check out the following notebooks

demonstrating how Tredence tackled out-of-stocks on the Databricks platform:

OSA 1: Data Preparation

OSA 2: Out-of-Stocks

OSA 3: On-Shelf Availability

1 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/product/production-ready
https://www.databricks.com/product/production-ready
https://docs.databricks.com/spark/latest/spark-sql/index.html
https://docs.databricks.com/languages/python.html
https://docs.databricks.com/runtime/index.html
https://docs.databricks.com/libraries/notebooks-python-libraries.html
https://www.databricks.com/blog/2021/04/06/fine-grained-time-series-forecasting-at-scale-with-facebook-prophet-and-apache-spark-updated-for-spark-3.html
https://www.databricks.com/product/databricks-sql
https://docs.databricks.com/integrations/bi/tableau.html
https://docs.databricks.com/integrations/bi/power-bi.html
https://www.tredence.com/
https://www.databricks.com/notebooks/osa-tredence/01_data-preparation.html
https://www.databricks.com/notebooks/osa-tredence/02_out-of-stock.html
https://www.databricks.com/notebooks/osa-tredence/03_on-shelf-availability.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Introduction

The phrase “dynamic time warping,” at first read, might evoke images of Marty McFly driving his DeLorean at

88 MPH in the “Back to the Future” series. Alas, dynamic time warping does not involve time travel; instead,

it’s a technique used to dynamically compare time series data when the time indices between comparison

data points do not sync up perfectly.

As we’ll explore below, one of the most salient uses of dynamic time warping is in speech recognition —

determining whether one phrase matches another, even if the phrase is spoken faster or slower than its

comparison. You can imagine that this comes in handy to identify the “wake words” used to activate your

Google Home or Amazon Alexa device — even if your speech is slow because you haven’t yet had your daily

cup(s) of coffee.

Dynamic time warping is a useful, powerful technique that can be applied across many different domains.

Once you understand the concept of dynamic time warping, it’s easy to see examples of its applications in

daily life, and its exciting future applications. Consider the following uses:

 � Financial markets: comparing stock trading data over similar time frames, even if they do not match

up perfectly. For example, comparing monthly trading data for February (28 days) and March (31 days).

 � Wearable fitness trackers: more accurately calculating a walker’s speed and the number of steps,

even if their speed varied over time

 �Route calculation: calculating more accurate information about a driver’s ETA, if we know something

about their driving habits (for example, they drive quickly on straightaways but take more time than

average to make left turns)

Data scientists, data analysts and anyone working with time series data should become familiar with this

technique, given that perfectly aligned time series comparison data can be as rare to see in the wild as

perfectly “tidy” data.

By Ricardo Portilla, Brenner Heintz

and Denny Lee

Try this notebook in Databricks

CHAPTER 4:

Using Dynamic Time
Warping and MLflow to
Detect Sales Trends

Part 1 of our Using Dynamic Time Warping

and MLflow to Detect Sales Trends series

2 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.265630156.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

In this blog series, we will explore:

 ��The basic principles of dynamic time warping

 ��Running dynamic time warping on sample audio data

 �Running dynamic time warping on sample sales data using MLflow

Dynamic time warping
The objective of time series comparison methods is to produce a distance metric

between two input time series. The similarity or dissimilarity of two time series

is typically calculated by converting the data into vectors and calculating the

Euclidean distance between those points in vector space.

Dynamic time warping is a seminal time series comparison technique that has

been used for speech and word recognition since the 1970s with sound waves

as the source; an often cited paper is “Dynamic time warping for isolated word

recognition based on ordered graph searching techniques.”

Background

This technique can be used not only for pattern matching, but also anomaly

detection (e.g., overlap time series between two disjoint time periods to

understand if the shape has changed significantly, or to examine outliers). For

example, when looking at the red and blue lines in the following graph, note the

traditional time series matching (i.e., Euclidean matching) is extremely restrictive.

On the other hand, dynamic time warping allows the two curves to match up

evenly even though the X-axes (i.e., time) are not necessarily in sync. Another way

to think of this is as a robust dissimilarity score where a lower number means the

series is more similar.

Two time series (the base time series and new time series) are considered similar

when it is possible to map with function f(x) according to the following rules so as

to match the magnitudes using an optimal (warping) path.

E U C L I D E A N M AT C H I N G

D Y N A M I C T I M E W A R P M AT C H I N G
Source: Wikimedia Commons

File: Euclidean_vs_DTW.jpg

2 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://ieeexplore.ieee.org/document/1171695
https://ieeexplore.ieee.org/document/1171695
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Sound pattern matching

Traditionally, dynamic time warping is applied to audio clips to determine the

similarity of those clips. For our example, we will use four different audio clips

based on two different quotes from a TV show called The Expanse. There are four

audio clips (you can listen to them below, but this is not necessary) — three of

them (clips 1, 2 and 4) are based on the quote

“Doors and corners, kid. That’s where they get you.”

And in one clip (clip 3) is the quote

“You walk into a room too fast, the room eats you.”

Below are visualizations using matplotlib of the four audio clips:

 ��Clip 1: This is our base time series based on the quote “Doors and corners,

kid. That’s where they get you.”

 ��Clip 2: This is a new time series [v2] based on clip 1 where the intonation and

speech pattern are extremely exaggerated

 ��Clip 3: This is another time series that’s based on the quote “You walk into a

room too fast, the room eats you.” with the same intonation and speed as clip 1

 ��Clip 4: This is a new time series [v3] based on clip 1 where the intonation and

speech pattern is similar to clip 1

 Clip 1 | �Doors and corners, kid.
That’s where they get you. [v1]

 Clip 3 | �You walk into a room too fast,
the room eats you.

 Clip 2 | �Doors and corners, kid.
That’s where they get you. [v2]

 Clip 4 | �Doors and corners, kid.
That’s where they get you. [v3]

 Clip 1 | �Doors and corners, kid.
That’s where they get you. [v1]

 Clip 3 | �You walk into a room too fast,
the room eats you.

 Clip 2 | �Doors and corners, kid.
That’s where they get you. [v2]

 Clip 4 | �Doors and corners, kid.
That’s where they get you. [v3]

Quotes are from “The Expanse”

2 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.imdb.com/title/tt3230854/
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you-2.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid.wav
https://www.amazon.com/The-Expanse-Season-1/dp/B018BZ3SCM
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

As noted below, the two clips (in this case, clips 1 and 4) have different intonations

(amplitude) and latencies for the same quote.

The code to read these audio clips and visualize them using Matplotlib can be

summarized in the following code snippet.

from scipy.io import wavfile
from matplotlib import pyplot as plt
from matplotlib.pyplot import figure

Read stored audio files for comparison
fs, data = wavfile.read(“/dbfs/folder/clip1.wav”)

Set plot style
plt.style.use(‘seaborn-whitegrid’)

Create subplots
ax = plt.subplot(2, 2, 1)
ax.plot(data1, color=’#67A0DA’)
...

Display created figure
fig=plt.show()
display(fig)

The full code base can be found in the notebook Dynamic Time Warping

Background.

2 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

If we were to follow a traditional Euclidean matching (per the following graph), even

if we were to discount the amplitudes, the timings between the original clip (blue)

and the new clip (yellow) do not match.

With dynamic time warping, we can shift time to allow for a time series comparison

between these two clips.

E U C L I D E A N M AT C H I N G D Y N A M I C T I M E W A R P I N G

2 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

For our time series comparison, we will use the fastdtw PyPi library; the

instructions to install PyPi libraries within your Databricks workspace can be found

here: Azure | AWS. By using fastdtw, we can quickly calculate the distance between

the different time series.

from fastdtw import fastdtw

Distance between clip 1 and clip 2
distance = fastdtw(data_clip1, data_clip2)[0]
print(“The distance between the two clips is %s” % distance)

The full code base can be found in the notebook Dynamic Time Warping

Background.

Some quick observations:

 ��As noted in the preceding graph, clips 1 and 4 have the shortest distance,

as the audio clips have the same words and intonations

 ��The distance between clips 1 and 3 is also quite short (though longer

than when compared to clip 4) — even though they have different words,

they are using the same intonation and speed

 ��Clips 1 and 2 have the longest distance due to the extremely exaggerated

intonation and speed even though they are using the same quote

As you can see, with dynamic time warping, one can ascertain the similarity of

two different time series.

Next
Now that we have discussed dynamic time warping, let’s apply this use case to

detect sales trends.

BAS E Q U E RY D I STAN C E

Clip 1 Clip 2 480148446.0

Clip 3 310038909.0

Clip 4 293547478.0

2 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pypi.org/project/fastdtw/
https://docs.azuredatabricks.net/user-guide/libraries.html#pypi-libraries
https://docs.databricks.com/user-guide/libraries.html?_ga=2.202207314.2112692442.1591844546-225663068.1585060489#pypi-libraries
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://www.databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
https://www.databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Background

Imagine that you own a company that creates 3D printed products. Last year, you knew that drone

propellers were showing very consistent demand, so you produced and sold those, and the year before you

sold phone cases. The new year is arriving very soon, and you’re sitting down with your manufacturing team

to figure out what your company should produce for next year. Buying the 3D printers for your warehouse

put you deep into debt, so you have to make sure that your printers are running at or near 100% capacity at

all times in order to make the payments on them.

Since you’re a wise CEO, you know that your production capacity over the next year will ebb and flow —

there will be some weeks when your production capacity is higher than others. For example, your capacity

might be higher during the summer (when you hire seasonal workers), and lower during the third week of

every month (because of issues with the 3D printer filament supply chain). Take a look at the chart below to

see your company’s production capacity estimate:

By Ricardo Portilla, Brenner Heintz

and Denny Lee

Try this notebook series

(in DBC format) in Databricks

Optimal Weekly Product Sales

0 10 20 30 40 50

 Week

35

30

25

20

15

10

5

0

Sa
le

s

CHAPTER 4:

Using Dynamic Time
Warping and MLflow to
Detect Sales Trends

Part 2 of our Using Dynamic Time Warping

and MLflow to Detect Sales Trends series

2 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Your job is to choose a product for which weekly demand meets your production capacity as closely

as possible. You’re looking over a catalog of products which includes last year’s sales numbers for each

product, and you think this year’s sales will be similar.

If you choose a product with weekly demand that exceeds your production capacity, then you’ll have to

cancel customer orders, which isn’t good for business. On the other hand, if you choose a product without

enough weekly demand, you won’t be able to keep your printers running at full capacity and may fail to

make the debt payments.

Dynamic time warping comes into play here because sometimes supply and demand for the product you

choose will be slightly out of sync. There will be some weeks when you simply don’t have enough capacity

to meet all of your demand, but as long as you’re very close and you can make up for it by producing

more products in the week or two before or after, your customers won’t mind. If we limited ourselves to

comparing the sales data with our production capacity using Euclidean matching, we might choose a

product that didn’t account for this and leave money on the table. Instead, we’ll use dynamic time warping

to choose the product that’s right for your company this year.

2 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Load the product sales data set

We will use the weekly sales transaction data set found in the UCI Data Set

Repository to perform our sales-based time series analysis. (Source attribution:

James Tan, jamestansc@suss.edu.sg, Singapore University of Social Sciences)

import pandas as pd

Use Pandas to read this data
sales_pdf = pd.read_csv(sales_dbfspath, header=’infer’)

Review data
display(spark.createDataFrame(sales_pdf))

Each product is represented by a row, and each week in the year is represented

by a column. Values represent the number of units of each product sold per week.

There are 811 products in the data set.

Calculate distance to optimal time series by product code

Calculate distance via dynamic time warping between product code and
optimal time series
import numpy as np
import _ucrdtw

def get_keyed_values(s):
 return(s[0], s[1:])

def compute_distance(row):
 return(row[0], _ucrdtw.ucrdtw(list(row[1][0:52]), list(optimal_
pattern), 0.05, True)[1])

ts_values = pd.DataFrame(np.apply_along_axis(get_keyed_values, 1,
sales_pdf.values))
distances = pd.DataFrame(np.apply_along_axis(compute_distance, 1, ts_
values.values))
distances.columns = [‘pcode’, ‘dtw_dist’]

Using the calculated dynamic time warping “distances” column, we can view the

distribution of DTW distances in a histogram.

2 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
mailto:jamestansc%40suss.edu.sg?subject=
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

From there, we can identify the product codes closest to the optimal sales trend

(i.e., those that have the smallest calculated DTW distance). Since we’re using

Databricks, we can easily make this selection using a SQL query. Let’s display those

that are closest.

%sql
-- Top 10 product codes closest to the optimal sales trend
select pcode, cast(dtw_dist as float) as dtw_dist from distances order
by cast(dtw_dist as float) limit 10

After running this query, along with the corresponding query for the product codes

that are furthest from the optimal sales trend, we were able to identify the two

products that are closest and furthest from the trend. Let’s plot both of those

products and see how they differ.

As you can see, Product #675 (shown in the orange triangles) represents the

best match to the optimal sales trend, although the absolute weekly sales are

lower than we’d like (we’ll remedy that later). This result makes sense since we’d

expect the product with the closest DTW distance to have peaks and valleys that

somewhat mirror the metric we’re comparing it to. (Of course, the exact time

index for the product would vary on a week-by-week basis due to dynamic time

warping.) Conversely, Product #716 (shown in the green stars) is the product with

the worst match, showing almost no variability.

2 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Finding the optimal product: Small DTW distance and
similar absolute sales numbers

Now that we’ve developed a list of products that are closest to our factory’s

projected output (our “optimal sales trend”), we can filter them down to those that

have small DTW distances as well as similar absolute sales numbers. One good

candidate would be Product #202, which has a DTW distance of 6.86 versus the

population median distance of 7.89 and tracks our optimal trend very closely.

Review P202 weekly sales
y_p202 = sales_pdf[sales_pdf[‘Product_Code’] == ‘P202’].values[0][1:53]

Using MLflow to track best and worst products,
along with artifacts

MLflow is an open source platform for managing the machine learning lifecycle,

including experimentation, reproducibility and deployment. Databricks notebooks

offer a fully integrated MLflow environment, allowing you to create experiments,

log parameters and metrics, and save results. For more information about

getting started with MLflow, take a look at the excellent documentation.

MLflow’s design is centered around the ability to log all of the inputs and

outputs of each experiment we do in a systematic, reproducible way. On every

pass through the data, known as a “run,” we’re able to log our experiment’s:

 ��Parameters: The inputs to our model

 ��Metrics: The output of our model, or measures of our model’s success

 ��Artifacts: Any files created by our model — for example, PNG plots or

CSV data output

 ��Models: The model itself, which we can later reload and use to serve

predictions

3 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://mlflow.org/
https://www.mlflow.org/docs/latest/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

In our case, we can use it to run the dynamic time warping algorithm several times

over our data while changing the “stretch factor,” the maximum amount of warp

that can be applied to our time series data. To initiate an MLflow experiment, and

allow for easy logging using mlflow.log_param(), mlflow.log_metric(),

mlflow.log_artifact(), and mlflow.log_model(), we wrap our main function

using:

iwith mlflow.start_run() as run:
 ...

as shown in the abbreviated code at right.

import mlflow

def run_DTW(ts_stretch_factor):
 # calculate DTW distance and Z-score for each product
 with mlflow.start_run() as run:

 # Log Model using Custom Flavor
 dtw_model = {‘stretch_factor’ : float(ts_stretch_factor),
‘pattern’ : optimal_pattern}
 mlflow_custom_flavor.log_model(dtw_model, artifact_
path=”model”)

 # Log our stretch factor parameter to MLflow
 mlflow.log_param(“stretch_factor”, ts_stretch_factor)</
strong>

 # Log the median DTW distance for this run
 mlflow.log_metric(“Median Distance”, distance_median)</
strong>

 # Log artifacts - CSV file and PNG plot - to MLflow
 mlflow.log_artifact(‘zscore_outliers_’ + str(ts_stretch_
factor) + ‘.csv’)
 mlflow.log_artifact(‘DTW_dist_histogram.png’)

 return run.info

stretch_factors_to_test = [0.0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5]
for n in stretch_factors_to_test:
 run_DTW(n)

With each run through the data, we’ve created a log of the “stretch factor”

parameter being used, and a log of products we classified as being outliers based

upon the Z-score of the DTW distance metric. We were even able to save an

artifact (file) of a histogram of the DTW distances. These experimental runs are

saved locally on Databricks and remain accessible in the future if you decide to

view the results of your experiment at a later date.

3 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Now that MLflow has saved the logs of each experiment, we can go back through

and examine the results. From your Databricks notebook, select the “Runs” icon in

the upper right-hand corner to view and compare the results of each of our runs.

www.youtube.com/watch?v=62PAPZo-2ZU

Not surprisingly, as we increase our “stretch factor,” our distance metric decreases.

Intuitively, this makes sense: as we give the algorithm more flexibility to warp the

time indices forward or backward, it will find a closer fit for the data. In essence,

we’ve traded some bias for variance.

Logging models in MLflow

MLflow has the ability to not only log experiment parameters, metrics and artifacts

(like plots or CSV files), but also to log machine learning models. An MLflow model

is simply a folder that is structured to conform to a consistent API, ensuring

compatibility with other MLflow tools and features. This interoperability is very

powerful, allowing any Python model to be rapidly deployed to many different

types of production environments.

MLflow comes pre-loaded with a number of common model “flavors” for many

of the most popular machine learning libraries, including scikit-learn, Spark MLlib,

PyTorch, TensorFlow, and others. These model flavors make it trivial to log and

reload models after they are initially constructed, as demonstrated in this

blog post. For example, when using MLflow with scikit-learn, logging a model is

as easy as running the following code from within an experiment:

mlflow.sklearn.log_model(model=sk_model, artifact_path=”sk_model_path”)

MLflow also offers a “Python function” flavor, which allows you to save any

model from a third-party library (such as XGBoost or spaCy), or even a simple

Python function itself, as an MLflow model. Models created using the Python

function flavor live within the same ecosystem and are able to interact with other

MLflow tools through the Inference API. Although it’s impossible to plan for every

use case, the Python function model flavor was designed to be as universal and

flexible as possible. It allows for custom processing and logic evaluation, which

can come in handy for ETL applications. Even as more “official” model flavors

come online, the generic Python function flavor will still serve as an important

“catchall,” providing a bridge between Python code of any kind and MLflow’s

robust tracking toolkit.

Logging a model using the Python function flavor is a straightforward process.

Any model or function can be saved as a model, with one requirement: It

must take in a pandas DataFrame as input, and return a DataFrame or NumPy

array. Once that requirement is met, saving your function as an MLflow model

involves defining a Python class that inherits from PythonModel, and overriding the

.predict() method with your custom function, as described here.

3 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.youtube.com/watch?v=62PAPZo-2ZU

https://www.databricks.com/blog/2018/09/21/how-to-use-mlflow-to-reproduce-results-and-retrain-saved-keras-ml-models.html
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Loading a logged model from one of our runs

Now that we’ve run through our data with several different stretch factors,

the natural next step is to examine our results and look for a model that did

particularly well according to the metrics that we’ve logged. MLflow makes it easy

to then reload a logged model, and use it to make predictions on new data, using

the following instructions:

 1. �Click on the link for the run you’d like to load our model from

2. �Copy the “Run ID”

3. �Make note of the name of the folder the model is stored in. In our case,

it’s simply named “model”

4. �Enter the model folder name and Run ID as shown below:

import custom_flavor as mlflow_custom_flavor

loaded_model = mlflow_custom_flavor.load_model(artifact_path=’model’,
run_id=’e26961b25c4d4402a9a5a7a679fc8052’)

To show that our model is working as intended, we can now load the model and

use it to measure DTW distances on two new products that we’ve created within

the variable new_sales_units :

use the model to evaluate new products found in ‘new_sales_units’
output = loaded_model.predict(new_sales_units)
print(output)

Next steps

As you can see, our MLflow model is predicting new and unseen values with ease.

And since it conforms to the Inference API, we can deploy our model on any

serving platform (such as Microsoft Azure ML or Amazon SageMaker), deploy it as

a local REST API end point, or create a user-defined function (UDF) that can easily

be used with Spark SQL. In closing, we demonstrated how we can use dynamic

time warping to predict sales trends using the Databricks Unified Data Analytics

Platform. Try out the Using Dynamic Time Warping and MLflow to Predict Sales

Trends notebook with Databricks Runtime for Machine Learning today.

3 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-microsoft-azure-ml
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-amazon-sagemaker
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-as-a-local-rest-api-endpoint
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://databricks.com/product/unified-analytics-platform
https://databricks.com/product/unified-analytics-platform
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://www.databricks.com/blog/2018/06/05/announcing-databricks-runtime-for-machine-learning.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Detecting fraudulent patterns at scale using artificial intelligence is a challenge, no matter the use case.

The massive amounts of historical data to sift through, the complexity of the constantly evolving machine

learning and deep learning techniques, and the very small number of actual examples of fraudulent

behavior are comparable to finding a needle in a haystack while not knowing what the needle looks like. In

the financial services industry, the added concerns with security and the importance of explaining how

fraudulent behavior was identified further increase the complexity of the task.

To build these detection patterns, a team of domain experts comes up with a set of rules based on how

fraudsters typically behave. A workflow may include a subject matter expert in the financial fraud detection

space putting together a set of requirements for a particular behavior. A data scientist may then take a

subsample of the available data and select a set of deep learning or machine learning algorithms using

these requirements and possibly some known fraud cases. To put the pattern in production, a data engineer

may convert the resulting model to a set of rules with thresholds, often implemented using SQL.

CHAPTER 5:

Detecting Financial Fraud
at Scale With Decision
Trees and MLflow on
Databricks

By Elena Boiarskaia, Navin Albert

and Denny Lee

Try this notebook in Databricks

3 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pages.databricks.com/rs/094-YMS-629/images/financial-fraud-detection-decision-tree.html?_ga=2.261331150.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

This approach allows the financial institution to present a clear set of characteristics

that lead to the identification of a fraudulent transaction that is compliant with

the General Data Protection Regulation (GDPR). However, this approach also poses

numerous difficulties. The implementation of a fraud detection system using a

hardcoded set of rules is very brittle. Any changes to the fraud patterns would take

a very long time to update. This, in turn, makes it difficult to keep up with and adapt

to the shift in fraudulent activities that are happening in the current marketplace.

Additionally, the systems in the workflow described above are often siloed, with

the domain experts, data scientists and data engineers all compartmentalized.

The data engineer is responsible for maintaining massive amounts of data and

translating the work of the domain experts and data scientists into production level

code. Due to a lack of a common platform, the domain experts and data scientists

have to rely on sampled down data that fits on a single machine for analysis. This

leads to difficulty in communication and ultimately a lack of collaboration.

In this blog, we will showcase how to convert several such rule-based detection

use cases to machine learning use cases on the Databricks platform, unifying the

key players in fraud detection: domain experts, data scientists and data engineers.

We will learn how to create a machine learning fraud detection data pipeline and

visualize the data in real time, leveraging a framework for building modular features

from large data sets. We will also learn how to detect fraud using decision trees

and Apache Spark™ MLlib. We will then use MLflow to iterate and refine the model

to improve its accuracy.

Data Engineer

Data �na���t Data ��ienti�t

3 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Solving with machine learning

There is a certain degree of reluctance with regard to machine learning models in

the financial world, as they are believed to offer a “black box” solution with no way

of justifying the identified fraudulent cases. GDPR requirements, as well as financial

regulations, make it seemingly impossible to leverage the power of data science.

However, several successful use cases have shown that applying machine learning

to detect fraud at scale can solve a host of the issues mentioned above.

Training a supervised machine learning model to detect financial fraud is very

difficult due to the low number of actual confirmed examples of fraudulent

behavior. However, the presence of a known set of rules that identify a particular

type of fraud can help create a set of synthetic labels and an initial set of features.

The output of the detection pattern that has been developed by the domain

experts in the field has likely gone through the appropriate approval process to

be put in production. It produces the expected fraudulent behavior flags and

may, therefore, be used as a starting point to train a machine learning model.

This simultaneously mitigates three concerns:

1. �The lack of training labels

2. �The decision of what features to use

3. �Having an appropriate benchmark for the model

Training a machine learning model to recognize the rule-based fraudulent behavior

flags offers a direct comparison with the expected output via a confusion matrix.

Provided that the results closely match the rule-based detection pattern, this

approach helps gain confidence in machine learning–based fraud prevention with

the skeptics. The output of this model is very easy to interpret and may serve as

a baseline discussion of the expected false negatives and false positives when

compared to the original detection pattern.

Furthermore, the concern with machine learning models being difficult to interpret

may be further assuaged if a decision tree model is used as the initial machine

learning model. Because the model is being trained to a set of rules, the decision

tree is likely to outperform any other machine learning model. The additional

benefit is, of course, the utmost transparency of the model, which will essentially

show the decision-making process for fraud, but without human intervention and

the need to hard code any rules or thresholds. Of course, it must be understood

that the future iterations of the model may utilize a different algorithm altogether

to achieve maximum accuracy. The transparency of the model is ultimately

achieved by understanding the features that went into the algorithm. Having

interpretable features will yield interpretable and defensible model results.

3 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

The biggest benefit of the machine learning approach is that after the initial

modeling effort, future iterations are modular, and updating the set of labels,

features or model type is very easy and seamless, reducing the time to production.

This is further facilitated on the Databricks Collaborative Notebooks where the

domain experts, data scientists and data engineers may work off the same data set

at scale and collaborate directly in the notebook environment. So let’s get started!

Ingesting and exploring the data

We will use a synthetic data set for this example. To load the data set yourself,

please download it to your local machine from Kaggle and then import the data via

Import Data — Azure and AWS.

The PaySim data simulates mobile money transactions based on a sample of real

transactions extracted from one month of financial logs from a mobile money

service implemented in an African country. The below table shows the information

that the data set provides:

Exploring the data

Creating the DataFrames: Now that we have uploaded the data to Databricks File

System (DBFS), we can quickly and easily create DataFrames using Spark SQL.

Create df DataFrame which contains our simulated financial fraud
detection dataset
df = spark.sql(“select step, type, amount, nameOrig, oldbalanceOrg,
newbalanceOrig, nameDest, oldbalanceDest, newbalanceDest from sim_fin_
fraud_detection”)

Now that we have created the DataFrame, let’s take a look at the schema and the

first thousand rows to review the data.

Review the schema of your data
df.printSchema()
root
|-- step: integer (nullable = true)
|-- type: string (nullable = true)
|-- amount: double (nullable = true)
|-- nameOrig: string (nullable = true)
|-- oldbalanceOrg: double (nullable = true)
|-- newbalanceOrig: double (nullable = true)
|-- nameDest: string (nullable = true)
|-- oldbalanceDest: double (nullable = true)
|-- newbalanceDest: double (nullable = true)

3 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/product/collaborative-notebooks
https://www.kaggle.com/
https://learn.microsoft.com/en-us/azure/databricks/data/data-tab#import-data
https://docs.databricks.com/user-guide/importing-data.html?_ga=2.224810073.2112692442.1591844546-225663068.1585060489#import-data
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://databricks.com/glossary/what-are-dataframes
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Types of transactions

Let’s visualize the data to understand the types of transactions the data captures

and their contribution to the overall transaction volume.

%sql
-- Organize by Type
select type, count(1) from financials group by type

To get an idea of how much money we are talking about, let’s also visualize the

data based on the types of transactions and on their contribution to the amount of

cash transferred (i.e., sum(amount)).

%sql
select type, sum(amount) from financials group by type

Rule-based model

We are not likely to start with a large data set of known fraud cases to train our

model. In most practical applications, fraudulent detection patterns are identified

by a set of rules established by the domain experts. Here, we create a column

called label based on these rules.

Rules to Identify Known Fraud-based
df = df.withColumn(“label”,
 F.when(
 (
 (df.oldbalanceOrg 56900) & (df.newbalanceOrig
56900) & (df.newbalanceOrig > 12) & (df.amount > 1160000)
), 1
).otherwise(0))

3 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Visualizing data flagged by rules

These rules often flag quite a large number of fraudulent cases. Let’s visualize the

number of flagged transactions. We can see that the rules flag about 4% of the

cases and 11% of the total dollar amount as fraudulent.

%sql
select label, count(1) as ‘Transactions’, sun(amount) as ‘Total Amount’
from financials_labeled group by label

Selecting the appropriate machine learning models

In many cases, a black box approach to fraud detection cannot be used. First, the

domain experts need to be able to understand why a transaction was identified

as fraudulent. Then, if action is to be taken, the evidence has to be presented

in court. The decision tree is an easily interpretable model and is a great starting

point for this use case.

Creating the training set

To build and validate our ML model, we will do an 80/20 split using

.randomSplit. This will set aside a randomly chosen 80% of the data for

training and the remaining 20% to validate the results.

Split our dataset between training and test datasets
(train, test) = df.randomSplit([0.8, 0.2], seed=12345)

3 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Creating the ML model pipeline

To prepare the data for the model, we must first convert categorical variables to

numeric using .StringIndexer. We then must assemble all of the features

we would like for the model to use. We create a pipeline to contain these feature

preparation steps in addition to the decision tree model so that we may repeat

these steps on different data sets. Note that we fit the pipeline to our training data

first and will then use it to transform our test data in a later step.

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier

Encodes a string column of labels to a column of label indices
indexer = StringIndexer(inputCol = “type”, outputCol = “typeIndexed”)

VectorAssembler is a transformer that combines a given list of
columns into a single vector column
va = VectorAssembler(inputCols = [“typeIndexed”, “amount”,
“oldbalanceOrg”, “newbalanceOrig”, “oldbalanceDest”, “newbalanceDest”,
“orgDiff”, “destDiff”], outputCol = “features”)

Using the DecisionTree classifier model
dt = DecisionTreeClassifier(labelCol = “label”, featuresCol =
“features”, seed = 54321, maxDepth = 5)

Create our pipeline stages
pipeline = Pipeline(stages=[indexer, va, dt])

View the Decision Tree model (prior to CrossValidator)
dt_model = pipeline.fit(train)

Visualizing the model

Calling display() on the last stage of the pipeline, which is the decision

tree model, allows us to view the initial fitted model with the chosen decisions

at each node. This helps us to understand how the algorithm arrived at the

resulting predictions.

display(dt_model.stages[-1])

Visual representation of the decision tree model

4 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Model tuning

To ensure we have the best-fitting tree model, we will cross-validate the model

with several parameter variations. Given that our data consists of 96% negative

and 4% positive cases, we will use the Precision-Recall (PR) evaluation metric to

account for the unbalanced distribution.

from pyspark.ml.tuning import CrossValidator,
ParamGridBuilder

Build the grid of different parameters
paramGrid = ParamGridBuilder() \
.addGrid(dt.maxDepth, [5, 10, 15]) \
.addGrid(dt.maxBins, [10, 20, 30]) \
.build()

Build out the cross validation
crossval = CrossValidator(estimator = dt,
 estimatorParamMaps = paramGrid,
 evaluator = evaluatorPR,
 numFolds = 3)
Build the CV pipeline
pipelineCV = Pipeline(stages=[indexer, va, crossval])

Train the model using the pipeline, parameter grid, and preceding
BinaryClassificationEvaluator
cvModel_u = pipelineCV.fit(train)

Model performance

We evaluate the model by comparing the Precision-Recall (PR) and area under the

ROC curve (AUC) metrics for the training and test sets. Both PR and AUC appear to

be very high.

Build the best model (training and test datasets)
train_pred = cvModel_u.transform(train)
test_pred = cvModel_u.transform(test)

Evaluate the model on training datasets
pr_train = evaluatorPR.evaluate(train_pred)
auc_train = evaluatorAUC.evaluate(train_pred)

Evaluate the model on test datasets
pr_test = evaluatorPR.evaluate(test_pred)
auc_test = evaluatorAUC.evaluate(test_pred)

Print out the PR and AUC values
print(“PR train:”, pr_train)
print(“AUC train:”, auc_train)
print(“PR test:”, pr_test)
print(“AUC test:”, auc_test)

Output:
PR train: 0.9537894984523128
AUC train: 0.998647996459481
PR test: 0.9539170535377599
AUC test: 0.9984378183482442

4 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

To see how the model misclassified the results, let’s use Matplotlib and pandas to

visualize our confusion matrix.

Balancing the classes

We see that the model is identifying 2,421 more cases than the original rules

identified. This is not as alarming, as detecting more potential fraudulent cases

could be a good thing. However, there are 58 cases that were not detected by

the algorithm but were originally identified. We are going to attempt to improve

our prediction further by balancing our classes using undersampling. That is,

we will keep all the fraud cases and then downsample the non-fraud cases to

match that number to get a balanced data set. When we visualize our new

data set, we see that the yes and no cases are 50/50.

Reset the DataFrames for no fraud (`dfn`) and fraud (`dfy`)
dfn = train.filter(train.label == 0)
dfy = train.filter(train.label == 1)

Calculate summary metrics
N = train.count()
y = dfy.count()
p = y/N

Create a more balanced training dataset
train_b = dfn.sample(False, p, seed = 92285).union(dfy)

Print out metrics
print(“Total count: %s, Fraud cases count: %s, Proportion of fraud
cases: %s” % (N, y, p))
print(“Balanced training dataset count: %s” % train_b.count())

Output:
Total count: 5090394, Fraud cases count: 204865, Proportion of fraud
cases: 0.040245411258932016
Balanced training dataset count: 401898

Display our more balanced training dataset
display(train_b.groupBy(“label”).count())

4 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Updating the pipeline

Now let’s update the ML pipeline and create a new cross validator. Because we are

using ML pipelines, we only need to update it with the new data set and we can

quickly repeat the same pipeline steps.

Re-run the same ML pipeline (including parameters grid)
crossval_b = CrossValidator(estimator = dt,
estimatorParamMaps = paramGrid,
evaluator = evaluatorAUC,
numFolds = 3)
pipelineCV_b = Pipeline(stages=[indexer, va, crossval_b])

Train the model using the pipeline, parameter grid, and
BinaryClassificationEvaluator using the `train_b` dataset
cvModel_b = pipelineCV_b.fit(train_b)

Build the best model (balanced training and full test datasets)
train_pred_b = cvModel_b.transform(train_b)
test_pred_b = cvModel_b.transform(test)

Evaluate the model on the balanced training datasets
pr_train_b = evaluatorPR.evaluate(train_pred_b)
auc_train_b = evaluatorAUC.evaluate(train_pred_b)

Evaluate the model on full test datasets
pr_test_b = evaluatorPR.evaluate(test_pred_b)
auc_test_b = evaluatorAUC.evaluate(test_pred_b)

Print out the PR and AUC values
print(“PR train:”, pr_train_b)
print(“AUC train:”, auc_train_b)
print(“PR test:”, pr_test_b)
print(“AUC test:”, auc_test_b)

Output:
PR train: 0.999629161563572
AUC train: 0.9998071389056655
PR test: 0.9904709171789063
AUC test: 0.9997903902204509

Review the results

Now let’s look at the results of our new confusion matrix. The model misidentified

only one fraudulent case. Balancing the classes seems to have improved the model.

Model feedback and using MLflow

Once a model is chosen for production, we want to continuously collect feedback

to ensure that the model is still identifying the behavior of interest. Since we are

starting with a rule-based label, we want to supply future models with verified true

labels based on human feedback. This stage is crucial for maintaining confidence

and trust in the machine learning process. Since analysts are not able to review

every single case, we want to ensure we are presenting them with carefully chosen

cases to validate the model output. For example, predictions, where the model has

low certainty, are good candidates for analysts to review. The addition of this type

of feedback will ensure the models will continue to improve and evolve with the

changing landscape.

4 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/glossary/what-are-ml-pipelines
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

MLflow helps us throughout this cycle as we train different model versions.

We can keep track of our experiments, comparing the results of different model

configurations and parameters. For example here, we can compare the PR and AUC

of the models trained on balanced and unbalanced data sets using the MLflow UI.

Data scientists can use MLflow to keep track of the various model metrics and any

additional visualizations and artifacts to help make the decision of which model

should be deployed in production. The data engineers will then be able to easily

retrieve the chosen model along with the library versions used for training as a .jar

file to be deployed on new data in production. Thus, the collaboration between

the domain experts who review the model results, the data scientists who update

the models, and the data engineers who deploy the models in production will be

strengthened throughout this iterative process.

www.youtube.com/watch?v=x_4S9r-Kks8

www.youtube.com/watch?v=BVISypymHzw

Conclusion

We have reviewed an example of how to use a rule-based fraud detection

label and convert it to a machine learning model using Databricks with MLflow.

This approach allows us to build a scalable, modular solution that will help us

keep up with ever-changing fraudulent behavior patterns. Building a machine

learning model to identify fraud allows us to create a feedback loop that helps

the model to evolve and identify new potential fraudulent patterns. We have seen

how a decision tree model, in particular, is a great starting point to introduce

machine learning to a fraud detection program due to its interpretability and

excellent accuracy.

A major benefit of using the Databricks platform for this effort is that it allows

for data scientists, engineers and business users to seamlessly work together

throughout the process. Preparing the data, building models, sharing the results

and putting the models into production can now happen on the same platform,

allowing for unprecedented collaboration. This approach builds trust across

the previously siloed teams, leading to an effective and dynamic fraud

detection program.

Try this notebook by signing up for a free trial in just a few minutes and get

started creating your own models.

4 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.youtube.com/watch?v=x_4S9r-Kks8

https://www.youtube.com/watch?v=BVISypymHzw

https://d1r5llqwmkrl74.cloudfront.net/notebooks/FSI/fraud_orchestration/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Advances in time series forecasting are enabling retailers to generate more reliable demand forecasts.

The challenge now is to produce these forecasts in a timely manner and at a level of granularity that allows

the business to make precise adjustments to product inventories. Leveraging Apache Spark and Facebook

Prophet, more and more enterprises facing these challenges are finding they can overcome the scalability

and accuracy limits of past solutions.

In this chapter, we’ll discuss the importance of time series forecasting, visualize some sample time series

data, and then build a simple model to show the use of Facebook Prophet. Once you’re comfortable building

a single model, we’ll combine Facebook Prophet with the magic of Spark to show you how to train hundreds

of models at once, allowing you to create precise forecasts for each individual product-store combination at

a level of granularity rarely achieved until now.

Accurate and timely forecasting is now more important than ever

Improving the speed and accuracy of time series analyses in order to better forecast demand for products

and services is critical to retailers’ success. If too much product is placed in a store, shelf and storeroom

space can be strained, products can expire, and retailers may find their financial resources are tied up in

inventory, leaving them unable to take advantage of new opportunities generated by manufacturers or shifts

in consumer patterns. If too little product is placed in a store, customers may not be able to purchase the

products they need. Not only do these forecast errors result in an immediate loss of revenue to the retailer,

but over time consumer frustration may drive customers toward competitors.

New expectations require more precise time series forecasting methods and models

For some time, enterprise resource planning (ERP) systems and third-party solutions have provided

retailers with demand forecasting capabilities based upon simple time series models. But with advances

in technology and increased pressure in the sector, many retailers are looking to move beyond the linear

models and more traditional algorithms historically available to them.

New capabilities, such as those provided by Facebook Prophet, are emerging

from the data science community, and companies are seeking the flexibility to

apply these machine learning models to their time series forecasting needs.

By Bilal Obeidat, Bryan Smith

and Brenner Heintz

Try this time series forecasting

notebook in Databricks

CHAPTER 6:

Fine-Grained Time Series
Forecasting at Scale With
Prophet and Apache Spark™

4 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/spark/about
https://facebook.github.io/prophet/
https://facebook.github.io/prophet/
https://facebook.github.io/prophet/
https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.220205147.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.220205147.2112692442.1591844546-225663068.1585060489
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

This movement away from traditional forecasting solutions requires retailers and

the like to develop in-house expertise not only in the complexities of demand

forecasting but also in the efficient distribution of the work required to generate

hundreds of thousands or even millions of ML models in a timely manner. Luckily,

we can use Spark to distribute the training of these models, making it possible to

predict both demand for products and services and the unique demand for each

product in each location.

Visualizing demand seasonality in time series data

To demonstrate the use of Prophet to generate fine-grained demand forecasts

for individual stores and products, we will use a publicly available data set from

Kaggle. It consists of 5 years of daily sales data for 50 individual items across 10

different stores.

To get started, let’s look at the overall yearly sales trend for all products and stores.

As you can see, total product sales are increasing year over year with no clear sign

of convergence around a plateau.

Next, by viewing the same data on a monthly basis, we can see that the year-

over-year upward trend doesn’t progress steadily each month. Instead, we see a

clear seasonal pattern of peaks in the summer months and troughs in the winter

months. Using the built-in data visualization feature of Databricks Collaborative

Notebooks, we can see the value of our data during each month by mousing

over the chart.

At the weekday level, sales peak on Sundays (weekday 0), followed by a hard drop

on Mondays (weekday 1), then steadily recover throughout the rest of the week.

4 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.kaggle.com/c/demand-forecasting-kernels-only/data
https://databricks.com/product/collaborative-notebooks
https://databricks.com/product/collaborative-notebooks
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Getting started with a simple time series forecasting
model on Facebook Prophet
As illustrated above, our data shows a clear year-over-year upward trend in sales,

along with both annual and weekly seasonal patterns. It’s these overlapping

patterns in the data that Facebook Prophet is designed to address.

Facebook Prophet follows the scikit-learn API, so it should be easy to pick up for

anyone with experience with sklearn. We need to pass in a two-column pandas

DataFrame as input: the first column is the date, and the second is the value to

predict (in our case, sales). Once our data is in the proper format, building a model

is easy:

import pandas as pd
from fbprophet import Prophet

instantiate the model and set parameters
model = Prophet(
 interval_width=0.95,
 growth=’linear’,
 daily_seasonality=False,
 weekly_seasonality=True,
 yearly_seasonality=True,
 seasonality_mode=’multiplicative’
)

fit the model to historical data
model.fit(history_pd)

Now that we have fit our model to the data, let’s use it to build a 90-day forecast.

In the code below, we define a data set that includes both historical dates and 90

days beyond, using Prophet’s make_future_dataframe method:

future_pd = model.make_future_dataframe(
 periods=90,
 freq=’d’,
 include_history=True
)

predict over the dataset
forecast_pd = model.predict(future_pd)

That’s it! We can now visualize how our actual and predicted data line up, as well as

a forecast for the future using Prophet’s built-in .plot method. As you can see, the

weekly and seasonal demand patterns we illustrated earlier are in fact reflected in

the forecasted results.

predict_fig = model.plot(forecast_pd, xlabel=’date’, ylabel=’sales’)
display(fig)

4 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

This visualization is a bit busy. Bartosz Mikulski

provides an excellent breakdown of it that is

well worth checking out. In a nutshell, the black

dots represent our actuals, with the darker

blue line representing our predictions and

the lighter blue band representing our (95%)

uncertainty interval.

H I S T O R I C A L
D ATA

F O R E C A S T E D
D ATA

4 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.mikulskibartosz.name/prophet-plot-explained/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Training hundreds of time series forecasting models
in parallel with Prophet and Spark

Now that we’ve demonstrated how to build a single model, we can use the power

of Spark to multiply our efforts. Our goal is to generate not one forecast for the

entire data set, but hundreds of models and forecasts for each product-store

combination, something that would be incredibly time-consuming to perform as a

sequential operation.

Building models in this way could allow a grocery store chain, for example, to

create a precise forecast for the amount of milk they should order for their

Sandusky store that differs from the amount needed in their Cleveland store,

based upon the differing demand at those locations.

How to use Spark DataFrames to distribute the processing
of time series data

Data scientists frequently tackle the challenge of training large numbers of models

using a distributed data processing engine such as Spark. By leveraging a Spark

cluster, individual worker nodes in the cluster can train a subset of models in

parallel with other worker nodes, greatly reducing the overall time required to train

the entire collection of time series models.

Of course, training models on a cluster of worker nodes (computers) requires more

cloud infrastructure, and this comes at a price. But with the easy availability of

on-demand cloud resources, companies can quickly provision the resources they

need, train their models and release those resources just as quickly, allowing them

to achieve massive scalability without long-term commitments to physical assets.

The key mechanism for achieving distributed data processing in Spark is the

DataFrame. By loading the data into a Spark DataFrame, the data is distributed

across the workers in the cluster. This allows these workers to process subsets

of the data in a parallel manner, reducing the overall amount of time required to

perform our work.

Of course, each worker needs to have access to the subset of data it requires to

do its work. By grouping the data on key values, in this case on combinations of

store and item, we bring together all the time series data for those key values onto

a specific worker node.

store_item_history
 .groupBy(‘store’, ‘item’)
 # . . .

We share the groupBy code here to underscore how it enables us to train many

models in parallel efficiently, although it will not actually come into play until we set

up and apply a custom pandas function to our data in the next section.

4 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/spark/about
https://docs.databricks.com/clusters/index.html
https://docs.databricks.com/clusters/index.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Leveraging the power of pandas user-defined functions

With our time series data properly grouped by store and item, we now need to

train a single model for each group. To accomplish this, we can use a pandas

function, which allows us to apply a custom function to each group of data in our

DataFrame.

This function will not only train a model for each group, but also generate a result

set representing the predictions from that model. But while the function will train

and predict on each group in the DataFrame independent of the others, the results

returned from each group will be conveniently collected into a single resulting

DataFrame. This will allow us to generate store-item level forecasts but present our

results to analysts and managers as a single output data set.

As you can see in the abbreviated code below, building our function is relatively

straightforward. Unlike in previous versions of Spark, we can declare our functions

in a fairly streamlined manner, specifying the type of pandas object we expect to

receive and return, i.e., Python type hints.

Within the function definition, we instantiate our model, configure it and fit it to the

data it has received. The model makes a prediction, and that data is returned as

the output of the function.

def forecast_store_item(history_pd: pd.DataFrame) -> pd.DataFrame:

 # instantiate the model, configure the parameters
 model = Prophet(
 interval_width=0.95,
 growth=’linear’,
 daily_seasonality=False,
 weekly_seasonality=True,
 yearly_seasonality=True,
 seasonality_mode=’multiplicative’
)

 # fit the model
 model.fit(history_pd)

 # configure predictions
 future_pd = model.make_future_dataframe(
 periods=90,
 freq=’d’,
 include_history=True
)

 # make predictions
 results_pd = model.predict(future_pd)

 # . . .

 # return predictions
 return results_pd

5 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://docs.databricks.com/spark/latest/spark-sql/pandas-function-apis.html
https://docs.databricks.com/spark/latest/spark-sql/pandas-function-apis.html
https://www.databricks.com/blog/2020/05/20/new-pandas-udfs-and-python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Next steps

We have now constructed a forecast for each store-item combination. Using a

SQL query, analysts can view the tailored forecasts for each product. In the chart

below, we’ve plotted the projected demand for product #1 across 10 stores. As you

can see, the demand forecasts vary from store to store, but the general pattern is

consistent across all of the stores, as we would expect.

As new sales data arrives, we can efficiently generate new forecasts and append

these to our existing table structures, allowing analysts to update the business’s

expectations as conditions evolve.

To generate these forecasts in your Databricks environment, please import

the following notebook: Fine-Grained Demand Forecasting With Spark 3.

To access the prior version of this notebook, built for Spark 2.0, please

click this link.

Now, to bring it all together, we use the groupBy command we discussed earlier

to ensure our data set is properly partitioned into groups representing specific

store and item combinations. We then simply add the applyInPandas function

to our DataFrame, allowing it to fit a model and make predictions on each grouping

of data.

The data set returned by the application of the function to each group is updated

to reflect the date on which we generated our predictions. This will help us keep

track of data generated during different model runs as we eventually take our

functionality into production.

from pyspark.sql.functions import current_date

results = (
 store_item_history
 .groupBy(‘store’, ‘item’)
 .apply(forecast_store_item)
 .withColumn(‘training_date’, current_date())
)

5 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/solutions/accelerators/demand-forecasting
https://www.databricks.com/blog/2020/01/27/time-series-forecasting-prophet-spark.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Introduction

PyTorch Lightning is a great way to simplify your PyTorch code and bootstrap your deep learning workloads.

Scaling your workloads to achieve timely results with all the data in your lakehouse brings its own

challenges, however. This article will explain how this can be achieved and how to efficiently scale your code

with Horovod.

Increasingly, companies are turning to deep learning in order to accelerate their advanced machine learning

applications. For example, computer vision techniques are used nowadays to improve defect inspection for

manufacturing; natural language processing is utilized to augment business processes with chatbots and

neural network based recommender systems are used to improve customer outcomes.

Training deep learning models, even with well-optimized code, is a slow process, which limits the ability of

data science teams to quickly iterate through experiments and deliver results. As such, it is important to

know how to best harness compute capacity in order to scale this up.

In this article we will illustrate how to first structure your codebase for maximum code reuse, then show how

to scale this from a small single node instance across to a full GPU cluster. We will also integrate it all with

MLflow to provide full experiment tracking and model logging.

CHAPTER 7:

Applying Image
Classification With PyTorch
Lightning on Databricks

5 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://medium.com/@infopulseglobal_9037/intelligent-defect-inspection-powered-by-computer-vision-and-deep-learning-4c75fdf8673
https://medium.com/@infopulseglobal_9037/intelligent-defect-inspection-powered-by-computer-vision-and-deep-learning-4c75fdf8673
https://venturebeat.com/2021/05/20/despite-challenges-salesforce-says-chatbot-adoption-is-accelerating/
https://venturebeat.com/2021/07/19/ai-powered-deep-neural-nets-increase-accuracy-for-credit-score-predictions/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Part 1 - Data Loading and Adopting
PyTorch Lightning

First, let’s start with a target architecture.

Cluster setup

When scaling deep learning, it is important to start small and gradually scale up

the experiment in order to efficiently utilize expensive GPU resources. Scale up

your code to run on multiple GPUs within a single node before looking to scale

across multiple nodes to reduce code complexity.

Databricks supports single-node clusters to support this very usage pattern.

See: Azure Single Node Clusters, AWS Single Node Clusters, GCP Single Node

Clusters. In terms of instance selection, NVIDIA T4 GPUs provide a cost-effective

instance type to start with. On AWS these are available in G4 instances. On

Azure these are available in NCasT4_v3 instances. On GCP these are available

as A2 instances.

To follow through the notebooks, an instance type with at least 64GB RAM is

required. The modeling process is memory intensive and it is possible to run out

of RAM with smaller instances, which can result in the following error.

Fatal error: The Python kernel is unresponsive.

The code was built and tested on Databricks Runtime 10.4 LTS for Machine Learning

and also 11.1 ML. On DBR 10.4 LTS ML only pytorch-lightning up to 1.6.5 is supported.

On DBR 11.1 ML, pytorch-lightning 1.7.2 has been tested. We have installed our

libraries as workspace level libraries. Unlike using %pip, which installs libraries only

for the active notebook on the driver node, workspace libraries are installed on all

nodes, which we will need later for distributed training.

5 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://docs.microsoft.com/en-us/azure/databricks/clusters/single-node
https://docs.databricks.com/clusters/single-node.html
https://docs.gcp.databricks.com/clusters/single-node.html
https://docs.gcp.databricks.com/clusters/single-node.html
https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://docs.microsoft.com/en-us/azure/virtual-machines/nct4-v3-series
https://cloud.google.com/compute/docs/accelerator-optimized-machines
https://docs.databricks.com/libraries/cluster-libraries.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Figure 1: Library configuration

DBR 11.1 ML Configuration

DBR 10.4 LTS ML Configuration
Target Architecture

Figure 2: Key components

The goal of this article is to build up a codebase structured as above. We will

store our data using the open source Linux Foundation project Delta Lake.

Under the hood, Delta Lake stores the raw data in Parquet format. Petastorm

takes on the data loading duties and provides the interface between the

lakehouse and our deep learning model. MLflow will provide experiment

tracking tools and allow for saving out the model to our model registry.

With this setup, we can avoid unnecessary data duplication costs as well as

govern and manage the models that we are training.

5 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://delta.io/
https://mlflow.org/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Part 2 - Example Use Case and
Library Overview

Example use case

For this use case example, we will use the TensorFlow flowers data set. This data set

will be used for a classification type problem where we are trying to identify which

class of flower is which.

Leveraging your data lake for deep learning with Petastorm

Historically, data management systems like lakehouses and data warehouses

have developed in parallel with, rather than in integration with, machine learning

frameworks. As such, PyTorch DataLoader modules do not support the Parquet

format out of the box. They also do not integrate with lakehouse metadata

structures like the hive metastore.

The Petastorm project provides the interface between your lakehouse tables

and PyTorch. It also handles data sharding across training nodes and provides

a caching layer. Petastorm comes prepackaged in the Databricks Runtime for

Machine Learning.

Let’s first become familiar with the data set and how to work with it. Of note is that

all we need to do to transform a Spark DataFrame into a Petastorm object is the

code:

peta_conv_df = make_spark_converter(preprocessed_df)

Once we have the spark_converter object, we can convert that into a PyTorch

DataLoader using:

with peta_conv_df.make_torch_dataloader(transform_spec=transform_func)
as converted_dataset

This then provides a converted_dataset DataLoader that we can use in our

PyTorch code as per normal.

Open and follow the notebook titled Exploring the flowers dataset. A standard ML

runtime cluster will be sufficient; there is no need to run this on a GPU cluster.

5 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics
https://petastorm.readthedocs.io/en/latest/
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/exploring-the-flowers-dataset.dbc
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Simplify and structure your model — enter PyTorch
Lightning

By default, PyTorch code can get quite verbose. There is the model definition,

the training loop and the setup of the dataloaders. By default all this code is mixed

together, making it hard to swap data sets and models in and out, which can be

key for fast experimentation.

PyTorch Lightning helps to make this simpler by greatly reducing the boilerplate

required to set up the experimental model and the main training loop. It is an

opinionated approach to structuring PyTorch code, which allows for more readable

maintainable code.

For our project, we will break up the code into three main modules

 PyTorch Model

 DataLoaders and Transformations

 Main Training Loop

This will help to make our code more portable and also improve organization.

These classes and functions will all be pulled into the main execution notebook,

via %run, where the training hyperparameters will be defined and the code

actually executed.

Figure 3: Code layout

5 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Model definition:

This module contains the code for the model architecture itself in a model class,

LightningModule. This is where the model architecture lives. For reference, this

is the module that needs updating to leverage popular model frameworks like

timm, HuggingFace and the like. This module will also contain the definitions for

optimizers. In this case, we just use SGD, but it can be parameterized to test out

other types of optimizers.

DataLoader class:

Unlike with native PyTorch, where DataLoader code is intermixed with

the model code, PyTorch Lightning allows us to split it out into a separate

LightningDataModule class. This allows for easier management of data sets and

the ability to quickly test different interactions of your data sets.

When building a LightningDataModule with a Petastorm DataLoader, we feed

in the spark_converter object rather than the raw spark dataframes. The

Spark DataFrame is managed by the underlying Spark cluster, which is already

distributed, whereas the PyTorch DataLoader will be distributed through other

means later.

Main training loop:

This is the main training function. It takes the LightningDataModule and

the LightningModule defining the model before feeding it into the Trainer

class. We will instantiate the PyTorch Lightning Trainer and define all necessary

callbacks here.

As we scale up the training process later on, we do not need some processes

like MLflow logging to be run on all the processing nodes. As such, we will restrict

these to run on the first GPU only.

if device_id == 0:

 # we only need this on node 0
 mlflow.pytorch.autolog()

Checkpointing our model during training is important for preserving progress, but

PyTorch Lighting will by default handle this for us and we do not need to add code.

Follow along in the Building the PyTorch Lightning Modules notebook.

5 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
https://timm.fast.ai/
https://huggingface.co/docs/transformers/index
https://pytorch-lightning.readthedocs.io/en/latest/data/datamodule.html?highlight=DataModule
https://pytorch-lightning.readthedocs.io/en/stable/common/checkpointing.html#automatic-saving
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/building-the-pytorch-lightning-modules.dbc
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Part 3 - Scaling the Training Job

While single-GPU training is much faster than CPU training, it is often not enough.

Proper production models can be large and the data sets required to train these

properly will be large too. Hence, we need to look into how we can scale our

training across multiple GPUs.

The main approach to distributing deep learning models is via data parallelism,

where we send a copy of the model to each GPU and feed in different shards of

data to each. This lets us increase the batch size and leverage higher learning rates

to improve training times as discussed in this article.

To assist us in distributing the training job across GPUs, we can leverage Horovod.

Horovod is another Linux Foundation project that offers us an alternative to

manually triggering distributed PyTorch processes across multiple nodes.

Databricks Runtime for Machine Learning includes by default the HorovodRunner

class, which helps us scale on both single-node and multi-node training.

In order to leverage Horovod, we need to create a new “super” train loop.

def train_hvd():
 hvd.init()

 # MLflow setup for the worker processes
 mlflow.set_tracking_uri(“databricks”)
 os.environ[‘DATABRICKS_HOST’] = db_host
 os.environ[‘DATABRICKS_TOKEN’] = db_token

 hvd_model = LitClassificationModel(class_count=5, learning_rate=1e-
5*hvd.size(), device_id=hvd.rank(), device_count=hvd.size())
 hvd_datamodule = FlowersDataModule(train_converter, val_converter,
device_id=hvd.rank(), device_count=hvd.size())

 # `gpus` parameter here should be 1 because the parallelism is
controlled by Horovod
 return train(hvd_model, hvd_datamodule, gpus=1, strategy=”horovod”,
device_id=hvd.rank(), device_count=hvd.size())

This function will start Horovod hvd.init() and ensure that our DataModule and

train function are triggered with the correct node number hvd.rank() and total

number of devices hvd.size(). As discussed in this Horovod article we scale up

the learning rate with the number of GPUs.

hvd_model = LitClassificationModel(class_count=5, learning_rate=1e-
5*hvd.size(), device_id=hvd.rank(), device_count=hvd.size())

Then we return the normal train loop with the GPU count set to 1 as Horovod is

handling the parallelism.

Follow along in the Main Execution notebook and we will go through the ways to go

from single- to multi-GPU.

5 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
https://horovod.ai/
https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://horovod.readthedocs.io/en/stable/pytorch.html?highlight=scale%20learning%20rate#horovod-with-pytorch
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/main-execution-notebook.dbc
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Step 1 - Scaling on one node

Scaling on one node is the easiest way to scale. It is also very performant, as it

avoids the network traffic required for multi-node training. Unlike Spark-native

ML Libraries, most deep learning training processes do not automatically recover

from node failures. PyTorch Lightning, however, does automatically save out

checkpoints for recovering training epochs.

In our code, we set the default_dir parameter to a DBFS location in the train

function. This is where PyTorch Lightning will save out the checkpoints. If we set a

ckpt_restore path to point to ckpt, the train function will resume training from

that checkpoint.

def train(model, dataloader, gpus:int=0,
 strategy:str=None, device_id:int=0,
 device_count:int=1, logging_level=logging.INFO,
 default_dir:str=’/dbfs/tmp/trainer_logs’,
 ckpt_restore:str=None,

 mlflow_experiment_id:str=None):

To scale out our train function to multiple GPUs on one node, we will use

HorovodRunner:

from sparkdl import HorovodRunner

hr = HorovodRunner(np=-4, driver_log_verbosity=’all’)
hvd_model = hr.run(train_hvd)

Setting np to negative will make it run on the single driver node with 4 GPUs.

A positive np value will spread the training across other worker nodes.

 Figure 4: Single-node scaling

Driver Node

Full Batch

Batch
Shard 1

GPU 1 GPU 1
GPU n

(usually maxes
out at 4 or 6)

Batch
Shard 2

Batch
Shard n

5 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Worker Node 1 Worker Node 2 Worker Node n

Step 2 - Scaling across nodes

We have already wrapped our training function with a Horovod wrapper and we

have already successfully leveraged HorovodRunner for single-node multi-GPU

processing. The final step is to go to a multi-node/multi-GPU setup. If you have

been following along with a single-node cluster, this is the point where we will

move to a multi-node cluster. For the code that follows, we will use the cluster

configuration shown at right:

When running distributed training on Databricks, autoscaling is not currently

supported, so we will set our workers to a fixed number ahead of time.

hr = HorovodRunner(np=8, driver_log_verbosity=’all’)
hvd_model = hr.run(train_hvd)

 Figure 5: Multi-node scaling

Figure 6: Multi-node cluster setup

Full Batch

Batch
Split 1

GPU 1 GPU 3 GPU nGPU 1 GPU 4 GPU n+1

Batch
Split 3

Batch
Split n

Batch
Split 2

Batch
Split 4

Batch
Split n+1

6 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

A common problem that will occur as you scale up your distributed deep learning

job is that the Petastorm table has not been partitioned well enough to ensure that

all the GPUs get a batch split. We need to make sure that we have at least as many

data partitions as we have GPUs.

We address this in our code by setting the number of GPUs in the prepare_data

function with the num_devices variable.

flowers_df, train_converter, val_converter = prepare_data(data_dir=Data_
Directory, num_devices=NUM_DEVICES)

datamodule = FlowersDataModule(train_converter=train_converter,
 val_converter=val_converter)

This simply calls a standard Spark repartition command. We set the number of

partitions to be a multiple of the num_devices, the number of GPUs, to make sure

that the data set has sufficient partitions for all the GPUs we have allocated for the

training process. Insufficient partitions is a common cause of idling GPUs.

flowers_dataset = flowers_dataset.repartition(num_devices*2)

Analysis

When training deep neural networks, it is important to make sure we do not

overfit the network. The standard way to manage this is to leverage early stopping.

This process checks to make sure that with each epoch, we are still seeing

improvements to the metric that we set it to monitor. In this case, val_loss.

For our experiments, we set min_delta to 0.01, so we expect to see at least 0.01

improvement to val_loss each epoch. We set patience to be 10 so the train

loop will continue to run up to 10 epochs of no improvement before the training

stops. We set this to make sure that we can eke out the last drop of performance.

To keep the experimentation shorter, we also set a stopping_threshold of 0.55

so we will stop the training process once our val_loss drops below this level.

With those parameters in mind, the results of our scaling experiments are as

follows:

6 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

As we can see, in the Running Time vs Cluster Setup chart, we nearly halved

the training time as we increased the system resources. The scaling is not quite

linear, which is due to the overhead of coordinating the training process across

different GPUs. When scaling deep learning, it is common to see diminishing

returns and hence it is important to make sure that the train loop is efficient

prior to adding GPUs.

That is not the full picture, however, as per the best practices advised in our

previous blog article, How (Not) To Scale Deep Learning in 6 Easy Steps, we used

EarlyStopping hence it is important to check the final validation loss achieved

by the various training runs as well. In this case, we set the stopping_threshold

of 0.55. Interestingly, the single-GPU setup stopped at a worse validation loss

than the multi-GPU setups. The single-GPU training ran till there were no more

improvements in the val_loss.

Get started

We have shown how you can leverage PyTorch Lightning within Databricks and

wrap it with the HorovodRunner to scale across multiple nodes, as well as

provided some guidance on how to leverage EarlyStopping. Now it’s your turn

to try.

Notebooks:

Exploring the flowers dataset

Building the PyTorch Lightning Modules

Main Execution Notebook

See Also:

HorovodRunner

Petastorm

Deep Learning Best Practices

How (Not) to Scale Deep Learning

Leveling the Playing Field: HorovodRunner for Distributed
Deep Learning Training

6 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/building-the-pytorch-lightning-modules.dbc
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/exploring-the-flowers-dataset.dbc
https://www.databricks.com/wp-content/uploads/notebooks/db-277-ptorch-dl/main-execution-notebook.dbc
https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://docs.databricks.com/applications/machine-learning/load-data/petastorm.html
https://docs.databricks.com/applications/machine-learning/train-model/dl-best-practices.html#best-practices-for-loading-data
https://www.databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
https://www.databricks.com/blog/2021/01/14/leveling-the-playing-field-horovodrunner-for-distributed-deep-learning-training.html
https://www.databricks.com/blog/2021/01/14/leveling-the-playing-field-horovodrunner-for-distributed-deep-learning-training.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

The evolution and convergence of technology has fueled a vibrant marketplace for timely and accurate

geospatial data. Every day, billions of handheld and IoT devices along with thousands of airborne and

satellite remote sensing platforms generate hundreds of exabytes of location-aware data. This boom of

geospatial big data combined with advancements in machine learning is enabling organizations across

industries to build new products and capabilities.

For example, numerous companies provide localized drone-based services such as mapping and site

inspection (reference Developing for the Intelligent Cloud and Intelligent Edge). Another rapidly growing

industry for geospatial data is autonomous vehicles. Startups and established companies alike are amassing

large corpuses of highly contextualized geodata from vehicle sensors to deliver the next innovation in self-

driving cars (reference Databricks fuels wejo’s ambition to create a mobility data ecosystem). Retailers

and government agencies are also looking to make use of their geospatial data. For example, foot-traffic

analysis (reference Building Foot-Traffic Insights Data Set) can help determine the best location to open a

new store or, in the public sector, improve urban planning. Despite all these investments in geospatial data, a

number of challenges exist.

CHAPTER 8:

Processing Geospatial
Data at Scale With
Databricks

By Nima Razavi and Michael Johns

F R AU D A N D A B U S E

Detect patterns of fraud and
collusion (e.g., claims fraud,

credit card fraud)

D I S A S T E R R E C OV E RY

Flood surveys, earthquake
mapping, response planning

R E TA I L

Site selection, urban planning,
foot traffic analysis

D E F E N S E A N D I N T E L

Reconnaissance, threat
detection, damage assessment

F I N A N C I A L S E R V I C E S

Economic distribution, loan risk
analysis, predicting sales at

retail, investments

I N F R A S T R U C T U R E

Transportation planning,
agriculture management,

housing development

H E A LT H CA R E

Identifying disease epicenters,
environmental impact on

health, planning care

E N E R GY

Climate change analysis, energy
asset inspection, oil discovery

Maps leveraging geospatial data

are used widely across industries,

spanning multiple use cases, including

disaster recovery, defense and intel,

infrastructure and health services.

6 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/session/azure-databricks
https://databricks.com/company/newsroom/press-releases/databricks-fuels-wejos-ambition-to-create-a-mobility-data-ecosystem
https://databricks.com/blog/2019/08/25/building-foot-traffic-insights-dataset.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Challenges analyzing geospatial at scale

The first challenge involves dealing with scale in streaming and batch applications.

The sheer proliferation of geospatial data and the SLAs required by applications

overwhelms traditional storage and processing systems. Customer data has been

spilling out of existing vertically scaled geodatabases into data lakes for many

years now due to pressures such as data volume, velocity, storage cost and strict

schema-on-write enforcement. While enterprises have invested in geospatial data,

few have the proper technology architecture to prepare these large, complex data

sets for downstream analytics. Further, given that scaled data is often required for

advanced use cases, the majority of AI-driven initiatives are failing to make it from

pilot to production.

Compatibility with various spatial formats poses the second challenge. There are

many different specialized geospatial formats established over many decades as

well as incidental data sources in which location information may be harvested:

 �Vector formats such as GeoJSON, KML, shapefile and WKT

 �Raster formats such as ESRI Grid, GeoTIFF, JPEG 2000 and NITF

 �Navigational standards such as used by AIS and GPS devices

 �Geodatabases accessible via JDBC/ODBC connections such as

PostgreSQL/PostGIS

 �Remote sensor formats from hyperspectral, multispectral, lidar

and radar platforms

 �OGC web standards such as WCS, WFS, WMS and WMTS

 �Geotagged logs, pictures, videos and social media

 �Unstructured data with location references

In this blog post, we give an overview of general approaches to deal with the two

main challenges listed above using the Databricks Unified Data Analytics Platform.

This is the first part of a series of blog posts on working with large volumes of

geospatial data.

6 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/GIS_file_formats
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Scaling geospatial workloads with Databricks
Databricks offers a unified data analytics platform for big data analytics and

machine learning used by thousands of customers worldwide. It is powered by

Apache Spark™, Delta Lake and MLflow with a wide ecosystem of third-party and

available library integrations. Databricks UDAP delivers enterprise-grade security,

support, reliability and performance at scale for production workloads. Geospatial

workloads are typically complex, and there is no one library fitting all use cases.

While Apache Spark does not offer geospatial Data Types natively, the open

source community as well as enterprises have directed much effort to develop

spatial libraries, resulting in a sea of options from which to choose.

There are generally three patterns for scaling geospatial operations such as spatial

joins or nearest neighbors:

 1. �Using purpose-built libraries that extend Apache Spark for geospatial

analytics. GeoSpark, GeoMesa, GeoTrellis and RasterFrames are a few of

such libraries used by our customers. These frameworks often offer

multiple language bindings and have much better scaling and performance

than non-formalized approaches, but can also come with a learning curve.

2. �Wrapping single-node libraries such as GeoPandas, Geospatial Data

Abstraction Library (GDAL) or Java Topology Suite (JTS) in ad hoc user-

defined functions (UDFs) for processing in a distributed fashion with Spark

DataFrames. This is the simplest approach for scaling existing workloads

without much code rewrite; however, it can introduce performance

drawbacks as it is more lift-and-shift in nature.

3. �Indexing the data with grid systems and leveraging the generated index to

perform spatial operations is a common approach for dealing with very

large-scale or computationally restricted workloads. S2, GeoHex and Uber’s

H3 are examples of such grid systems. Grids approximate geo features such

as polygons or points with a fixed set of identifiable cells, thus avoiding

expensive geospatial operations altogether, and thus offer much better

scaling behavior. Implementers can decide between grids fixed to a single

accuracy that can be somewhat lossy yet more performant or grids with

multiple accuracies that can be less performant but mitigate against lossines.

6 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/glossary/big-data-analytics
https://databricks.com/product/unified-analytics-platform
https://spark.apache.org/docs/latest/sql-ref.html
https://github.com/locationtech/geomesa
https://geotrellis.io/
https://rasterframes.io/
http://geopandas.org/
https://gdal.org/
https://gdal.org/
https://github.com/locationtech/jts
https://s2geometry.io/
http://www.geohex.org/
https://eng.uber.com/h3/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

The following examples are generally oriented around a New York City taxi

pickup/drop-off data set found here. NYC Taxi Zone data with geometries will

also be used as the set of polygons. This data contains polygons for the five

boroughs of NYC as well the neighborhoods. This notebook will walk you through

preparations and cleanings done to convert the initial CSV files into Delta Lake

tables as a reliable and performant data source.

Our base DataFrame is the taxi pickup/drop-off data read from a Delta Lake Table

using Databricks.

%scala
val dfRaw = spark.read.format(“delta”).load(“/ml/blogs/geospatial/
delta/nyc-green”)
display(dfRaw) // showing first 10 columns

Geospatial operations using geospatial
libraries for Apache Spark

Over the last few years, several libraries have been developed to extend the

capabilities of Apache Spark for geospatial analysis. These frameworks bear the

brunt of registering commonly applied user-defined types (UDT) and functions

(UDF) in a consistent manner, lifting the burden otherwise placed on users and

teams to write ad hoc spatial logic. Please note that in this blog post, we use

several different spatial frameworks chosen to highlight various capabilities. We

understand that other frameworks exist beyond those highlighted, which you might

also want to use with Databricks to process your spatial workloads.

Earlier, we loaded our base data into a DataFrame. Now we need to turn the

latitude/longitude attributes into point geometries. To accomplish this, we will

use UDFs to perform operations on DataFrames in a distributed fashion. Please

refer to the provided notebooks at the end of the blog for details on adding these

frameworks to a cluster and the initialization calls to register UDFs and UDTs. For

starters, we have added GeoMesa to our cluster, a framework especially adept

at handling vector data. For ingestion, we are mainly leveraging its integration of

JTS with Spark SQL, which allows us to easily convert to and use registered JTS

geometry classes. We will be using the function st_makePoint that, given a latitude

and longitude, create a Point geometry object. Since the function is a UDF, we can

apply it to columns directly.

%scala
val df = dfRaw
 .withColumn(“pickup_point”, st_makePoint(col(“pickup_longitude”),
col(“pickup_latitude”)))
 .withColumn(“dropoff_point”, st_makePoint(col(“dropoff_
longitude”),col(“dropoff_latitude”)))
display(df.select(“dropoff_point”,”dropoff_datetime”))

Figure 1: Geospatial data read from a Delta Lake table using Databricks

6 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/user-guide/libraries.html?_ga=2.232627548.2112692442.1591844546-225663068.1585060489
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

We can also perform distributed spatial joins, in this case using GeoMesa’s

provided st_contains UDF to produce the resulting join of all polygons against

pickup points.

%scala
val joinedDF = wktDF.join(df, st_contains($”the_geom”, $”pickup_point”)
display(joinedDF.select(“zone”,”borough”,”pickup_point”,”pickup_
datetime”))

Wrapping single-node libraries in UDFs

In addition to using purpose-built distributed spatial frameworks, existing single-

node libraries can also be wrapped in ad hoc UDFs for performing geospatial

operations on DataFrames in a distributed fashion. This pattern is available to

all Spark language bindings — Scala, Java, Python, R and SQL — and is a simple

approach for leveraging existing workloads with minimal code changes. To

demonstrate a single-node example, let’s load NYC borough data and define

UDF find_borough(…) for point-in-polygon operation to assign each GPS location

to a borough using geopandas. This could also have been accomplished with a

vectorized UDF for even better performance

%python
read the boroughs polygons with geopandas
gdf = gdp.read_file(“/dbfs/ml/blogs/geospatial/nyc_boroughs.geojson”)

b_gdf = sc.broadcast(gdf) # broadcast the geopandas dataframe to all
nodes of the cluster
def find_borough(latitude,longitude):
 mgdf = b_gdf.value.apply(lambda x: x[“boro_name”] if x[“geometry”].
intersects(Point(longitude, latitude))
 idx = mgdf.first_valid_index()
 return mgdf.loc[idx] if idx is not None else None

find_borough_udf = udf(find_borough, StringType())

Figure 2: Using UDFs to perform

operations on DataFrames in

a distributed fashion to turn

geospatial data latitude/longitude

attributes into point geometries.

Figure 3: Using GeoMesa’s provided st_contains UDF, for example, to produce the resulting join

of all polygons against pickup points

6 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/Point_in_polygon
https://docs.databricks.com/spark/latest/spark-sql/udf-python-pandas.html?_ga=2.232789213.2112692442.1591844546-225663068.1585060489#pandas-user-defined-functions
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Now we can apply the UDF to add a column to our Spark DataFrame, which assigns

a borough name to each pickup point.

%python
read the coordinates from delta
df = spark.read.format(“delta”).load(“/ml/blogs/geospatial/delta/nyc-
green”)
df_with_boroughs = df.withColumn(“pickup_borough”, find_borough_
udf(col(“pickup_latitude”),col(pickup_longitude)))
display(df_with_boroughs.select(
 “pickup_datetime”,”pickup_latitude”,”pickup_longitude”,”pickup_
borough”))

Grid systems for spatial indexing

Geospatial operations are inherently computationally expensive. Point-in-polygon,

spatial joins, nearest neighbor or snapping to routes all involve complex operations.

By indexing with grid systems, the aim is to avoid geospatial operations altogether.

This approach leads to the most scalable implementations with the caveat of

approximate operations. Here is a brief example with H3.

Scaling spatial operations with H3 is essentially a two-step process. The first step

is to compute an H3 index for each feature (points, polygons, …) defined as UDF

geoToH3(…). The second step is to use these indices for spatial operations such

as spatial join (point-in-polygon, k-nearest neighbors, etc.), in this case defined as

UDF multiPolygonToH3(…).

Figure 4: The result of a single-node example, where GeoPandas is used to assign each GPS location to an

NYC borough

6 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/Grid_(spatial_index)
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

val multiPolygonToH3 = udf{ (geometry: Geometry, resolution: Int) =>
 var points: List[GeoCoord] = List()
 var holes: List[java.util.List[GeoCoord]] = List()
 if (geometry.getGeometryType == “MultiPolygon”) {
 val numGeometries = geometry.getNumGeometries()
 if (numGeometries > 0) {
 points = List(
 geometry
 .getGeometryN(0)
 .getCoordinates()
 .toList
 .map(coord => new GeoCoord(coord.y, coord.x)): _*)
 }
 if (numGeometries > 1) {
 holes = (1 to (numGeometries - 1)).toList.map(n => {
 List(
 geometry
 .getGeometryN(n)
 .getCoordinates()
 .toList
 .map(coord => new GeoCoord(coord.y, coord.x)): _*).asJava
 })
 }
 }
 H3.instance.polyfill(points, holes.asJava, resolution).toList
}

%scala
import com.uber.h3core.H3Core
import com.uber.h3core.util.GeoCoord
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._

object H3 extends Serializable {
 val instance = H3Core.newInstance()
}

val geoToH3 = udf{ (latitude: Double, longitude: Double, resolution:
Int) =>
 H3.instance.geoToH3(latitude, longitude, resolution)
}

val polygonToH3 = udf{ (geometry: Geometry, resolution: Int) =>
 var points: List[GeoCoord] = List()
 var holes: List[java.util.List[GeoCoord]] = List()
 if (geometry.getGeometryType == “Polygon”) {
 points = List(
 geometry
 .getCoordinates()
 .toList
 .map(coord => new GeoCoord(coord.y, coord.x)): _*)
 }
 H3.instance.polyfill(points, holes.asJava, resolution).toList
}

6 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

We can now apply these two UDFs to the NYC taxi data as well as the set of

borough polygons to generate the H3 index.

%scala
val res = 7 //the resolution of the H3 index, 1.2km
val dfH3 = df.withColumn(
 “h3index”,
 geoToH3(col(“pickup_latitude”), col(“pickup_longitude”), lit(res))
)
val wktDFH3 = wktDF
 .withColumn(“h3index”, multiPolygonToH3(col(“the_geom”), lit(res)))
 .withColumn(“h3index”, explode($”h3index”))

Given a set of lat/lon points and a set of polygon geometries, it is now possible

to perform the spatial join using h3index field as the join condition. These

assignments can be used to aggregate the number of points that fall within each

polygon, for instance. There are usually millions or billions of points that have to

be matched to thousands or millions of polygons, which necessitates a scalable

approach. There are other techniques not covered in this blog that can be used for

indexing in support of spatial operations when an approximation is insufficient.

%scala
val dfWithBoroughH3 = dfH3.join(wktDFH3,”h3index”)

display(df_with_borough_h3.select(“zone”,”borough”,”pickup_
point”,”pickup_datetime”,”h3index”))

Figure 5: DataFrame table representing the spatial join of a set of lat/lon points and

polygon geometries, using a specific field as the join condition

7 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Here is a visualization of taxi drop-off locations, with latitude and longitude

binned at a resolution of 7 (1.22km edge length) and colored by aggregated

counts within each bin.

Figure 6: Geospatial visualization of taxi drop-off locations, with latitude and longitude binned

at a resolution of 7 (1.22km edge length) and colored by aggregated counts within each bin

Handling spatial formats with Databricks

Geospatial data involves reference points, such as latitude and longitude, to physical

locations or extents on the Earth along with features described by attributes.

While there are many file formats to choose from, we have picked out a handful of

representative vector and raster formats to demonstrate reading with Databricks.

Vector data

Vector data is a representation of the world stored in x (longitude), y (latitude)

coordinates in degrees, and also z (altitude in meters) if elevation is considered.

The three basic symbol types for vector data are points, lines and polygons.

Well-known-text (WKT), GeoJSON and shapefile are some popular formats for

storing vector data we highlight below.

Let’s read NYC Taxi Zone data with geometries stored as WKT. The data structure

we want to get back is a DataFrame that will allow us to standardize with other APIs

and available data sources, such as those used elsewhere in the blog. We are able

to easily convert the WKT content found in field the_geom into its corresponding

JTS Geometry class through the st_geomFromWKT(…) UDF call.

%scala
val wktDFText = sqlContext.read.format(“csv”)
 .option(“header”, “true”)
 .option(“inferSchema”, “true”)
 .load(“/ml/blogs/geospatial/nyc_taxi_zones.wkt.csv”)

val wktDF = wktDFText.withColumn(“the_geom”, st_geomFromWKT(col(“the_
geom”))).cache

7 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/GeoJSON
https://en.wikipedia.org/wiki/Shapefile
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

GeoJSON is used by many open source GIS packages for encoding a variety of

geographic data structures, including their features, properties and spatial extents.

For this example, we will read NYC Borough Boundaries with the approach taken

depending on the workflow. Since the data is conforming to JSON, we could use

the Databricks built-in JSON reader with .option(“multiline”,”true”) to load the data

with the nested schema.

%python
json_df = spark.read.option(“multiline”,”true”).json(“nyc_boroughs.
geojson”)

From there, we could choose to hoist any of the fields up to top level columns using

Spark’s built-in explode function. For example, we might want to bring up geometry,

properties and type and then convert geometry to its corresponding JTS class, as

was shown with the WKT example.

%python
from pyspark.sql import functions as F
json_explode_df = (json_df.select(
 “features”,
 “type”,
 F.explode(F.col(“features.properties”)).alias(“properties”)
).select(“*”,F.explode(F.col(“features.geometry”)).alias(“geometry”)).
drop(“features”))

display(json_explode_df)

Figure 7: Using the Databricks built-in JSON reader

.option(“multiline”,”true”) to load the data with the nested schema

Figure 8: Using the Spark’s built-in explode function to raise a field

to the top level, displayed within a DataFrame table

7 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

We can also visualize the NYC Taxi Zone data within a notebook using an existing

DataFrame or directly rendering the data with a library such as Folium, a Python

library for rendering spatial data. Databricks File System (DBFS) runs over a

distributed storage layer, which allows code to work with data formats using

familiar file system standards. DBFS has a FUSE Mount to allow local API calls that

perform file read and write operations, which makes it very easy to load data with

non-distributed APIs for interactive rendering. In the Python open(…) command

below, the “/dbfs/…” prefix enables the use of FUSE Mount.

%python
import folium
import json

with open (“/dbfs/ml/blogs/geospatial/nyc_boroughs.geojson”, “r”) as
myfile:
 boro_data=myfile.read() # read GeoJSON from DBFS using FuseMount

m = folium.Map(
 location=[40.7128, -74.0060],
 tiles=’Stamen Terrain’,
 zoom_start=12
)
folium.GeoJson(json.loads(boro_data)).add_to(m)
m # to display, also could use displayHTML(...) variants

Shapefile is a popular vector format developed by ESRI that stores the geometric

location and attribute information of geographic features. The format consists

of a collection of files with a common filename prefix (*.shp, *.shx and *.dbf are

mandatory) stored in the same directory. An alternative to shapefile is KML, also

used by our customers but not shown for brevity. For this example, let’s use NYC

Building shapefiles. While there are many ways to demonstrate reading shapefiles,

we will give an example using GeoSpark. The built-in ShapefileReader is used to

generate the rawSpatialDf DataFrame.

%scala
var spatialRDD = new SpatialRDD[Geometry]
spatialRDD = ShapefileReader.readToGeometryRDD(sc, “/ml/blogs/
geospatial/shapefiles/nyc”)

var rawSpatialDf = Adapter.toDf(spatialRDD,spark)
rawSpatialDf.createOrReplaceTempView(“rawSpatialDf”) //DataFrame now
available to SQL, Python, and R

Figure 9: We can also visualize the NYC Taxi Zone data, for example, within a

notebook using an existing DataFrame or directly rendering the data with a library

such as Folium, a Python library for rendering geospatial data

7 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pypi.org/project/folium/
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#databricks-file-system
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#local-file-apis
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

By registering rawSpatialDf as a temp view, we can easily drop into pure Spark

SQL syntax to work with the DataFrame, to include applying a UDF to convert the

shapefile WKT into Geometry.

%sql
SELECT *,
 ST_GeomFromWKT(geometry) AS geometry -- GeoSpark UDF to convert WKT to
Geometry
FROM rawspatialdf

Additionally, we can use Databricks’ built-in visualization for in-line analytics, such

as charting the tallest buildings in NYC.

%sql
SELECT name,
 round(Cast(num_floors AS DOUBLE), 0) AS num_floors --String to Number
FROM rawspatialdf
WHERE name ‘’
ORDER BY num_floors DESC LIMIT 5

Raster data

Raster data stores information of features in a matrix of cells (or pixels) organized into

rows and columns (either discrete or continuous). Satellite images, photogrammetry

and scanned maps are all types of raster-based Earth Observation (EO) data.

The following Python example uses RasterFrames, a DataFrame-centric spatial

analytics framework, to read two bands of GeoTIFF Landsat-8 imagery (red and

near-infrared) and combine them into Normalized Difference Vegetation Index.

We can use this data to assess plant health around NYC. The rf_ipython module

is used to manipulate RasterFrame contents into a variety of visually useful forms,

such as below where the red, NIR and NDVI tile columns are rendered with color

ramps, using the Databricks built-in displayHTML(…) command to show the results

within the notebook.

%python
construct a CSV “catalog” for RasterFrames `raster` reader
catalogs can also be Spark or

Figure 10: A Databricks built-in visualization for in-line analytics charting, for example,

the tallest buildings in NYC

7 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://en.wikipedia.org/wiki/Multispectral_image
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Through its custom Spark DataSource, RasterFrames can read various raster

formats, including GeoTIFF, JP2000, MRF and HDF, from an array of services.

It also supports reading the vector formats GeoJSON and WKT/WKB. RasterFrame

contents can be filtered, transformed, summarized, resampled and rasterized

through over 200 raster and vector functions, such as st_reproject(…) and

st_centroid(…) used in the example above. It provides APIs for Python, SQL and

Scala as well as interoperability with Spark ML.

Figure 11: RasterFrame contents can be filtered, transformed, summarized, resampled and rasterized through

over 200 raster and vector functions

7 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://rasterframes.io/raster-read.html
https://rasterframes.io/raster-read.html#uri-formats
https://rasterframes.io/reference.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Geodatabases

Geodatabases can be file based for smaller scale data or accessible via

JDBC/ODBC connections for medium scale data. You can use Databricks to

query many SQL databases with the built-in JDBC/ODBC Data Source.

Connecting to PostgreSQL is shown below and is commonly used for smaller

scale workloads by applying PostGIS extensions. This pattern of connectivity

allows customers to maintain as-is access to existing databases.

%scala
display(
 sqlContext.read.format(“jdbc”)
 .option(“url”, jdbcUrl)
 .option(“driver”, “org.postgresql.Driver”)
 .option(“dbtable”,
 “””(SELECT * FROM yellow_tripdata_staging
 OFFSET 5 LIMIT 10) AS t”””) //predicate pushdown
 .option(“user”, jdbcUsername)
 .option(“jdbcPassword”, jdbcPassword)
 .load)

Getting started with geospatial analysis on Databricks

Businesses and government agencies seek to use spatially referenced data in

conjunction with enterprise data sources to draw actionable insights and deliver

on a broad range of innovative use cases. In this blog we demonstrated how the

Databricks Unified Data Analytics Platform can easily scale geospatial workloads,

enabling our customers to harness the power of the cloud to capture, store and

analyze data of massive size.

In an upcoming blog, we will take a deep dive into more advanced topics for

geospatial processing at-scale with Databricks. You will find additional details

about the spatial formats and highlighted frameworks by reviewing Data

Prep Notebook, GeoMesa + H3 Notebook, GeoSpark Notebook, GeoPandas

Notebook, and RasterFrames Notebook. Also, stay tuned for a new section in our

documentation specifically for geospatial topics of interest.

7 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://docs.databricks.com/data/data-sources/sql-databases.html
https://www.postgresql.org/
https://postgis.net/
https://www.databricks.com/product/data-lakehouse
https://www.databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://www.databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://www.databricks.com/notebooks/geomesa-h3-notebook.html
https://www.databricks.com/notebooks/geospark-notebook.html
https://www.databricks.com/notebooks/geopandas-notebook.html
https://www.databricks.com/notebooks/geopandas-notebook.html
https://www.databricks.com/notebooks/rasterframes-notebook.html
https://docs.databricks.com/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Introduction

The market capitalization of cryptocurrencies increased from $17 billion in 2017 to $2.25 trillion in 2021.

That’s over a 13,000% ROI in a short span of 5 years! Even with this growth, cryptocurrencies remain

incredibly volatile, with their value being impacted by a multitude of factors: market trends, politics,

technology … and Twitter. Yes, that’s right. There have been instances where their prices were impacted on

account of tweets by famous personalities.

As part of a data engineering and analytics course at the Harvard Extension School, our group worked on

a project to create a cryptocurrency data lake for different data personas — including data engineers, ML

practitioners and BI analysts — to analyze trends over time, particularly the impact of social media on the

price volatility of a crypto asset, such as Bitcoin (BTC). We leveraged the Databricks Lakehouse Platform

to ingest unstructured data from Twitter using the Tweepy library and traditional structured pricing data

from Yahoo Finance to create a machine learning prediction model that analyzes the impact of investor

sentiment on crypto asset valuation. The aggregated trends and actionable insights are presented on a

Databricks SQL dashboard, allowing for easy consumption to relevant stakeholders.

This blog walks through how we built this ML model in just a few weeks by leveraging Databricks and

its collaborative notebooks. We would like to thank the Databricks University Alliance program and the

extended team for all the support.

By Monica Lin, Christoph Meier,

Matthew Parker and Kiran Ravella

CHAPTER 9 :

Exploring Twitter
Sentiment and Crypto
Price Correlation Using
Databricks

7 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.tradingview.com/chart/?symbol=CRYPTOCAP%3ATOTAL
https://www.vox.com/recode/2021/5/18/22441831/elon-musk-bitcoin-dogecoin-crypto-prices-tesla
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.tweepy.org/
https://pypi.org/project/yfinance/
https://www.databricks.com/product/databricks-sql
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Overview

One advantage of cryptocurrency for investors is that it is traded 24/7 and

the market data is available round the clock. This makes it easier to analyze the

correlation between the Tweets and crypto prices. A high-level architecture

of the data and ML pipeline is presented in figure 1 below.

The full orchestration workflow runs a sequence of Databricks notebooks that

perform the following tasks:

1. Data ingestion pipeline

Imports the raw data into the Cryptocurrency Delta Lake Bronze tables

2. Data science

 �Cleans data and applies the Twitter sentiment machine learning

model into Silver tables

 �Aggregates the refined Twitter and Yahoo Finance data into an

aggregated Gold table

 �Computes the correlation ML model between price and sentiment

3. Data analysis

Runs updated SQL BI queries on the Gold table

The lakehouse paradigm combines key capabilities of data lakes and data

warehouses to enable all kinds of BI and AI use cases. The use of the lakehouse

architecture enabled rapid acceleration of the pipeline creation to just one week.

As a team, we played specific roles to mimic different data personas, and this

paradigm facilitated the seamless handoffs between data engineering, machine

learning and business intelligence roles without requiring data to be moved

across systems.

Figure 1: Crypto Lake using Delta

7 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Data/ML pipeline

Ingestion using a medallion architecture

The two primary data sources were Twitter and Yahoo Finance. A lookup table

was used to hold the crypto tickers and their Twitter hashtags to facilitate the

subsequent search for associated tweets.

We used yfinance python library to download historical crypto exchange market

data from Yahoo Finance’s API in 15-minute intervals. The raw data was stored in a

Bronze table containing information such as ticker symbol, datetime, open, close,

high, low and volume. We then created a Delta Lake Silver table with additional

data, such as the relative change in price of the ticker in that interval. Using Delta

Lake made it easy to reprocess the data, as it guarantees atomicity with every

operation. It also ensures that schema is enforced and prevents bad data from

creeping into the lake.

We used Tweepy Python library to download Twitter data. We stored the raw

tweets in a Delta Lake Bronze table. We removed unnecessary data from the

Bronze table and also filtered out non-ASCII characters like emojis. This refined

data was stored in a Delta Lake Silver table.

Data science

The data science portion of our project consists of three major parts: exploratory

data analysis, sentiment model and correlation model. The objective is to build

a sentiment model and use the output of the model to evaluate the correlation

between sentiment and the prices of different cryptocurrencies, such as Bitcoin,

Ethereum, Coinbase and Binance. In our case, the sentiment model follows a

supervised, multi-class classification approach, while the correlation model

uses a linear regression model. Lastly, we used MLflow for both models’ lifecycle

management, including experimentation, reproducibility, deployment and a central

model registry. MLflow Model Registry collaboratively manages the full lifecycle of

an MLflow model by offering a centralized model store, set of APIs and UI. Some of

its most useful features include model lineage (which MLflow experiment and run

produced the model), model versioning, stage transitions (such as from staging to

production or archiving), and annotations.

7 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://pypi.org/project/yfinance/
https://www.mlflow.org/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Exploratory data analysis

The EDA section provides insightful visualizations on the data set. For example, we

looked at the distribution of tweet lengths for each sentiment category using violin

plots from Seaborn. Word clouds (using Matplotlib and wordcloud libraries) for

positive and negative tweets were also used to show the most common words for

the two sentiment types. Lastly, an interactive topic modeling dashboard was built,

using Gensim, to provide insights on the top most common topics in the data set

and the most frequently used words in each topic, as well as how similar the topics

are to each other.

Figure 4: Interactive topic modeling dashboard

8 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://seaborn.pydata.org/
https://matplotlib.org/
https://pypi.org/project/wordcloud/
https://pypi.org/project/gensim/
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Sentiment analysis model

Developing a proper sentiment analysis model has been one of the core tasks

within the project. In our case, the goal of this model was to classify the polarities

that are expressed in raw tweets as input using a mere polar view of sentiment

(i.e., tweets were categorized as “positive,” “neutral” or “negative”). Since sentiment

analysis is a problem of great practical relevance, it is no surprise that multiple ML

strategies related to it can be found in literature:

In this project, we focused on the latter two approaches since they are supposed

to be the most promising. Thereby, we used SparkNLP as the NLP library of choice

due to its extensive functionality, its scalability (fully supported by Apache

Spark™) and accuracy (e.g., it contains multiple state-of-the-art embeddings and

allows users to make use of transfer learning). First, we built a sentiment analysis

pipeline using the aforementioned classical ML algorithms. The following figure

shows its high-level architecture consisting of three parts: preprocessing, feature

vectorization and finally training including hyperparameter tuning.

Figure 5: Machine learning model pipeline

Sentiment lexicons algorithms	

Compare each word in a tweet to a database
of words that are labeled as having positive or
negative sentiment

A tweet with more positive words than negative
would be scored as a positive and vice versa

Pros: straightforward approach

Cons: performs poorly in general and greatly
depends on the quality of the database of words

Classical ML algorithms	

Application of traditional supervised classifiers
like logistic regression, random forest, support
vector machine or Naive Bayes

Pros: well known, often financially and
computationally cheap, easy to interpret

Cons: in general, performance on unstructured
data like text is expected to be worse
compared to structured data and necessary
preprocessing can be extensive

Off-the-shelf sentiment analysis systems	

Exemplary systems: Amazon Comprehend,
Google Cloud Services, Stanford Core NLP

Pros: do not require great preprocessing
of the data and allow the user to directly
start a prediction “out of the box’’

Cons: limited fine-tuning for the underlying
use-case (retraining might be needed to
adjust the model performance)

Deep Learning (DL) algorithms	

Application of NLP related neural network
architectures like BERT, GPT-2 / GPT-3 mainly
via transfer learning

Pros: many pretrained neural networks for
word embeddings and sentiment prediction
already exist (particularly helpful for transfer
learning), DL models scale effectively with data

Cons: difficult and computationally expensive
to tune architecture and hyperparameters

Preprocessing stages

8 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://aws.amazon.com/comprehend/?nc1=h_ls
https://cloud.google.com/natural-language/docs/sentiment-tutorial
https://stanfordnlp.github.io/CoreNLP/
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

We run this pipeline for every classifier and compare their corresponding

accuracies on the test set. As a result, the Support Vector Classifier achieved the

highest accuracy with 75.7%, closely followed by Logistic Regression (75.6%), Naïve

Bayes (74%) and finally Random Forest (71.9%). To improve the performance, other

supervised classifiers like XGBoost or GradientBoostedTrees could be tested.

Besides, the individual algorithms could be combined to an ensemble, which is

then used for prediction (e.g., majority voting, stacking).

In addition to this first pipeline, we developed a second Spark pipeline with a

similar architecture making use of the rich Spark NLP functionalities regarding

pretrained word embeddings and DL models. Starting with the standard Document

Assembler annotator, we only used a Normalizer annotator to remove Twitter

handles, alphanumeric characters, hyperlinks, html tags and timestamps but no

further preprocessing related annotators. In terms of the training stage, we used

a pretrained (on the well-known IMDb data set) sentiment DL model provided

by Spark NLP. Using the default hyperparameter settings, we already achieved a

test set accuracy of 83%, which could potentially be even enhanced using other

pretrained word embeddings or sentiment DL models. Thus, the DL strategy

clearly outperformed the pipeline in figure 5 with the Support Vector Classifier by

around 7.4 percent points.

Correlation model

The project requirement included a correlation model on sentiment and price;

therefore, we built a linear regression model using scikit-learn and mlflow.sklearn

for this task.

We quantified the sentiment by assigning negative tweets a score of -1, neutral

tweets a score of 0, and positive tweets a score of 1. The total sentiment score

for each cryptocurrency is then calculated by adding up the scores for each

cryptocurrency in 15-minute intervals. The linear regression model is built using

the total sentiment score in each window for all companies to predict the

percentage change in cryptocurrency prices. However, the model shows no clear

linear relationship between sentiment and change in price. A possible future

improvement for the correlation model is using sentiment polarity to predict the

change in price instead.

Figure 6: Correlation model pipeline

8 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://en.wikipedia.org/wiki/Logistic_regression#:~:text=Logistic%20regression%20is%20a%20statistical,a%20form%20of%20binary%20regression).
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Random_forest#:~:text=Random%20forests%20or%20random%20decision,decision%20trees%20at%20training%20time.&text=Random%20forests%20generally%20outperform%20decision,lower%20than%20gradient%20boosted%20trees.
https://en.wikipedia.org/wiki/XGBoost
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.tree.GradientBoostedTrees.html
https://nlp.johnsnowlabs.com/api/python/reference/autosummary/sparknlp.annotator.SentimentDLModel.html
https://nlp.johnsnowlabs.com/docs/en/annotators#sentenceembeddings
https://nlp.johnsnowlabs.com/models?task=Sentiment+Analysis
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Business intelligence

Understanding stock correlation models was a key component of generating buy/

sell predictions, but communicating results and interacting with the information is

equally critical to make well-informed decisions. The market is so dynamic, so a

real-time visualization is required to aggregate and organize trending information.

Databricks Lakehouse enabled all of the BI analyst tasks to be coordinated in one

place with streamlined access to the lakehouse data tables. First, a set of SQL

queries were generated to extract and aggregate information from the lakehouse.

Then the data tables were easily imported with a GUI tool to rapidly create

dashboard views. In addition to the dashboards, alert triggers were created to

notify users of critical activities like stock movement up/down by > X%, increases

in Twitter activity about a particular crypto hashtag or changes in overall positive/

negative sentiment about each cryptocurrency.

Dashboard generation

The business intelligence dashboards were created using Databricks SQL. This

system provides a full ecosystem to generate SQL queries, create data views

and charts, and ultimately organizes all of the information using Databricks

Dashboards.

The use of the SQL Editor in Databricks was key to making the process fast and

simple. For each query, the editor GUI enables the selection of different views of

the data including tables, charts and summary statistics to immediately see the

output. From there, views could be imported directly into the dashboards. This

eliminated redundancy by utilizing the same query for different visualizations.

Visualization

For the topic of Twitter sentiment analysis, there are three key views to help users

interact with the data on a deeper level.

View 1: Overview Page, taking a high-level view of Twitter influencers, stock

movement and frequency of tweets related to particular cryptos.

Figure 7: Overview Dashboard View with top level statistics

8 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://docs.databricks.com/sql/index.html
https://en.wikipedia.org/wiki/SQL
https://docs.databricks.com/notebooks/dashboards.html
https://docs.databricks.com/notebooks/dashboards.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

View 2: Sentiment Analysis, to understand whether each tweet is positive, negative

or neutral. Here you can easily visualize which cryptocurrencies are receiving the

most attention in a given time window.

View 3: Stock Volatility to provide the user with more specific information about

the price for each cryptocurrency with trends over time.

Summary

Our team of data engineers, data scientists and BI analysts was able to

leverage the Databricks tools to investigate the complex issue of Twitter usage

and cryptocurrency stock movement. The lakehouse design created a robust

data environment with smooth ingestion, processing and retrieval by the whole

team. The data collection and cleaning pipelines deployed using Delta tables

were easily managed even at high update frequencies. The data was analyzed by

a natural language sentiment model and a stock correlation model using MLflow,

which made the organization of various model versions simple. Powerful analytics

dashboards were created to view and interpret the results using built-in SQL and

Dashboard features. The functionality of Databricks’ end-to-end product tools

removed significant technical barriers, which enabled the entire project to be

completed in less than 4 weeks with minimal challenges. This approach could

easily be applied to other technologies where streamlined data pipelines,

machine learning and BI analytics can be the catalyst for a deeper understanding

of your data.

Figure 8: Sentiment Analysis Dashboard

Figure 9: Stock Ticker Dashboard

8 4E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Our findings

These are additional conclusions from the data analysis to highlight the extent of

Twitter users’ influence on the price of cryptocurrencies.

Volume of tweets correlated with volatility in cryptocurrency price

There is a clear correlation in periods of high tweet frequency to the movement of

a cryptocurrency. Note that this happens before and after a stock price change,

indicating some tweet frenzies precede price change and are likely influencing

value, and others are in response to big shifts in price.

Twitter users with more followers don’t actually have more influence

on crypto stock price

This is often discussed in media events, particularly with lesser-known currencies.

Some extreme influencers like Elon Musk gained a reputation for being able to drive

enormous market swings with a small number of targeted tweets. While it is true

that a single tweet can impact cryptocurrency price, there is not an underlying

correlation between number of followers to movement of the currency price. There

is also a slightly negative correlation to number of retweets vs. price movement,

indicating the Twitter activity by influencers might have broader reach as it moves

into other mediums like new articles rather than reaching directly to investors.

The Databricks platform was incredibly useful for solving complex problems like

merging Twitter and stock data.

Overall, the use of Databricks to coordinate the pipeline from data ingestions, the

lakehouse data structure and the BI reporting dashboards was hugely beneficial

to completing this project efficiently. In a short period of time, the team was able

to build the data pipeline, complete machine learning models and produce high-

quality visualizations to communicate results. The infrastructure provided by the

Databricks platform removed many of the technical challenges and enabled the

project to be successful.

While this tool will not enable you to outwit the cryptocurrency markets, we

strongly believe it will predict periods of increased volatility, which can be

advantageous for specific investing conditions.

Disclaimer: This article takes no responsibility for financial investment decisions.

Nothing contained in this website should be construed as investment advice.

Try notebooks

Please try out the referenced Databricks notebooks

Data Science 				 Merge to Gold

Orchestrator 				 Inference

Tweepy 				 Y_Finance

8 5E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://www.databricks.com/wp-content/uploads/notebooks/finalproject5/html/finals_project_data_science.html
https://www.databricks.com/wp-content/uploads/notebooks/finalproject5/html/final_project_5_orchestrator.html
https://www.databricks.com/wp-content/uploads/notebooks/finalproject5/html/tweepy_group5_finalproject.html
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

As a global technology and media company that connects millions of customers to personalized experiences,

Comcast struggled with massive data, fragile data pipelines and poor data science collaboration. By using

Databricks — including Delta Lake and MLflow — they were able to build performant data pipelines for

petabytes of data and easily manage the lifecycle of hundreds of models, creating a highly innovative, unique

and award-winning viewer experience that leverages voice recognition and machine learning.

Use case: In the intensely competitive entertainment industry, there’s no time to press the Pause button.

Comcast realized they needed to modernize their entire approach to analytics, from data ingest to the

deployment of machine learning models that deliver new features to delight their customers.

Solution and benefits: Armed with a unified approach to analytics, Comcast can now fast-forward into the

future of AI-powered entertainment — keeping viewers engaged and delighted with competition-beating

customer experiences.

 �Emmy-winning viewer experience: Databricks helps Comcast to create a highly innovative and award-

winning viewer experience with intelligent voice commands that boost engagement

 �Reduced compute costs by 10x: Delta Lake has enabled Comcast to optimize data ingestion, replacing

640 machines with 64 — while improving performance. Teams can spend more time on analytics and

less time on infrastructure management.

 �Higher data science productivity: The upgrades and use of Delta Lake fostered global collaboration

among data scientists by enabling different programming languages through a single interactive

workspace. Delta Lake also enabled the data team to use data at any point within the data pipeline,

allowing them to act much quicker in building and training new models.

 �Faster model deployment: By modernizing, Comcast reduced deployment times from weeks to

minutes as operations teams deployed models on disparate platforms

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Comcast delivers the
future of entertainment

“With Databricks, we can now be more

informed about the decisions we make,

and we can make them faster.”

 — �Jim Forsythe

Senior Director, Product Analytics and Behavioral Sciences

Comcast

Learn more

8 6E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/comcast
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Regeneron’s mission is to tap into the power of genomic data to bring new medicines to patients in need.

Yet, transforming this data into life-changing discovery and targeted treatments has never been more

challenging. With poor processing performance and scalability limitations, their data teams lacked what

they needed to analyze petabytes of genomic and clinical data. Databricks now empowers them to quickly

analyze entire genomic data sets quickly to accelerate the discovery of new therapeutics.

Use case: More than 95% of all experimental medicines that are currently in the drug development pipeline

are expected to fail. To improve these efforts, the Regeneron Genetics Center built one of the most

comprehensive genetics databases by pairing the sequenced exomes and electronic health records of

more than 400,000 people. However, they faced numerous challenges analyzing this massive set of data:

 �Genomic and clinical data is highly decentralized, making it very difficult to analyze and train models

against their entire 10TB data set

 �Difficult and costly to scale their legacy architecture to support analytics on over 80 billion data points

 �Data teams were spending days just trying to ETL the data so that it could be used for analytics

Solution and benefits: Databricks provides Regeneron with a Unified Data Analytics Platform running on Amazon

Web Services that simplifies operations and accelerates drug discovery through improved data science

productivity. This is empowering them to analyze the data in new ways that were previously impossible.

 �Accelerated drug target identification: Reduced the time it takes data scientists and

computational biologists to run queries on their entire data set from 30 minutes down to 3 seconds —

a 600x improvement!

 �Increased productivity: Improved collaboration, automated DevOps and accelerated pipelines

(ETL in 2 days vs. 3 weeks) have enabled their teams to support a broader range of studies

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Regeneron accelerates
drug discovery with
genomic sequencing

“The Databricks Unified Data Analytics Platform

is enabling everyone in our integrated drug

development process — from physician-scientists to

computational biologists — to easily access, analyze

and extract insights from all of our data.”

 — �Jeffrey Reid, Ph.D.

Head of Genome Informatics

Regeneron

Learn more

8 7E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/regeneron
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

The explosive growth in data availability and increasing market competition are challenging insurance

providers to provide better pricing to their customers. With hundreds of millions of insurance records

to analyze for downstream ML, Nationwide realized their legacy batch analysis process was slow and

inaccurate, providing limited insight to predict the frequency and severity of claims. With Databricks, they

have been able to employ deep learning models at scale to provide more accurate pricing predictions,

resulting in more revenue from claims.

Use case: The key to providing accurate insurance pricing lies in leveraging information from insurance

claims. However, data challenges were difficult, as they had to analyze insurance records that were volatile

because claims were infrequent and unpredictable — resulting in inaccurate pricing.

Solution and benefits: Nationwide leverages the Databricks Unified Data Analytics Platform to manage

the entire analytics process from data ingestion to the deployment of deep learning models. The fully

managed platform has simplified IT operations and unlocked new data-driven opportunities for their

data science teams.

 �Data processing at scale: Improved runtime of their entire data pipeline from 34 hours to less than

4 hours, a 9x performance gain

 �Faster featurization: Data engineering is able to identify features 15x faster — from 5 hours to around

20 minutes

 �Faster model training: Reduced training times by 50%, enabling faster time-to-market of new models

 �Improved model scoring: Accelerated model scoring from 3 hours to less than 5 minutes, a 60x

improvement

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Nationwide reinvents
insurance with actuarial
modeling

“With Databricks, we are able to train models

against all our data more quickly, resulting in

more accurate pricing predictions that have

had a material impact on revenue.”

 — �Bryn Clark

Data Scientist

Nationwide

8 8E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Condé Nast is one of the world’s leading media companies, counting some of the most iconic magazine titles

in its portfolio, including The New Yorker, Wired and Vogue. The company uses data to reach over 1 billion

people in print, online, video and social media.

Use case: As a leading media publisher, Condé Nast manages over 20 brands in their portfolio. On a monthly

basis, their web properties garner 100 million-plus visits and 800 million-plus page views, producing a

tremendous amount of data. The data team is focused on improving user engagement by using machine

learning to provide personalized content recommendations and targeted ads.

Solution and benefits: Databricks provides Condé Nast with a fully managed cloud platform that simplifies

operations, delivers superior performance and enables data science innovation.

 �Improved customer engagement: With an improved data pipeline, Condé Nast can make better, faster

and more accurate content recommendations, improving the user experience

 �Built for scale: Data sets can no longer outgrow Condé Nast’s capacity to process and glean insights

 �More models in production: With MLflow, Condé Nast’s data science teams can innovate their products

faster. They have deployed over 1,200 models in production.

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Condé Nast boosts
reader engagement with
experiences driven by
data and AI

“Databricks has been an incredibly powerful end-to-

end solution for us. It’s allowed a variety of different

team members from different backgrounds to

quickly get in and utilize large volumes of data to

make actionable business decisions.”

 — �Paul Fryzel

Principal Engineer of AI Infrastructure

Condé Nast

Learn more

8 9E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/conde_nast
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

SHOWTIME® is a premium television network and streaming service, featuring award-winning original series

and original limited series like “Shameless,” “Homeland,” “Billions,” “The Chi,” “Ray Donovan,” “SMILF,” “The

Affair,” “Patrick Melrose,” “Our Cartoon President,” “Twin Peaks” and more.

Use case: The Data Strategy team at Showtime is focused on democratizing data and analytics across the

organization. They collect huge volumes of subscriber data (e.g., shows watched, time of day, devices used,

subscription history, etc.) and use machine learning to predict subscriber behavior and improve scheduling

and programming.

Solution and benefits: Databricks has helped Showtime democratize data and machine learning across the

organization, creating a more data-driven culture.

 �6x faster pipelines: Data pipelines that took over 24 hours are now run in less than 4 hours, enabling

teams to make decisions faster

 �Removing infrastructure complexity: Fully managed platform in the cloud with automated cluster

management allows the data science team to focus on machine learning rather than hardware

configurations, provisioning clusters, debugging, etc.

 �Innovating the subscriber experience: Improved data science collaboration and productivity has

reduced time-to-market for new models and features. Teams can experiment faster, leading to a better,

more personalized experience for subscribers.

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Showtime leverages ML
to deliver data-driven
content programming

“Being on the Databricks platform has allowed a

team of exclusively data scientists to make huge

strides in setting aside all those configuration

headaches that we were faced with. It’s

dramatically improved our productivity.”

 — �Josh McNutt

Senior Vice President of

Data Strategy and Consumer Analytics

Showtime

Learn more

9 0E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/showtime
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Shell is a recognized pioneer in oil and gas exploration and production technology and is one of the world’s

leading oil and natural gas producers, gasoline and natural gas marketers and petrochemical manufacturers.

Use case: To maintain production, Shell stocks over 3,000 different spare parts across their global facilities.

It’s crucial the right parts are available at the right time to avoid outages, but equally important is not

overstocking, which can be cost-prohibitive.

Solution and benefits: Databricks provides Shell with a cloud-native unified analytics platform that helps

with improved inventory and supply chain management.

 �Predictive modeling: Scalable predictive model is developed and deployed across more than 3,000

types of materials at 50-plus locations

 �Historical analyses: Each material model involves simulating 10,000 Markov Chain Monte Carlo

iterations to capture historical distribution of issues

 �Massive performance gains: With a focus on improving performance, the data science team reduced

the inventory analysis and prediction time to 45 minutes from 48 hours on a 50 node Apache Spark™

cluster on Databricks — a 32x performance gain

 �Reduced expenditures: Cost savings equivalent to millions of dollars per year

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Shell innovates with
energy solutions for a
cleaner world

“Databricks has produced an enormous amount

of value for Shell. The inventory optimization tool

[built on Databricks] was the first scaled up digital

product that came out of my organization and the

fact that it’s deployed globally means we’re now

delivering millions of dollars of savings every year.”

 — �Daniel Jeavons

General Manager Advanced Analytics CoE

Shell

Learn more

9 1E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/shell
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Riot Games’ goal is to be the world’s most player-focused gaming company. Founded in 2006 and based in

LA, Riot Games is best known for the League of Legends game. Over 100 million gamers play every month.

Use case: Improving gaming experience through network performance monitoring and combating in-game

abusive language.

Solution and benefits: Databricks allows Riot Games to improve the gaming experience of their players by

providing scalable, fast analytics.

 ��Improved in-game purchase experience: Able to rapidly build and productionize a recommendation

engine that provides unique offers based on over 500B data points. Gamers can now more easily find

the content they want.

 ��Reduced game lag: Built ML model that detects network issues in real time, enabling Riot Games to

avoid outages before they adversely impact players

 ��Faster analytics: Increased processing performance of data preparation and exploration by 50%

compared to EMR, significantly speeding up analyses

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Riot Games leverages AI
to engage gamers and
reduce churn

“We wanted to free data scientists from

managing clusters. Having an easy-to-use,

managed Spark solution in Databricks allows

us to do this. Now our teams can focus on

improving the gaming experience.”

 — �Colin Borys

Data Scientist

Riot Games

Learn more

9 2E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/riot-games
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

Eneco is the technology company behind Toon, the smart energy management device that gives people

control over their energy usage, their comfort, the security of their homes and much more. Eneco’s smart

devices are in hundreds of thousands of homes across Europe. As such, they maintain Europe’s largest

energy data set, consisting of petabytes of IoT data, collected from sensors on appliances throughout

the home. With this data, they are on a mission to help their customers live more comfortable lives while

reducing energy consumption through personalized energy usage recommendations.

Use case: Personalized energy use recommendations: Leverage machine learning and IoT data to power

their Waste Checker app, which provides personalized recommendations to reduce in-home energy

consumption.

Solution and benefits: Databricks provides Eneco with a unified data analytics platform that has fostered a

scalable and collaborative environment across data science and engineering, allowing data teams to more

quickly innovate and deliver ML-powered services to Eneco’s customers.

 ��Lowered costs: Cost-saving features provided by Databricks (such as auto-scaling clusters and Spot

instances) have helped Eneco significantly reduce the operational costs of managing infrastructure,

while still being able to process large amounts of data

 ��Faster innovation: With their legacy architecture, moving from proof of concept to production took

over 12 months. Now with Databricks, the same process takes less than eight weeks. This enables

Eneco’s data teams to develop new ML-powered features for their customers much faster.

 ��Reduced energy consumption: Through their Waste Checker app, Eneco has identified over 67 million

kilowatt hours of energy that can be saved by leveraging their personalized recommendations

CHAPTER 1 0: CUSTOM ER CASE STU DI ES

Eneco uses ML to reduce
energy consumption and
operating costs

“Databricks, through the power of Delta Lake and

structured streaming, allows us to deliver alerts

and recommendations to our customers with

a very limited latency, so they’re able to react

to problems or make adjustments within their

home before it affects their comfort levels.”

 — ��Stephen Galsworthy

Head of Data Science

Eneco

Learn more

9 3E B O O K : B I G B O O K O F M A C H I N E L E A R N I N G U S E C A S E S — 2 N D E D I T I O N

https://databricks.com/customers/quby
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

About Databricks

Databricks is the lakehouse company. More than

7,000 organizations worldwide — including Comcast,

Condé Nast, H&M and over 50% of the Fortune

500 — rely on the Databricks Lakehouse Platform

to unify their data, analytics and AI. Databricks is

headquartered in San Francisco, with offices around

the globe. Founded by the original creators of

Apache Spark™, Delta Lake and MLflow, Databricks

is on a mission to help data teams solve the world’s

toughest problems. To learn more, follow Databricks

on Twitter, LinkedIn and Facebook.

© Databricks 2022. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

Schedule a personalized demo

Sign up for a free trial

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use
https://databricks.com/company/contact?utm_source=big%20book%20of%20machine%20learning%20use%20cases&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases

