주요 컨텐츠로 이동

AI/BI for Data Analysts - Korean

이 과정에서는 비즈니스 인텔리전스 요구 사항을 충족하기 위해 Databricks가 제공하는 기능을 사용하는 방법을 알아봅니다. AI/BI 대시보드 및 AI/BI Genie. Databricks 데이터 애널리스트는 플랫폼 내에서 AI/BI 대시보드와 AI/BI Genie Spaces를 만들고, 이해 관계자와 필수 당사자가 이러한 자산에 액세스하는 것을 관리하고, 자산이 수명 동안 편집, 새로 고침 또는 폐기될 때 이러한 자산을 유지 관리하는 태스크를 맡게 됩니다. 이 과정에서는 참가자에게 비즈니스 통찰력을 위한 대시보드를 디자인하는 방법, 이를 공동 작업자 및 이해관계자와 공유하는 방법, 플랫폼 내에서 해당 자산을 유지하는 방법을 교육합니다. 참가자는 또한 Databricks Data Intelligence Engine을 기반으로 하는 AI/BI Genie Spaces를 활용하여 셀프 서비스 분석을 지원하는 방법을 배웁니다.


Languages Available: English 日本語 | Português BR 한국어 | Español| française

Skill Level
Associate
Duration
3h
Prerequisites

이 콘텐츠는 다음과 같은 기술/지식/능력을 갖춘 참여자를 위해 개발되었습니다.

  • Databricks에서 기존 데이터 테이블을 쿼리하기 위한 SQL에 대한 기본적인 이해.
  • Databricks Workspace UI에 대한 사전 경험이나 기본적인 지식.
  • 통계 분석 결과의 목적과 용도에 대한 기본적인 이해.
  • 비즈니스 인텔리전스에 사용되는 대시보드와 관련된 개념에 익숙합니다.

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

지금 등록하세요

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

지금 등록하세요

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

DevOps Essentials for Data Engineering - Korean

이 과정에서는 Databricks를 사용하여 작업하는 데이터 엔지니어를 위해 특별히 설계된 소프트웨어 엔지니어링 모범 사례와 DevOps 원칙을 살펴봅니다. 참가자는 코드 품질, 버전 제어, 문서화, 테스트와 같은 핵심 주제에 대한 강력한 기반을 구축하게 됩니다. 이 과정에서는 DevOps를 강조하여 핵심 구성 요소, 이점, 데이터 엔지니어링 워크플로 최적화에서 지속적인 통합 및 배포(CI/CD)의 역할에 대해 다룹니다.

PySpark에서 모듈성 원칙을 적용하여 재사용 가능한 구성 요소를 만들고 효율적으로 코드를 구성하는 방법을 학습합니다. 실습 경험에는 pytest 프레임워크를 사용하여 PySpark 함수에 대한 단위 테스트를 설계하고 구현하는 것과 DLT 및 Workflows를 사용하여 Databricks 데이터 파이프라인에 대한 통합 테스트를 수행하여 안정성을 보장하는 것이 포함됩니다.

또한 이 과정에서는 Databricks Git 폴더를 사용하여 지속적인 통합 관행을 통합하는 것을 포함하여 Databricks 내에서 필수적인 Git 작업도 다룹니다. 마지막으로 REST API, CLI, SDK, Databricks Asset Bundles(DAB) 등 Databricks 자산에 대한 다양한 배포 방법을 간략하게 살펴보고 파이프라인을 배포하고 관리하는 기술에 대한 지식을 얻습니다.

과정을 마치면 소프트웨어 엔지니어링과 DevOps 모범 사례에 능숙해져서 확장 가능하고 유지 관리가 가능하며 효율적인 데이터 엔지니어링 솔루션을 구축할 수 있게 됩니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid & Subscription
3h
Lab
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.