メインコンテンツへジャンプ
ログイン
      • Databricks を知る
        • エグゼクティブ向け
          • スタートアップ向け
            • レイクハウスアーキテクチャ
              • Mosaic Research
              • 導入事例
                • 注目の導入事例
                  • 導入事例一覧へ
                  • パートナー
                    • クラウドプロバイダ
                      Databricks on AWS、Azure、GCP
                      • コンサルティング・SI
                        Databricks の構築・デプロイ、Databricks への移行のエキスパート
                        • 技術パートナー
                          既存のツールをレイクハウスに接続
                          • C&SI パートナー
                            レイクハウスの構築・デプロイメント、レイクハウスへの移行
                            • データパートナー
                              データコンシューマーのエコシステムにアクセス
                              • パートナーソリューション
                                業界・移行のニーズに応じたカスタムソリューション
                                • Databricks で構築
                                  ビジネスの創造・マーケティング・成長
                                • Databricks プラットフォーム
                                  • プラットフォームの概要
                                    データ・分析・AI のための統合プラットフォーム
                                    • データ管理
                                      データの信頼性・セキュリティ・パフォーマンス
                                      • 共有
                                        オープン、セキュア、ゼロコピーでのデータ共有
                                        • データウェアハウジング
                                          バッチ、ストリーミングデータのための ETL とオーケストレーション
                                          • ガバナンス
                                            データ・分析・AI のための統合ガバナンス
                                            • リアルタイム分析
                                              リアルタイム分析、AI、アプリケーションをシンプルに
                                              • 人工知能(AI)
                                                ML と生成 AI アプリケーションの構築とデプロイメント
                                                • データエンジニアリング
                                                  バッチ、ストリーミングデータのための ETL とオーケストレーション
                                                  • BI
                                                    実世界データのインテリジェント分析
                                                    • データサイエンス
                                                      データサイエンスの大規模な連携
                                                    • 統合とデータ
                                                      • マーケットプレイス
                                                        データ、分析、AI のためのオープンマーケットプレイス
                                                        • IDE 統合
                                                          お気に入りの IDE(統合開発環境)でレイクハウスを構築
                                                          • パートナーコネクト
                                                            Databricks エコシステムの検索と統合
                                                          • ご利用料金
                                                            • Databricks のご利用料金
                                                              料金設定、DBU、その他
                                                              • コスト計算ツール
                                                                クラウド利用でのコンピュートコストの試算
                                                              • オープンソース
                                                                • オープンソーステクノロジー
                                                                  プラットフォームを支えるイノベーションをもっと詳しく
                                                                • 業界向け Databricks
                                                                  • 通信
                                                                    • メディア・エンターテイメント
                                                                      • 金融サービス
                                                                        • 官公庁・公共機関
                                                                          • 医療・ライフサイエンス
                                                                            • リテール・消費財
                                                                              • 製造
                                                                                • 全て見る
                                                                                • クロスインダストリーソリューション
                                                                                  • サイバーセキュリティ
                                                                                    • マーケティング
                                                                                    • 移行・デプロイメント
                                                                                      • データの移行
                                                                                        • プロフェッショナルサービス
                                                                                        • ソリューションアクセラレータ
                                                                                          • ソリューションアクセラレータ一覧
                                                                                            成果を加速
                                                                                          • トレーニング・認定試験
                                                                                            • 学習の概要
                                                                                              トレーニング、認定、イベントなどのハブ
                                                                                              • トレーニング概要
                                                                                                ニーズに合わせたカリキュラムを探す
                                                                                                • Databricks アカデミー
                                                                                                  Databricks ラーニングプラットフォームにサインインする
                                                                                                  • 認定
                                                                                                    スキル・認定で差別化を図る
                                                                                                    • 大学との連携
                                                                                                      Databricks を教材として活用
                                                                                                    • イベント
                                                                                                      • DATA+AI サミット
                                                                                                        • Data+AI ワールドツアー
                                                                                                          • Data Intelligence Days
                                                                                                            • イベントカレンダー
                                                                                                            • ブログ・ポッドキャスト
                                                                                                              • Databricks ブログ
                                                                                                                最新情報、製品発表、その他の情報
                                                                                                                • Databricks Mosaic AIリサーチブログ
                                                                                                                  AI世代に関する最新リサーチ
                                                                                                                  • Data Brew ポッドキャスト
                                                                                                                    ご相談・お問い合わせ
                                                                                                                    • ポッドキャスト:Data+AI のチャンピオン
                                                                                                                      イノベーションを支えるデータリーダーのインサイト
                                                                                                                    • お役立ちリソース
                                                                                                                      • カスタマーサポート
                                                                                                                        • ドキュメント
                                                                                                                          • コミュニティ
                                                                                                                          • もっと詳しく
                                                                                                                            • リソースセンター
                                                                                                                              • デモセンター
                                                                                                                              • 企業概要
                                                                                                                                • Databricks について
                                                                                                                                  • 経営陣
                                                                                                                                    • Databricks Ventures
                                                                                                                                      • ご相談・お問い合わせ
                                                                                                                                      • 採用情報
                                                                                                                                        • 採用情報概要
                                                                                                                                          • 求人情報
                                                                                                                                          • プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                              • 受賞歴と業界評価
                                                                                                                                              • セキュリティと信頼
                                                                                                                                                • セキュリティと信頼
                                                                                                                                            • 是非ご検討ください!
                                                                                                                                            • デモを見る
                                                                                                                                            • ログイン
                                                                                                                                            • Databricks 無料トライアル
                                                                                                                                            1. ブログ
                                                                                                                                            2. /
                                                                                                                                              データリーダー
                                                                                                                                            3. /
                                                                                                                                              記事

                                                                                                                                            データの民主化:信頼されたデータの活用によるビジネスの変革

                                                                                                                                            Data Democratization: Embracing Trusted Data to Transform Your Business

                                                                                                                                            Published: April 24, 2024

                                                                                                                                            データリーダー1分未満

                                                                                                                                            ジョシュ・ハワード による投稿

                                                                                                                                            この投稿を共有する

                                                                                                                                            最新の投稿を通知します

                                                                                                                                            データの民主化は、単なるテクノロジー、技術のバズワードのように聞こえるかもしれませんが、組織が収集するデータは日々増加しており、企業がそこから価値を引き出したいのであれば、データの正確性、信頼性、アクセシビリティを優先する必要があります。 そこで、データの民主化が役立ちます。

                                                                                                                                            しかし、データの民主化とは一体何なのでしょうか。また、高いレベルのガバナンスと信頼を維持しながら、それを達成するにはどうすればよいでしょうか。 データの民主化を成功させるためのステップと、それがビジネスにどのような利益をもたらし、人工知能(AI)戦略をどのようにサポートできるかをご覧ください。

                                                                                                                                            データの民主化とは?

                                                                                                                                            データの民主化とは、組織内のすべての人がデータに(適切に)アクセスできるようにすることであり、データを理解するために必要なツールやトレーニングを提供することです。 つまり、すべてのエンドユーザー(従業員、利害関係者、消費者)がデータを扱うことに自信を持ち、特にAIモデルに関して最終結果を信頼できるように、障壁を取り除き、教育を提供することを意味します。

                                                                                                                                            データを真に民主化し、蓄積された情報の価値を引き出すためには、企業は企業文化の転換を図り、データの保存と配布の方法を変える必要があります。

                                                                                                                                            データ民主化の主な目的は何か?

                                                                                                                                            データの民主化の定義が明確になったところで、次はそれを行う理由を探ってみましょう。 先に述べたように、データの民主化の目標は、アクセスや理解に対する障壁を取り除くことで、専門家でなくても組織のデータを閲覧・活用し、その有用性を最適化できるようにすることです。

                                                                                                                                            このプロセスにより、適切な人が適切なタイミングで適切なデータを適切な目的で見ることができます。 深い知識を必要とせず、情報に基づいた意思決定を行い、機会や問題を特定することができます。

                                                                                                                                            データの民主化戦略には、データチームやIT部門の支援を必要とせずに使用できるセルフサービス分析ツールや、全従業員がより技術志向の高いソリューションを快適に使用できるようにするための徹底的なトレーニングが含まれます。

                                                                                                                                            データアクセスを民主化すれば、効率性と生産性が向上し、従業員と顧客のエクスペリエンスが向上し、収益が増加します。 また、ビジネス上の意思決定の根拠となるデータを誰もが見ることができるため、透明性も高まります。

                                                                                                                                            データを民主化すれば企業は利益を得られるのか?

                                                                                                                                            データへのアクセスを民主化することで、経営者が得られるメリットはすでにいくつか述べました。 時間と費用の節約だけでなく、他にも多くの利点があります。

                                                                                                                                            データのサイロ化を解消

                                                                                                                                            データのサイロ化は、情報が別々のシステムに保存され、それぞれが特定のチームや部署によってのみアクセスされる場合に起こります。 データの民主化には、データの一元化が必要です。すべてのデータを一箇所に保存することで、必要な人は誰でも簡単にアクセスできるようになるからです。

                                                                                                                                            これにより、チーム間のデータ共有が容易になり、コラボレーションと部門横断的な意思決定が改善されます。 例えば、新しい製品を開発する際には、マーケティング、製品開発、カスタマーサポートの各チームが同じフィードバックデータにアクセスする必要があります。

                                                                                                                                            一元化され、標準化されたデータは、誰もが同じ情報を同じ形式で見ることができるため、ギャップや重複がありません。 これにより、コラボレーションと知識共有の文化が育まれます。 これはデータセットの精度向上にも貢献します。

                                                                                                                                            ボトルネックの除去

                                                                                                                                            組織によっては、T部門がデータを「所有」しており 、他のチームはアクセスを要求する必要があります。 データが広く利用可能であっても、従業員は必要なものを見つけ、その内容を理解するために助けを求めなければならない場合があります。

                                                                                                                                            これがボトルネックとなり、タスクを遅らせ、データチームの時間を奪うことになります。 データの民主化は、単にアクセスを許可するだけでなく、データがどこに保存されているか、適切な情報を見つける方法、それを効果的に使用する方法について、すべての人を教育します。

                                                                                                                                            他のチームがより早くタスクを完了できるようにするだけでなく、データチームが常にリクエストやチケットに対応することから解放され、AIや機械学習(ML)モデルなどの高度なデータ作業に集中できるようになります。

                                                                                                                                            データ管理の最適化

                                                                                                                                            データの民主化とは、組織がデータを保管、管理、配布する方法を変えることです。 データを中央ハブに保管することで、簡単に見つけることができますが、データチームはデータの品質と正確性を確保し、より多くの人がアクセスできるようにセキュリティを維持しなければなりません。

                                                                                                                                            セルフサービスアプリケーションについてはすでに述べましたが、ビジネスインテリジェンスで使用できるように、さまざまなソースからの情報の仮想データベースを照合するデータフェデレーションソフトウェアを実装することもできます。

                                                                                                                                            一方、データ仮想化ソフトウェアでは、ユーザーが高度な技術的専門知識を必要としなくても、アプリケーションでデータを取得したり操作したりすることができます。

                                                                                                                                            データに基づいた意思決定を増やす

                                                                                                                                            データを民主化すれば、エンドユーザーがデータを最大限に活用できるようになります。 上記のようなソフトウェアの助けがあれば、専門家の助けを借りることなく、パターンや傾向を特定し、より深い知見を得ることができます。

                                                                                                                                            つまり、すべてのチームがデータに基づいた意思決定を行えるのです。 例えば、チームはデータを使って以下のような意思決定を行うことができます:

                                                                                                                                            • マーケティングキャンペーンへの投資を継続するかどうか
                                                                                                                                            • コンバージョンする可能性の高い見込み客
                                                                                                                                            • 購入する在庫の量
                                                                                                                                            • 顧客が好むウェブページのバージョン
                                                                                                                                            • 特定のソフトウェアが生産性を向上させるかどうか

                                                                                                                                            データの民主化を阻むものは?

                                                                                                                                            新しいプロセスの導入と同様に、データの民主化を採用するには一定の課題があります。 遭遇する可能性のある主なハードルには、以下のようなものがあります:

                                                                                                                                            コンプライアンスとセキュリティ

                                                                                                                                            データのセキュリティに対する懸念から、データの民主化を受け入れることができない組織もあります。 データを所有し、管理するのが専門家だけで、他のユーザーからのデータ要求を承認しなければならない場合、強力なチェックとバランスが行われます。

                                                                                                                                            アクセス範囲が広がることで、企業の財務や顧客情報などの機密情報が悪用されたり、侵害されたりする危険性が懸念されています。 GDPRやCCPAのような規制を守らないと罰則があるため、これはコンプライアンスにも影響します。

                                                                                                                                            限られたデータリテラシーとアクセスしにくいツール

                                                                                                                                            従業員全体のデータリテラシーが低いと、データの誤解や不信が生じやすくなります。 データに基づいた知見と意思決定を理解することは、それを成功させるために不可欠です。

                                                                                                                                            アクセスしにくいツールは、専門的なトレーニングや技術的な知識を必要とするため、不信感を増幅させます。 そのため、技術的な訓練を受けていない従業員はデータにアクセスできず、組織全体におけるデータのコラボレーションや貢献の妨げとなっています。

                                                                                                                                            データの真の民主化は、企業がデータリテラシーや分析に使用するツールに現在取り組んでいる方法を見直すことなしには実現しません。

                                                                                                                                            質の低いデータ

                                                                                                                                            データの民主化に不可欠な情報へのアクセスの普及も、エンドユーザーがアクセスするデータを信頼できなければ、さらに妨げられます。 信頼性の低いデータや一貫性のないフォーマットでは、正確な知見を抽出し、信頼性の高い意思決定を行うことは不可能です。

                                                                                                                                            組織が強固なデータ品質とガバナンスの方針を持たない限り、データレイクは管理不十分なデータスワンプ(データの沼)になりかねません。 これは80/20のジレンマにつながります。データサイエンティストは、データを使用する前に必要な検索、クリーニング、整理に80%の時間を費やす必要があるため、データ分析に20%しか時間を割けないのです。

                                                                                                                                            データ民主化戦略の成功に必要なものは?

                                                                                                                                            データの民主化は一朝一夕にできるものではありません。 これは継続的なプロセスであり、組織全体の文化的変化を必要とします。 そのために必要な5つのステップをご紹介します:

                                                                                                                                            1. データ監査の実施

                                                                                                                                            まず、監査を実施して現状を把握する必要があります。 データがどこに保存されているのか(オンプレミスかクラウドか)、誰がアクセスできるのか、収集、管理、分析に現在どのツールが使われているのかをメモしておきましょう。

                                                                                                                                            システムのどの部分がうまく機能しているかを調べ、ボトルネックや非効率な部分を特定します。 また、従業員のデータリテラシーを把握し、組織全体でどの程度の追加トレーニングが必要かを確認する必要があります。 最後に、セキュリティとコンプライアンスのプロトコルも監査に含めるようにしてください。

                                                                                                                                            2. データ民主化の目標の設定

                                                                                                                                            データの民主化戦略を成功させるには、明確な目標が必要です。 例えば、顧客データへの迅速なアクセスは、サービス担当者のサポートに役立ち、ひいてはブランドの評判と収益の向上につながります。

                                                                                                                                            また、データの民主化の具体的な目標、たとえば、従業員が自信を持ってデータ分析に取り組めるようにするとか、関連するソフトウェアの使い方を全員が理解できるようにするといった目標を含めることもできます。 目標が分かれば、そこに到達するためのロードマップを設計することができます。

                                                                                                                                            3. データの一元化

                                                                                                                                            すべてのデータを中央ハブに集めることは、データの民主化の重要な部分です。 クラウド・ストレージは理想的です。非常にスケーラブルで、どこからでもアクセスでき、参入コストが低いからです。 エンドユーザーも、ツールを切り替えることなく、1つのプラットフォームにアクセスするだけです。

                                                                                                                                            また、データがきちんと整理され、検索可能であることも重要です。 データ民主化のための適切なソフトウェアは、データチームがデータにラベルを付けて分類することを可能にし、ユーザーが必要なものを見つけやすくします。

                                                                                                                                            4. データガバナンスポリシーの制定

                                                                                                                                            データの民主化がセキュリティやコンプライアンス上の問題につながることを懸念する組織もありますが、このプロセスは実際にお客様の情報をより安全にします。 これは、適切なデータが適切な人々によってアクセスされることを保証するだけでなく、データガバナンスと品質に重点を置いているためです。

                                                                                                                                            強固なデータガバナンスのポリシーは、データの保存と保護方法、誰がどのデータを閲覧(および編集)できるか、その使用方法に関するガイドラインを設定する必要があります。 ガイドラインは、使用するツールを網羅し、標準とプロセスがどのように実施されるかを概説する必要があります。

                                                                                                                                            5. 従業員に対する継続的なトレーニングの維持

                                                                                                                                            必要なデータを特定し、発見し、分析するために必要なデータリテラシーを全員が身につけられるよう、組織の全レベルで十分かつ定期的なトレーニングに投資することが不可欠です。 すべてのエンドユーザーは、データを効果的かつ安全に取り扱える十分な自信がなければなりません。

                                                                                                                                            関連するデータ民主化ツールの使い方や一般的なデータ認識についてユーザーを訓練します。 例えば、組織がどのようなデータを収集しているのか、また、どのように、なぜそのようなことをしているのか、また、データの民主化の実例や、どのような利点があるのかについて理解を深める必要があります。

                                                                                                                                            Johnson & Johnsonのサプライチェーンの最適化:データ民主化の例

                                                                                                                                            他のグローバル企業と同様、Johnson & Johnsonは効率的なサプライチェーンに依存しています。 消費財や医薬品を提供する企業として、棚に在庫を確保し、ワクチンの温度管理と納期を保証する必要があります。

                                                                                                                                            サプライチェーンの最適化は正確なデータがあって初めて管理できるものですが、断片的なシステムと手作業によるデータ分析によって、実用的な知見を得ることが困難になっていました。 その目的は、共通のデータレイヤーを作ることで、組織全体でデータを民主化することでした。

                                                                                                                                            レガシーなHadoopインフラストラクチャからDatabricksレイクハウスプラットフォームへの移行により、Johnson & Johnsonはデータ経路を合理化し、データアクセスの障壁を取り除きました。 Databricks SQLはスケーラブルなデータウェアハウス機能を提供し、アプリケーションやBIツールに直接データを供給します。

                                                                                                                                            Johnson & Johnsonのサプライチェーンの最適化は、理想的なデータ民主化の例です。 以下を達成し、業績を向上させました:

                                                                                                                                            • データエンジニアリングワークロードのコストを45~50%削減
                                                                                                                                            • データ配信のタイムラグを約24時間から10分以下に短縮
                                                                                                                                            • 消費者ニーズとビジネスニーズの理解向上

                                                                                                                                            データの民主化がAI戦略を強化する方法

                                                                                                                                            データの民主化が組織にもたらす重要なメリットの1つは、AI戦略の強化と支援です。

                                                                                                                                            データ品質が向上し、データ知見への信頼が高まると、AIモデルの訓練と検証のためのデータセットが改善されます。 より良いトレーニングデータセットにより、AIアプリケーションの精度と信頼性も向上します。

                                                                                                                                            データの民主化により、データチームは組織全体の他のチームをサポートする代わりに、AIアプリケーションの開発に専念することができます。 データへのアクセスが向上することで、他のチームもコラボレーション、実験、イノベーションによってAI開発をサポートすることができます。

                                                                                                                                            Databricksでデータの民主化を実現

                                                                                                                                            これまで見てきたように、データ民主化の2大要素は、データの一元化と強固なガバナンスです。 Databricks製品を使用することで、これらの項目にチェックを入れることができ、ユーザが信頼できるデータを発見、アクセス、コラボレーションできるようになります。

                                                                                                                                            Databricksデータインテリジェンスプラットフォームはレイクハウスアーキテクチャで構築されており、すべてのデータを一箇所に保存することができます。 統合、ストレージ、処理、ガバナンス、共有、アナリティクス、AIのための単一のアーキテクチャにより、サイロを排除し、データの重複問題を減らすことができます。

                                                                                                                                            レプリケーションを行わずに、レイクハウスから任意のコンピューティング プラットフォームにライブ データを簡単に共有できます。また、データ分類アクセス ポリシーのおかげで情報は非常に安全です。

                                                                                                                                            Databricks を使用すると、オープンスタンダードを使用してすべてのデータの単一コピーを確立し、標準SQLを使用してすべてのデータチームで統一されたガバナンスレイヤーを確立できます。 一方、Unity Catalog (レイクハウス上のデータおよびAI向けの業界初の統合ガバナンスソリューション)は、あらゆるクラウドやプラットフォーム上の構造化データおよび非構造化データをシームレスにガバナンスするのに役立ちます。

                                                                                                                                            Databricksのコスト効率に優れ、将来性のあるアーキテクチャがどのようにデータの民主化をサポートするかについては、無料トライアルをご利用ください。

                                                                                                                                            データ民主化に関するFAQ

                                                                                                                                            なぜデータの民主化が重要なのか?

                                                                                                                                            データの民主化により、適切な人材が適切なタイミングで適切なデータにアクセスできるようになります。これにより、エンドユーザーは信頼できる情報を見つけやすくなり、情報を理解して適切に使用するためのスキルとツールを身に付けることができます。

                                                                                                                                            このプロセスにより、データ共有の文化が育まれ、コラボレーションが向上し、ユーザーがデータ主導で意思決定できるようになります。 また、データの専門家は、アクセスや支援のリクエストに対応するためにすべての時間を費やすことはありません。

                                                                                                                                            組織全体でデータを民主化する方法

                                                                                                                                            データ民主化の主な目的を理解することと、それを達成する方法を知ることは全く異なります。 簡単なガイドとしては、まず現在のデータ状況を監査し、ボトルネックやサイロを特定することから始めます。

                                                                                                                                            次に、データ民主化の目標を定義し、より広範なビジネス目標と整合させます。 データを一元管理するための適切なプラットフォームを選択し、データを整理して標準化するようにしてください。

                                                                                                                                            最後に、セキュリティとコンプライアンスを確保するためのガバナンスポリシーを導入し、データ民主化ツールに関する教育を実施することで、組織の全員が自信を持ってデータを扱えるようになります。

                                                                                                                                            読者を次のステップに導きます。詳細については関連コンテンツを提案し、マーケティング目標到達プロセスに沿って読者を進めるためのリソースを提供します。

                                                                                                                                            最新の投稿を通知します

                                                                                                                                            関連記事

                                                                                                                                            この投稿を共有する

                                                                                                                                            Databricksの投稿を見逃さないようにしましょう

                                                                                                                                            興味のあるカテゴリを購読して、最新の投稿を受信トレイに届けましょう

                                                                                                                                            Sign up

                                                                                                                                            次は何ですか?

                                                                                                                                            The Power of AI in Business Intelligence: A New Era

                                                                                                                                            データリーダー

                                                                                                                                            December 3, 2024/1分未満

                                                                                                                                            ビジネスインテリジェンスを変えるAIの力:新時代の幕開け

                                                                                                                                            Artificial Intelligence in manufacturing

                                                                                                                                            データリーダー

                                                                                                                                            December 4, 2024/1分未満

                                                                                                                                            製造業を変革する人工知能の力! 🤖✨

                                                                                                                                            databricks logo
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            • エグゼクティブ向け
                                                                                                                                            • スタートアップ向け
                                                                                                                                            • レイクハウスアーキテクチャ
                                                                                                                                            • Mosaic Research
                                                                                                                                            導入事例
                                                                                                                                            • 全て見る
                                                                                                                                            • 注目の導入事例
                                                                                                                                            パートナー
                                                                                                                                            • クラウドプロバイダ
                                                                                                                                            • 技術パートナー
                                                                                                                                            • データパートナー
                                                                                                                                            • Databricks で構築
                                                                                                                                            • コンサルティング・SI
                                                                                                                                            • C&SI パートナー
                                                                                                                                            • パートナーソリューション
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            • エグゼクティブ向け
                                                                                                                                            • スタートアップ向け
                                                                                                                                            • レイクハウスアーキテクチャ
                                                                                                                                            • Mosaic Research
                                                                                                                                            導入事例
                                                                                                                                            • 全て見る
                                                                                                                                            • 注目の導入事例
                                                                                                                                            パートナー
                                                                                                                                            • クラウドプロバイダ
                                                                                                                                            • 技術パートナー
                                                                                                                                            • データパートナー
                                                                                                                                            • Databricks で構築
                                                                                                                                            • コンサルティング・SI
                                                                                                                                            • C&SI パートナー
                                                                                                                                            • パートナーソリューション
                                                                                                                                            製品
                                                                                                                                            レイクハウスプラットフォーム
                                                                                                                                            • プラットフォーム
                                                                                                                                            • 共有
                                                                                                                                            • データガバナンス
                                                                                                                                            • 人工知能(AI)
                                                                                                                                            • DBRX
                                                                                                                                            • データ管理
                                                                                                                                            • データウェアハウス
                                                                                                                                            • データストリーミング
                                                                                                                                            • データエンジニアリング
                                                                                                                                            • データサイエンス
                                                                                                                                            ご利用料金
                                                                                                                                            • 料金設定の概要
                                                                                                                                            • 料金計算ツール
                                                                                                                                            オープンソース
                                                                                                                                            統合とデータ
                                                                                                                                            • マーケットプレイス
                                                                                                                                            • IDE 統合
                                                                                                                                            • パートナーコネクト
                                                                                                                                            レイクハウスプラットフォーム
                                                                                                                                            • プラットフォーム
                                                                                                                                            • 共有
                                                                                                                                            • データガバナンス
                                                                                                                                            • 人工知能(AI)
                                                                                                                                            • DBRX
                                                                                                                                            • データ管理
                                                                                                                                            • データウェアハウス
                                                                                                                                            • データストリーミング
                                                                                                                                            • データエンジニアリング
                                                                                                                                            • データサイエンス
                                                                                                                                            ご利用料金
                                                                                                                                            • 料金設定の概要
                                                                                                                                            • 料金計算ツール
                                                                                                                                            統合とデータ
                                                                                                                                            • マーケットプレイス
                                                                                                                                            • IDE 統合
                                                                                                                                            • パートナーコネクト
                                                                                                                                            ソリューション
                                                                                                                                            業種別
                                                                                                                                            • 通信
                                                                                                                                            • 金融サービス
                                                                                                                                            • 医療・ライフサイエンス
                                                                                                                                            • 製造
                                                                                                                                            • メディア・エンタメ
                                                                                                                                            • 官公庁・公共機関
                                                                                                                                            • リテール・消費財
                                                                                                                                            • 全て表示
                                                                                                                                            クロスインダストリーソリューション
                                                                                                                                            • サイバーセキュリティ
                                                                                                                                            • マーケティング
                                                                                                                                            データの移行
                                                                                                                                            プロフェッショナルサービス
                                                                                                                                            ソリューションアクセラレータ
                                                                                                                                            業種別
                                                                                                                                            • 通信
                                                                                                                                            • 金融サービス
                                                                                                                                            • 医療・ライフサイエンス
                                                                                                                                            • 製造
                                                                                                                                            • メディア・エンタメ
                                                                                                                                            • 官公庁・公共機関
                                                                                                                                            • リテール・消費財
                                                                                                                                            • 全て表示
                                                                                                                                            クロスインダストリーソリューション
                                                                                                                                            • サイバーセキュリティ
                                                                                                                                            • マーケティング
                                                                                                                                            リソース
                                                                                                                                            ドキュメント
                                                                                                                                            カスタマーサポート
                                                                                                                                            コミュニティ
                                                                                                                                            トレーニング・認定試験
                                                                                                                                            • トレーニング概要
                                                                                                                                            • トレーニング
                                                                                                                                            • 認定
                                                                                                                                            • 大学との連携
                                                                                                                                            • Databricks アカデミー
                                                                                                                                            イベント
                                                                                                                                            • DATA+AI サミット
                                                                                                                                            • Data+AI ワールドツアー
                                                                                                                                            • Data Intelligence Days
                                                                                                                                            • イベントカレンダー
                                                                                                                                            ブログ・ポッドキャスト
                                                                                                                                            • Databricks ブログ
                                                                                                                                            • Databricks Mosaic AIリサーチブログ
                                                                                                                                            • Data Brew ポッドキャスト
                                                                                                                                            • Data+AI のチャンピオンシリーズ
                                                                                                                                            トレーニング・認定試験
                                                                                                                                            • トレーニング概要
                                                                                                                                            • トレーニング
                                                                                                                                            • 認定
                                                                                                                                            • 大学との連携
                                                                                                                                            • Databricks アカデミー
                                                                                                                                            イベント
                                                                                                                                            • DATA+AI サミット
                                                                                                                                            • Data+AI ワールドツアー
                                                                                                                                            • Data Intelligence Days
                                                                                                                                            • イベントカレンダー
                                                                                                                                            ブログ・ポッドキャスト
                                                                                                                                            • Databricks ブログ
                                                                                                                                            • Databricks Mosaic AIリサーチブログ
                                                                                                                                            • Data Brew ポッドキャスト
                                                                                                                                            • Data+AI のチャンピオンシリーズ
                                                                                                                                            企業情報
                                                                                                                                            企業概要
                                                                                                                                            • Databricks について
                                                                                                                                            • 経営陣
                                                                                                                                            • Databricks Ventures
                                                                                                                                            • ご相談・お問い合わせ
                                                                                                                                            採用情報
                                                                                                                                            • 採用情報概要
                                                                                                                                            • 求人情報
                                                                                                                                            プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                            • 受賞歴と業界評価
                                                                                                                                            セキュリティと信頼
                                                                                                                                            企業概要
                                                                                                                                            • Databricks について
                                                                                                                                            • 経営陣
                                                                                                                                            • Databricks Ventures
                                                                                                                                            • ご相談・お問い合わせ
                                                                                                                                            採用情報
                                                                                                                                            • 採用情報概要
                                                                                                                                            • 求人情報
                                                                                                                                            プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                            • 受賞歴と業界評価
                                                                                                                                            databricks logo

                                                                                                                                            Databricks Inc.
                                                                                                                                            160 Spear Street, 15th Floor
                                                                                                                                            San Francisco, CA 94105
                                                                                                                                            1-866-330-0121

                                                                                                                                            採用情報

                                                                                                                                            © Databricks 2025. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

                                                                                                                                            • プライバシー通知
                                                                                                                                            • |利用規約
                                                                                                                                            • |現代奴隷法に関する声明
                                                                                                                                            • |カリフォルニア州のプライバシー権利
                                                                                                                                            • |プライバシー設定