주요 컨텐츠로 이동

SQL Analytics on Databricks - Korean

이 과정에서는 Databricks SQL에 특히 초점을 맞춰 Databricks를 사용하여 데이터 분석을 효과적으로 수행하는 방법을 학습합니다. Databricks 데이터 애널리스트로서 귀하의 책임에는 관련 데이터를 찾고, 잠재적인 응용 프로그램을 위해 데이터를 분석하고, 귀중한 비즈니스 통찰력을 제공하는 형식으로 데이터를 변환하는 것이 포함됩니다. 

또한 Databricks Data Intelligence Platform에서 Notebooks, SQL Editor, Databricks SQL과 같은 도구를 사용하여 데이터 객체를 관리하는 역할과 이를 조작하는 방법을 이해하게 됩니다. 

또한, 데이터 자산과 전반적인 플랫폼을 관리하는 데 있어 Unity Catalog의 중요성에 대해서도 알아봅니다. 마지막으로, 이 과정에서는 Databricks가 어떻게 성능 최적화를 용이하게 하는지에 대한 개요를 제공하고, Databricks에서 SQL 분석을 실행할 때 내부적으로 발생하는 프로세스를 이해하기 위해 Query Insights에 액세스하는 방법을 알려드립니다.


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

- 데이터 분석 목적으로 SQL을 사용하는 방법에 대한 실무 지식. 

- 데이터가 어떻게 생성, 저장, 관리되는지 잘 알고 있어야 합니다. 

- 통계 분석에 대한 기본적인 이해. 

- CSV, JSON, TXT, Parquet 등 특정 데이터 형식의 구조와 정의적 특성을 이해합니다. - Databricks Data Intelligence Platform의 사용자 인터페이스에 익숙해야 합니다.

Outline

데이터 탐색

Unity Catalog를 데이터 검색 도구로 사용하기
데이터 개체 소유권 이해하기

Unity Catalog를 사용하여 데이터세트 찾아보기 및 검사하기

데이터 가져오기 

데이터를 Databricks로 수집하기

UI를 사용하여 Databricks에 데이터 업로드하기

Unity Catalog에 대한 프로그래매틱 탐색 및 데이터 수집

Databricks로 데이터 가져오기


SQL 실행 

Databricks SQL 및 Databricks SQL 웨어하우스

통합 SQL 편집기 

Databricks SQL을 사용한 데이터 조작 및 변환

Databricks SQL을 사용하여 뷰 만들기

테이블 조작 및 분석


쿼리 분석

Databricks Photon 및 Databricks의 최적화

쿼리 인사이트 

SQL 분석을 위한 모범 사례

Upcoming Public Classes

Date
Time
Language
Price
Mar 11
02 PM - 06 PM (Asia/Seoul)
Korean
$750.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

지금 등록하세요

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

지금 등록하세요

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles - Korean

이 과정은 DevOps 원칙과 이를 Databricks 프로젝트에 적용하는 방법을 포괄적으로 검토합니다. 핵심 DevOps, DataOps, 지continuous integration (CI), continuous deployment (CD), 테스트에 대한 개요로 시작하여 이러한 원칙을 데이터 엔지니어링 파이프라인에 적용하는 방법을 탐구합니다.

이어서 CI/CD 프로세스 내 지속적 배포에 초점을 맞추며, 프로젝트 배포를 위한 Databricks REST API, SDK, CLI와 같은 도구를 살펴봅니다. Databricks Asset Bundles(DAB)와 CI/CD 프로세스 내에서의 역할을 학습하게 됩니다. 주요 구성 요소, 폴더 구조, Databricks 내 다양한 대상 환경에 걸친 배포 간소화 방식을 심층적으로 다룹니다. 또한 Databricks CLI를 활용하여 서로 다른 구성의 다중 환경에 대해 변수 추가, 수정, 검증, 배포 및 실행하는 방법을 익히게 됩니다.

마지막으로, Visual Studio Code를 인터랙티브 개발 환경(IDE)으로 활용하여 로컬에서 Databricks Asset Bundles를 빌드, 테스트, 배포하는 방법을 소개함으로써 개발 프로세스를 최적화합니다. GitHub Actions를 활용한 배포 파이프라인 자동화를 통해 Databricks Asset Bundles의 CI/CD 워크플로우를 강화하는 방법에 대한 소개로 강좌를 마무리합니다.

본 과정 수료 시, Databricks Asset Bundles를 활용한 Databricks 프로젝트 배포 자동화 역량을 갖추게 되어 DevOps 관행을 통해 효율성을 향상시킬 수 있습니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
instructor-led
Professional
Data Engineer

DevOps Essentials for Data Engineering - Korean

이 과정에서는 Databricks를 사용하여 작업하는 데이터 엔지니어를 위해 특별히 설계된 소프트웨어 엔지니어링 모범 사례와 DevOps 원칙을 살펴봅니다. 참가자는 코드 품질, 버전 제어, 문서화, 테스트와 같은 핵심 주제에 대한 강력한 기반을 구축하게 됩니다. 이 과정에서는 DevOps를 강조하여 핵심 구성 요소, 이점, 데이터 엔지니어링 워크플로 최적화에서 지속적인 통합 및 배포(CI/CD)의 역할에 대해 다룹니다.

PySpark에서 모듈성 원칙을 적용하여 재사용 가능한 구성 요소를 만들고 효율적으로 코드를 구성하는 방법을 학습합니다. 실습 경험에는 pytest 프레임워크를 사용하여 PySpark 함수에 대한 단위 테스트를 설계하고 구현하는 것과 DLT 및 Workflows를 사용하여 Databricks 데이터 파이프라인에 대한 통합 테스트를 수행하여 안정성을 보장하는 것이 포함됩니다.

또한 이 과정에서는 Databricks Git 폴더를 사용하여 지속적인 통합 관행을 통합하는 것을 포함하여 Databricks 내에서 필수적인 Git 작업도 다룹니다. 마지막으로 REST API, CLI, SDK, Databricks Asset Bundles(DAB) 등 Databricks 자산에 대한 다양한 배포 방법을 간략하게 살펴보고 파이프라인을 배포하고 관리하는 기술에 대한 지식을 얻습니다.

과정을 마치면 소프트웨어 엔지니어링과 DevOps 모범 사례에 능숙해져서 확장 가능하고 유지 관리가 가능하며 효율적인 데이터 엔지니어링 솔루션을 구축할 수 있게 됩니다.

Languages Available: English | 日本語 | Português BR | 한국어 | Español | française

Paid
4h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.