주요 컨텐츠로 이동

Advanced Data Engineering with Databricks - Korean

이 과정을 통해 수강생은 Apache Spark, Delta Lake 및 Delta Live Tables에 대한 기존 지식을 바탕으로 Databricks에서 제공하는 다양한 도구로 데이터 레이크하우스의 잠재력을 최대로 활용할 수 있습니다. 이 과정에서는 증분 데이터 처리 설계에 중점을 두고, 시스템이 계속 증가하는 데이터를 지속적으로 수집 및 분석하는데 최적화 할 수 있도록 지원합니다. 데이터 엔지니어는 내장된 플랫폼 최적화 기능을 활용하도록 워크로드를 설계함으로써, 코드 유지 관리 및 긴급 상황 대비에 대한 부담을 완화하고 리팩터링이나 가동 중지 시간을 최소화하면서 새로운 요구 사항에 맞게 프로덕션 코드를 신속하게 조정할 수 있습니다. 

이 과정의 토픽들은 Databricks 인증 데이터 엔지니어링 전문가 시험 응시 이전에 학습을 완료해야 합니다.


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Professional
Duration
16h
Prerequisites

이 과정을 시작하기 전에 최소한 다음 사항에 익숙해야 합니다.

  • Databricks Data Engineering & Data Science Workspace를 사용하여 기본 코드 개발 태스크를 수행할 수 있는 능력(클러스터 생성, 노트북에서 코드 실행, 기본 노트북 연산 사용, Git에서 리포지토리 가져오기 등)
  • 중급 수준의 PySpark 프로그래밍 경험
    • 다양한 파일 형식 및 데이터 소스에서 데이터 추출
    • 정제된 데이터에 다수의 일반적인 변환 적용
    • 고급 내장 기능을 사용하여 복잡한 데이터의 구조 변경 및 조작
  • Delta Lake를 사용한 중급 수준의 프로그래밍 경험(테이블 생성, 전체 업데이트 및 증분 업데이트 수행, 파일 압축, 이전 버전 복원 등)
  • Delta Live Tables(DLT) UI를 사용한 초급 수준의 데이터 파이프라인 구성 및 스케줄링 경험
  • PySpark를 사용한 초급 수준의 Delta Live Tables 파이프라인 정의 경험
    • 오토 로더 및 PySpark 구문을 사용하여 데이터 수집 및 처리
    • APPLY CHANGES INTO 구문으로 CDC(Change Data Capture) 피드 처리
    • 파이프라인 이벤트 로그 및 결과를 검토하여 DLT 구문 문제 해결


필요 데이터 엔지니어링 스킬은 Databricks Academy에서 Databricks를 이용한 데이터 엔지니어링(Data Engineering With Databricks) 과정을 통해 습득할 수 있습니다.

Outline

1일 차

  • 레이크하우스 아키텍처
  • 데이터 스토리지 최적화
  • Delta Lake 트랜잭션 이해하기
  • 낙관적 동시성(Optimistic Concurrency)으로 Delta Lake 격리
  • 스트리밍 설계 패턴
  • 개발 및 데이터 백업을 위한 복제
  • 오토 로더 및 브론즈 수집 패턴
  • 스트리밍 중복 제거 및 품질 유지
  • 느린 변경 차원(SCD)
  • 스트리밍 조인 및 스테이트풀(Stateful)

2일 차

  • 저장된(Stored) 뷰 및 구체화된(Materialized) 뷰
  • 데이터를 안전하게 저장
  • PII에 권한 있는(Privileged) 액세스 부여
  • Lakehouse의 데이터 삭제
  • 다중 태스크 Job의 오케스트레이션 및 스케줄링
  • 오류 모니터링, 로깅 및 처리
  • Databricks Repos를 사용하여 코드 승격
  • 프로그래밍 방식의 플랫폼 상호작용(Databricks CLI 및 REST API)
  • 스트리밍 워크로드의 비용 및 레이턴시 관리

Upcoming Public Classes

Date
Time
Language
Price
May 06 - 07
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00
Jun 04 - 05
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00
Jul 03 - 04
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Generative AI Engineer

Generative AI Engineering with Databricks - Korean

이 과정은 Data Scientists, 머신러닝 엔지니어 및 가장 인기 있는 최신 프레임워크와 Databricks 기능을 사용하여 제너레이티브 AI 애플리케이션을 구축하려는 기타 데이터 실무자를 대상으로 합니다. 

아래에서는 이 과정에 포함된 4시간짜리 4개의 모듈에 대해 각각 설명합니다.

Generative AI Solution Development: 검색 증강 생성(RAG) 방식을 사용하는 문맥 생성 AI 솔루션에 대해 소개합니다. 먼저 RAG 아키텍처와 Mosaic AI Playground를 사용한 문맥 정보의 중요성에 대해 소개합니다. 다음으로, 생성형 AI 솔루션을 위해 데이터를 준비하는 방법과 이 과정을 RAG 아키텍처 구축과 연결하는 방법을 보여드립니다. 마지막으로 컨텍스트 임베딩, 벡터, 벡터 데이터베이스, Mosaic AI Vector Search의 활용과 관련된 개념을 살펴봅니다.

Generative AI Application Development: 다단계 추론 LLM 체인과 에이전트를 사용해 고급 LLM 애플리케이션을 구축하는 데 필요한 정보와 실무 경험을 쌓을 준비가 되셨나요? 이 모듈에서는 먼저 문제를 구성 요소로 분해하고 각 단계에 가장 적합한 모델을 선택해 비즈니스 사용 사례를 개선하는 방법을 배웁니다. 그 다음에는 LangChain과 HuggingFace 트랜스포머를 활용해 다단계 추론 체인을 구축하는 방법을 보여드리겠습니다. 마지막으로 에이전트를 소개하고 Databricks에서 생성 모델을 사용해 자율 에이전트를 설계합니다.

Generative AI Application Evaluation and Governance: 제너레이티브 AI 시스템 평가 및 거버넌스에 대한 소개입니다. 먼저 평가 및 거버넌스/보안 시스템 구축의 의미와 동기를 살펴봅니다. 다음으로, 평가 및 거버넌스 시스템을 Databricks Data Intelligence Platform에 연결합니다. 셋째, 특정 구성 요소와 애플리케이션 유형에 대한 다양한 평가 기법에 대해 알려드립니다. 마지막으로, 성능과 비용 측면에서 전체 AI 시스템을 평가하는 분석으로 과정을 마무리합니다.

Generative AI Application Deployment and Monitoring: 제너레이티브 AI 애플리케이션을 배포, 운영, 모니터링하는 방법을 배울 준비가 되셨나요? 이 모듈에서는 Model Serving과 같은 도구를 사용하여 제너레이티브 AI 애플리케이션을 배포하는 기술을 습득할 수 있습니다. 또한 모범 사례와 권장 아키텍처에 따라 제너레이티브 AI 애플리케이션을 운영하는 방법도 다룹니다. 마지막으로 Lakehouse Monitoring을 사용하여 제너레이티브 AI 애플리케이션과 그 구성 요소를 모니터링하는 방법에 대해 설명합니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid
16h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.