メインコンテンツへジャンプ
ページ 1

DatabricksでDSPyを活用しよう!

大規模言語モデル(LLM)は、プロンプト技術を最適化することで効果的な人間とAIの対話に注目を集めています。「プロンプトエンジニアリング」は、モデルの出力を調整するための成長中の方法論であり、検索拡張生成(RAG)などの高度な技術は、関連情報を取得して応答することでLLMの生成能力を強化します。 スタンフォードNLPグループが開発したDSPyは、「プロンプトではなくプログラミングで基盤モデルを構築する」ためのフレームワークとして登場しました。現在、DSPyはDatabricksの開発者エンドポイントとの統合をサポートしており、 Model Serving や Vector Search が可能です。 複合AIのエンジニアリング これらのプロンプト技術は、AI開発者がLLM、リトリーバルモデル(RM)、その他のコンポーネントを組み込んで 複合AIシステム を開発する際に、複雑な「プロンプトパイプライン」へのシフトを示しています。 プロンプトではなくプログラミング: DSPy DSPyは、下流タスクのメトリクスに向け