メインコンテンツへジャンプ
ページ 1

Cracking the Code: Databricksがバイオメカニクスデータでメジャーリーグを再構築する方法

November 1, 2023 Harrison FlaxChris NieselHussain Vahanvaty による投稿 in 業界
翻訳:Saki Kitaoka. - Original Blog Link バイオメカニカルデータは、メジャーリーグ(MLB)のチームにとって、選手のパフォーマンスを向上させ、怪我を減らすという競争上の優位性を提供する、ゲームを変える要素として登場しました。しかし、その潜在的な可能性にもかかわらず、ほとんどのチームはその能力を十分に活用できずにいます。 バイオメカニクスデータのソースは、ウェアラブルセンサー、フォースプレート、モバイルデバイス、そして特に高速度カメラなど多岐にわたります。2020年、各球場に12台のカメラを戦略的に配置した Hawk-Eye Statcastシステム の登場は、大きな前進でした。これらのカメラのうち5台は投球と打撃専用で、毎秒100フレーム(FPS)で作動。残りの7台のカメラは、フィールドプレーヤーと打球に焦点を当て、50 FPSでデータを取得します。これらのカメラシステムを合計すると、MLBのレギュラーシーズン2,430試合ごとに24テラバイトという途方もない量のデータが生成され