주요 컨텐츠로 이동

Generative AI Engineering with Databricks - Korean

이 과정은 Data Scientists, 머신러닝 엔지니어 및 가장 인기 있는 최신 프레임워크와 Databricks 기능을 사용하여 제너레이티브 AI 애플리케이션을 구축하려는 기타 데이터 실무자를 대상으로 합니다. 

아래에서는 이 과정에 포함된 4시간짜리 4개의 모듈에 대해 각각 설명합니다.

Generative AI Solution Development: 검색 증강 생성(RAG) 방식을 사용하는 문맥 생성 AI 솔루션에 대해 소개합니다. 먼저 RAG 아키텍처와 Mosaic AI Playground를 사용한 문맥 정보의 중요성에 대해 소개합니다. 다음으로, 생성형 AI 솔루션을 위해 데이터를 준비하는 방법과 이 과정을 RAG 아키텍처 구축과 연결하는 방법을 보여드립니다. 마지막으로 컨텍스트 임베딩, 벡터, 벡터 데이터베이스, Mosaic AI Vector Search의 활용과 관련된 개념을 살펴봅니다.

Generative AI Application Development: 다단계 추론 LLM 체인과 에이전트를 사용해 고급 LLM 애플리케이션을 구축하는 데 필요한 정보와 실무 경험을 쌓을 준비가 되셨나요? 이 모듈에서는 먼저 문제를 구성 요소로 분해하고 각 단계에 가장 적합한 모델을 선택해 비즈니스 사용 사례를 개선하는 방법을 배웁니다. 그 다음에는 LangChain과 HuggingFace 트랜스포머를 활용해 다단계 추론 체인을 구축하는 방법을 보여드리겠습니다. 마지막으로 에이전트를 소개하고 Databricks에서 생성 모델을 사용해 자율 에이전트를 설계합니다.

Generative AI Application Evaluation and Governance: 제너레이티브 AI 시스템 평가 및 거버넌스에 대한 소개입니다. 먼저 평가 및 거버넌스/보안 시스템 구축의 의미와 동기를 살펴봅니다. 다음으로, 평가 및 거버넌스 시스템을 Databricks Data Intelligence Platform에 연결합니다. 셋째, 특정 구성 요소와 애플리케이션 유형에 대한 다양한 평가 기법에 대해 알려드립니다. 마지막으로, 성능과 비용 측면에서 전체 AI 시스템을 평가하는 분석으로 과정을 마무리합니다.

Generative AI Application Deployment and Monitoring: 제너레이티브 AI 애플리케이션을 배포, 운영, 모니터링하는 방법을 배울 준비가 되셨나요? 이 모듈에서는 Model Serving과 같은 도구를 사용하여 제너레이티브 AI 애플리케이션을 배포하는 기술을 습득할 수 있습니다. 또한 모범 사례와 권장 아키텍처에 따라 제너레이티브 AI 애플리케이션을 운영하는 방법도 다룹니다. 마지막으로 Lakehouse Monitoring을 사용하여 제너레이티브 AI 애플리케이션과 그 구성 요소를 모니터링하는 방법에 대해 설명합니다.


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
16h
Prerequisites
Python 중급 경험 머신 러닝 및 딥러닝에 대한 실무 지식이 있으면 도움이 됩니다.

Upcoming Public Classes

Date
Time
Language
Price
Nov 24 - 25
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00
Dec 22 - 23
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00
Jan 26 - 27
09 AM - 05 PM (Asia/Seoul)
Korean
$1500.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Apache Spark Developer

Apache Spark™ Programming with Databricks - Korean

이 과정은 Databricks를 사용하여 Apache Spark 프로그래밍을 배우기 위한 적절한 시작점 역할을 합니다.

아래에서는 이 과정에 포함된 4개의 4시간짜리 모듈을 각각 설명합니다.

Introduction to Apache Spark

이 과정은 분산 아키텍처와 대규모 데이터 처리를 위한 실제 응용 프로그램에 중점을 두고 Apache Spark™에 대한 필수 지식을 제공합니다. 참가자는 프로그래밍 프레임워크를 탐색하고 Spark DataFrame API를 배우며 Python 기반 Spark 워크플로를 사용하여 데이터를 읽고, 쓰고, 변환하는 기술을 개발하십시오. 

Developing Applications with Apache Spark

이 실습 과정에서 Apache Spark로 확장 가능한 데이터 처리를 마스터하세요. Spark의 DataFrame API를 사용하여 효율적인 ETL 파이프라인을 구축하고, 고급 분석을 수행하며, 분산 데이터 변환을 최적화하는 방법을 알아보세요. 그룹화, 집계, 조인, 집합 연산 및 창 함수를 살펴봅니다. 배열, 맵, 구조체와 같은 복잡한 데이터 유형으로 작업하면서 성능 최적화를 위한 모범 사례를 적용하세요.

Stream Processing and Analysis with Apache Spark

이 과정에서 Apache Spark를 사용하여 스트림 처리 및 분석의 기본 사항을 알아보세요.™ 스트림 처리 기본 사항에 대한 확실한 이해를 얻고 Spark Structured Streaming API를 사용하여 애플리케이션을 개발합니다. 스트림 집계 및 창 분석과 같은 고급 기술을 탐색하여 실시간 데이터를 효율적으로 처리하세요. 이 과정에서는 동적 데이터 환경을 위한 확장 가능하고 장애에 강한 스트리밍 애플리케이션을 만드는 기술을 습득합니다.

Monitoring and Optimizing Apache Spark Workloads on Databricks

이 과정에서는 안전한 데이터 거버넌스, 액세스 제어 및 계보 추적을 위한 Unity Catalog에 중점을 두고 확장 가능한 데이터 워크플로를 위한 레이크하우스 아키텍처 및 메달리온 설계를 살펴봅니다. 커리큘럼에는 Delta Lake를 사용하여 신뢰할 수 있는 ACID 호환 파이프라인 구축이 포함됩니다. 파티셔닝, 캐싱, 쿼리 튜닝과 같은 Spark 최적화 기술을 살펴보고 실제 문제를 해결하기 위한 효율적인 데이터 엔지니어링 및 분석을 위한 성능 모니터링, 문제 해결 및 모범 사례를 배웁니다.

Languages Available: English | 日本語 | 한국어

Paid
16h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.