주요 컨텐츠로 이동

SQL Analytics on Databricks - Korean

이 과정에서는 Databricks SQL에 특히 초점을 맞춰 Databricks를 사용하여 데이터 분석을 효과적으로 수행하는 방법을 학습합니다. Databricks 데이터 애널리스트로서 귀하의 책임에는 관련 데이터를 찾고, 잠재적인 응용 프로그램을 위해 데이터를 분석하고, 귀중한 비즈니스 통찰력을 제공하는 형식으로 데이터를 변환하는 것이 포함됩니다. 

또한 Databricks Data Intelligence Platform에서 Notebooks, SQL Editor, Databricks SQL과 같은 도구를 사용하여 데이터 객체를 관리하는 역할과 이를 조작하는 방법을 이해하게 됩니다. 

또한, 데이터 자산과 전반적인 플랫폼을 관리하는 데 있어 Unity Catalog의 중요성에 대해서도 알아봅니다. 마지막으로, 이 과정에서는 Databricks가 어떻게 성능 최적화를 용이하게 하는지에 대한 개요를 제공하고, Databricks에서 SQL 분석을 실행할 때 내부적으로 발생하는 프로세스를 이해하기 위해 Query Insights에 액세스하는 방법을 알려드립니다.


Languages Available: English | 日本語 | Português BR | 한국어 

Skill Level
Associate
Duration
3h
Prerequisites

- 데이터 분석 목적으로 SQL을 사용하는 방법에 대한 실무 지식. 

- 데이터가 어떻게 생성, 저장, 관리되는지 잘 알고 있어야 합니다. 

- 통계 분석에 대한 기본적인 이해. 

- CSV, JSON, TXT, Parquet 등 특정 데이터 형식의 구조와 정의적 특성을 이해합니다. - Databricks Data Intelligence Platform의 사용자 인터페이스에 익숙해야 합니다.

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Build Data Pipelines with Lakeflow Declarative Pipelines - Korean

이 과정에서는 여러 스트리밍 테이블과 구체화된 보기를 통한 증분 배치 또는 스트리밍 수집 및 처리를 위해 Databricks의 Lakeflow 선언적 파이프라인를 사용하여 데이터 파이프라인을 구축하는 데 필요한 필수 개념과 기술을 사용자에게 소개합니다. Lakeflow 선언적 파이프라인를 처음 접하는 데이터 엔지니어를 위해 설계된 이 과정은 증분 데이터 처리, 스트리밍 테이블, 구체화된 보기 및 임시 보기와 같은 핵심 구성 요소에 대한 포괄적인 개요를 제공하고 구체적인 목적과 차이점을 강조합니다.

다루는 주제는 다음과 같습니다.

- SQL을 사용하여 Lakeflow의 다중 파일 편집기로 ETL 파이프라인 개발 및 디버깅 (Python 코드 예제 제공)

- Lakeflow 선언적 파이프라인이 파이프라인 그래프

를 통해 파이프라인의 데이터 종속성을 추적하는 방법- 파이프라인 컴퓨팅 리소스, 데이터 자산, 트리거 모드 및 기타 고급 옵션

 구성 다음으로, 이 과정에서는 Lakeflow의 데이터 품질 기대치를 소개하고, 데이터 무결성을 검증하고 적용하기 위해 기대치를 파이프라인에 통합하는 프로세스를 안내합니다. 그런 다음 학습자는 스케줄링 옵션, 프로덕션 모드, 파이프라인 이벤트 로깅을 활성화하여 파이프라인 성능 및 상태를 모니터링하는 등 파이프라인을 프로덕션에 적용하는 방법을 살펴봅니다.

마지막으로, 이 과정에서는 Lakeflow Declarative Pipelines 내에서 APPLY CHANGES INTO 구문을 사용하여 Change Data Capture  (CDC)를 구현하여 느리게 변화하는 차원(SCD 유형 1 및 유형 2)을 관리하여 사용자가 CDC를 자신의 파이프라인에 통합할 수 있도록 준비하는 방법을 다룹니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid & Subscription
4h
Lab
Associate
Data Engineer

DevOps Essentials for Data Engineering - Korean

이 과정에서는 Databricks를 사용하여 작업하는 데이터 엔지니어를 위해 특별히 설계된 소프트웨어 엔지니어링 모범 사례와 DevOps 원칙을 살펴봅니다. 참가자는 코드 품질, 버전 제어, 문서화, 테스트와 같은 핵심 주제에 대한 강력한 기반을 구축하게 됩니다. 이 과정에서는 DevOps를 강조하여 핵심 구성 요소, 이점, 데이터 엔지니어링 워크플로 최적화에서 지속적인 통합 및 배포(CI/CD)의 역할에 대해 다룹니다.

PySpark에서 모듈성 원칙을 적용하여 재사용 가능한 구성 요소를 만들고 효율적으로 코드를 구성하는 방법을 학습합니다. 실습 경험에는 pytest 프레임워크를 사용하여 PySpark 함수에 대한 단위 테스트를 설계하고 구현하는 것과 DLT 및 Workflows를 사용하여 Databricks 데이터 파이프라인에 대한 통합 테스트를 수행하여 안정성을 보장하는 것이 포함됩니다.

또한 이 과정에서는 Databricks Git 폴더를 사용하여 지속적인 통합 관행을 통합하는 것을 포함하여 Databricks 내에서 필수적인 Git 작업도 다룹니다. 마지막으로 REST API, CLI, SDK, Databricks Asset Bundles(DAB) 등 Databricks 자산에 대한 다양한 배포 방법을 간략하게 살펴보고 파이프라인을 배포하고 관리하는 기술에 대한 지식을 얻습니다.

과정을 마치면 소프트웨어 엔지니어링과 DevOps 모범 사례에 능숙해져서 확장 가능하고 유지 관리가 가능하며 효율적인 데이터 엔지니어링 솔루션을 구축할 수 있게 됩니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid & Subscription
3h
Lab
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.