주요 컨텐츠로 이동

Data Preparation for Machine Learning - Korean

이 과정은 Databricks를 활용한 머신러닝 데이터 준비의 기초에 중점을 둡니다. 참가자들은 전통적인 머신러닝 애플리케이션에 맞춤화된 데이터 탐색, 정리 및 구성에 필요한 핵심 기술을 습득하게 됩니다. 주요 주제로는 데이터 시각화, 특징 공학, 최적의 특징 저장 전략 등이 포함됩니다. 실습을 통해 참가자들은 Databricks 내에서 머신러닝을 위한 데이터 세트를 효율적으로 준비하는 실무 경험을 쌓게 됩니다. 본 과정은 준전문가 수준의 데이터 과학자 및 머신러닝 실무자, 그리고 데이터 준비 역량을 강화하여 성공적인 머신러닝 모델 배포를 위한 탄탄한 기반을 마련하고자 하는 개인을 대상으로 설계되었습니다.


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

이 과정을 시작하기 전에 최소한 다음 사항에 익숙해야 합니다. :

• Databricks workspace 및 노트북에 대한 이해

• Delta Lake 및 Lakehouse에 대한 이해

• Python 중급 수준의 지식

Upcoming Public Classes

Date
Time
Language
Price
Mar 17
09 AM - 01 PM (Asia/Seoul)
Korean
$750.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

지금 등록하세요

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

지금 등록하세요

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles - Korean

이 과정은 DevOps 원칙과 이를 Databricks 프로젝트에 적용하는 방법을 포괄적으로 검토합니다. 핵심 DevOps, DataOps, 지continuous integration (CI), continuous deployment (CD), 테스트에 대한 개요로 시작하여 이러한 원칙을 데이터 엔지니어링 파이프라인에 적용하는 방법을 탐구합니다.

이어서 CI/CD 프로세스 내 지속적 배포에 초점을 맞추며, 프로젝트 배포를 위한 Databricks REST API, SDK, CLI와 같은 도구를 살펴봅니다. Databricks Asset Bundles(DAB)와 CI/CD 프로세스 내에서의 역할을 학습하게 됩니다. 주요 구성 요소, 폴더 구조, Databricks 내 다양한 대상 환경에 걸친 배포 간소화 방식을 심층적으로 다룹니다. 또한 Databricks CLI를 활용하여 서로 다른 구성의 다중 환경에 대해 변수 추가, 수정, 검증, 배포 및 실행하는 방법을 익히게 됩니다.

마지막으로, Visual Studio Code를 인터랙티브 개발 환경(IDE)으로 활용하여 로컬에서 Databricks Asset Bundles를 빌드, 테스트, 배포하는 방법을 소개함으로써 개발 프로세스를 최적화합니다. GitHub Actions를 활용한 배포 파이프라인 자동화를 통해 Databricks Asset Bundles의 CI/CD 워크플로우를 강화하는 방법에 대한 소개로 강좌를 마무리합니다.

본 과정 수료 시, Databricks Asset Bundles를 활용한 Databricks 프로젝트 배포 자동화 역량을 갖추게 되어 DevOps 관행을 통해 효율성을 향상시킬 수 있습니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
instructor-led
Professional

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.