주요 컨텐츠로 이동

Data Ingestion with Lakeflow Connect - Korean

이 과정에서는 다양한 소스에서 Databricks로 데이터를 수집하기 위한 확장 가능하고 간소화된 솔루션인 Lakeflow Connect에 대한 포괄적인 소개를 제공합니다. 먼저 다양한 유형의 Lakeflow Connect 커넥터(표준 및 관리형)를 탐색하고 배치, 증분 배치 및 스트리밍 수집을 포함한 다양한 데이터 수집 기술을 알아봅니다. 또한 Delta 테이블 및 Medallion 아키텍처를 사용할 때의 주요 이점도 검토합니다.


다음으로, Lakeflow Connect 표준 커넥터를 사용하여 클라우드 객체 스토리지에서 데이터를 수집하기 위한 실용적인 기술을 개발합니다. 여기에는 CREATE TABLE AS SELECT(CTAS), COPY INTO 및 Auto Loader와 같은 방법을 사용하는 작업이 포함되며 각 방법의 이점과 고려 사항에 중점을 둡니다. 또한 Databricks Data Intelligence Platform로 수집하는 동안 브론즈 수준 테이블에 메타데이터 열을 추가하는 방법도 알아봅니다. 그런 다음 이 과정에서는 복구된 데이터 열을 사용하여 테이블 스키마와 일치하지 않는 레코드를 처리하는 방법과 이 데이터를 관리하고 분석하기 위한 전략을 다룹니다. 또한 반정형 JSON 데이터를 수집하고 평면화하는 기술을 살펴봅니다.


그런 다음 Lakeflow Connect 관리형 커넥터를 사용하여 엔터프라이즈급 데이터 수집을 수행하여 데이터베이스 및 SaaS(Software-as-a-Service) 애플리케이션에서 데이터를 가져오는 방법을 살펴봅니다. 또한 이 과정에서는 파트너 도구를 수집 워크플로우에 통합하기 위한 옵션으로 Partner Connect를 소개합니다.


마지막으로, 이 과정은 MERGE INTO 작업 및 Databricks Marketplace 활용을 포함한 대체 수집 전략으로 마무리하여 최신 데이터 엔지니어링 사용 사례를 지원할 수 있는 강력한 기반을 제공합니다.


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

- Databricks Workspaces, Apache Spark, Delta Lake, Medallion Architecture 및 Unity Catalog를 포함한 Databricks Data Intelligence Platform에 대한 기본적인 이해.

- 다양한 파일 형식(예: Parquet, CSV, JSON, TXT)으로 작업한 경험.

- SQL 및 Python에 능숙합니다.

- Databricks Notebooks에서 코드를 실행하는 데 익숙합니다.

Outline

Databricks에서의 데이터 엔지니어링 소개

- Databricks에서의 데이터 엔지니어링

- Lakeflow Connect란 무엇인가?

- Delta Lake 검토

- 실험 환경 탐색


클라우드 스토리지 데이터 수집을 위한 LakeFlow Connect 표준 커넥터

- 클라우드 스토리지로부터의 데이터 수집 소개

- 수집 시 메타데이터 열 추가

- 복구된 데이터 열 작업

- 반구조화 데이터(JSON) 가져오기


LakeFlow Connect 관리형 커넥터를 사용한 기업 데이터 가져오기

- Databricks로의 기업 데이터 가져오기 개요

- Lakeflow Connect를 사용한 기업 데이터 가져오기


가져오기 대안

- Databricks 마켓플레이스를 사용한 데이터 가져오기

- 기존 Delta 테이블로의 데이터 가져오기

- MERGE INTO를 사용한 데이터 가져오기

Upcoming Public Classes

Date
Time
Language
Price
Apr 01
09 AM - 01 PM (Asia/Seoul)
Korean
$750.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

지금 등록하세요

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

지금 등록하세요

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles - Korean

이 과정은 DevOps 원칙과 이를 Databricks 프로젝트에 적용하는 방법을 포괄적으로 검토합니다. 핵심 DevOps, DataOps, 지continuous integration (CI), continuous deployment (CD), 테스트에 대한 개요로 시작하여 이러한 원칙을 데이터 엔지니어링 파이프라인에 적용하는 방법을 탐구합니다.

이어서 CI/CD 프로세스 내 지속적 배포에 초점을 맞추며, 프로젝트 배포를 위한 Databricks REST API, SDK, CLI와 같은 도구를 살펴봅니다. Databricks Asset Bundles(DAB)와 CI/CD 프로세스 내에서의 역할을 학습하게 됩니다. 주요 구성 요소, 폴더 구조, Databricks 내 다양한 대상 환경에 걸친 배포 간소화 방식을 심층적으로 다룹니다. 또한 Databricks CLI를 활용하여 서로 다른 구성의 다중 환경에 대해 변수 추가, 수정, 검증, 배포 및 실행하는 방법을 익히게 됩니다.

마지막으로, Visual Studio Code를 인터랙티브 개발 환경(IDE)으로 활용하여 로컬에서 Databricks Asset Bundles를 빌드, 테스트, 배포하는 방법을 소개함으로써 개발 프로세스를 최적화합니다. GitHub Actions를 활용한 배포 파이프라인 자동화를 통해 Databricks Asset Bundles의 CI/CD 워크플로우를 강화하는 방법에 대한 소개로 강좌를 마무리합니다.

본 과정 수료 시, Databricks Asset Bundles를 활용한 Databricks 프로젝트 배포 자동화 역량을 갖추게 되어 DevOps 관행을 통해 효율성을 향상시킬 수 있습니다.

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
instructor-led
Professional
Data Engineer

DevOps Essentials for Data Engineering - Korean

이 과정에서는 Databricks를 사용하여 작업하는 데이터 엔지니어를 위해 특별히 설계된 소프트웨어 엔지니어링 모범 사례와 DevOps 원칙을 살펴봅니다. 참가자는 코드 품질, 버전 제어, 문서화, 테스트와 같은 핵심 주제에 대한 강력한 기반을 구축하게 됩니다. 이 과정에서는 DevOps를 강조하여 핵심 구성 요소, 이점, 데이터 엔지니어링 워크플로 최적화에서 지속적인 통합 및 배포(CI/CD)의 역할에 대해 다룹니다.

PySpark에서 모듈성 원칙을 적용하여 재사용 가능한 구성 요소를 만들고 효율적으로 코드를 구성하는 방법을 학습합니다. 실습 경험에는 pytest 프레임워크를 사용하여 PySpark 함수에 대한 단위 테스트를 설계하고 구현하는 것과 DLT 및 Workflows를 사용하여 Databricks 데이터 파이프라인에 대한 통합 테스트를 수행하여 안정성을 보장하는 것이 포함됩니다.

또한 이 과정에서는 Databricks Git 폴더를 사용하여 지속적인 통합 관행을 통합하는 것을 포함하여 Databricks 내에서 필수적인 Git 작업도 다룹니다. 마지막으로 REST API, CLI, SDK, Databricks Asset Bundles(DAB) 등 Databricks 자산에 대한 다양한 배포 방법을 간략하게 살펴보고 파이프라인을 배포하고 관리하는 기술에 대한 지식을 얻습니다.

과정을 마치면 소프트웨어 엔지니어링과 DevOps 모범 사례에 능숙해져서 확장 가능하고 유지 관리가 가능하며 효율적인 데이터 엔지니어링 솔루션을 구축할 수 있게 됩니다.

Languages Available: English | 日本語 | Português BR | 한국어 | Español | française

Paid
4h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.