주요 컨텐츠로 이동

AI/BI for Data Analysts - Korean

이 과정에서는 비즈니스 인텔리전스 요구 사항을 충족하기 위해 Databricks가 제공하는 기능을 사용하는 방법을 알아봅니다. AI/BI 대시보드 및 AI/BI Genie. Databricks 데이터 애널리스트는 플랫폼 내에서 AI/BI 대시보드와 AI/BI Genie Spaces를 만들고, 이해 관계자와 필수 당사자가 이러한 자산에 액세스하는 것을 관리하고, 자산이 수명 동안 편집, 새로 고침 또는 폐기될 때 이러한 자산을 유지 관리하는 태스크를 맡게 됩니다. 이 과정에서는 참가자에게 비즈니스 통찰력을 위한 대시보드를 디자인하는 방법, 이를 공동 작업자 및 이해관계자와 공유하는 방법, 플랫폼 내에서 해당 자산을 유지하는 방법을 교육합니다. 참가자는 또한 Databricks Data Intelligence Engine을 기반으로 하는 AI/BI Genie Spaces를 활용하여 셀프 서비스 분석을 지원하는 방법을 배웁니다.


Languages Available: English 日本語 | Português BR 한국어 | Español| française

Skill Level
Associate
Duration
3h
Prerequisites

이 콘텐츠는 다음과 같은 기술/지식/능력을 갖춘 참여자를 위해 개발되었습니다.

  • Databricks에서 기존 데이터 테이블을 쿼리하기 위한 SQL에 대한 기본적인 이해.
  • Databricks Workspace UI에 대한 사전 경험이나 기본적인 지식.
  • 통계 분석 결과의 목적과 용도에 대한 기본적인 이해.
  • 비즈니스 인텔리전스에 사용되는 대시보드와 관련된 개념에 익숙합니다.

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Build Data Pipelines with Lakeflow Declarative Pipelines - Korean

이 과정에서는 여러 스트리밍 테이블과 구체화된 보기를 통한 증분 배치 또는 스트리밍 수집 및 처리를 위해 Databricks의 Lakeflow 선언적 파이프라인를 사용하여 데이터 파이프라인을 구축하는 데 필요한 필수 개념과 기술을 사용자에게 소개합니다. Lakeflow 선언적 파이프라인를 처음 접하는 데이터 엔지니어를 위해 설계된 이 과정은 증분 데이터 처리, 스트리밍 테이블, 구체화된 보기 및 임시 보기와 같은 핵심 구성 요소에 대한 포괄적인 개요를 제공하고 구체적인 목적과 차이점을 강조합니다.

다루는 주제는 다음과 같습니다.

- SQL을 사용하여 Lakeflow의 다중 파일 편집기로 ETL 파이프라인 개발 및 디버깅 (Python 코드 예제 제공)

- Lakeflow 선언적 파이프라인이 파이프라인 그래프

를 통해 파이프라인의 데이터 종속성을 추적하는 방법- 파이프라인 컴퓨팅 리소스, 데이터 자산, 트리거 모드 및 기타 고급 옵션

 구성 다음으로, 이 과정에서는 Lakeflow의 데이터 품질 기대치를 소개하고, 데이터 무결성을 검증하고 적용하기 위해 기대치를 파이프라인에 통합하는 프로세스를 안내합니다. 그런 다음 학습자는 스케줄링 옵션, 프로덕션 모드, 파이프라인 이벤트 로깅을 활성화하여 파이프라인 성능 및 상태를 모니터링하는 등 파이프라인을 프로덕션에 적용하는 방법을 살펴봅니다.

마지막으로, 이 과정에서는 Lakeflow Declarative Pipelines 내에서 APPLY CHANGES INTO 구문을 사용하여 Change Data Capture  (CDC)를 구현하여 느리게 변화하는 차원(SCD 유형 1 및 유형 2)을 관리하여 사용자가 CDC를 자신의 파이프라인에 통합할 수 있도록 준비하는 방법을 다룹니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid & Subscription
4h
Lab
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.