メインコンテンツへジャンプ

Databricks Performance Optimization - Japanese

このコースでは、SparkとDelta Lakeを使用してワークロードと物理レイアウトを最適化する方法と、Spark UIを分析してパフォーマンスを評価し、アプリケーションをデバッグする方法を学びます。ストリーミング、リキッドクラスタリング、データスキップ、キャッシュ、Photonなどのトピックについて説明します。

注:このコースは「Advanced Data Engineering with Databricks」コースの一部です。


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Professional
Duration
2h
Prerequisites

このコンテンツは以下のようなスキル、知識、能力のある受講者向けに開発されています。

  • Databricksを使用して基本的なコード開発タスクを実行する能力 (クラスターの作成、ノートブックでのコードの実行、基本的なノートブック操作の使用、GitからのReposのインポートなど)

  • PySparkの中級レベルのプログラミング経験

    • さまざまなファイル形式やデータソースからデータを抽出

    • いくつかの一般的な変換を適用してデータをクリーンアップする

    • 高度な組み込み関数を使用して複雑なデータの形状変換と操作を行う

  • Delta Lakeを使用した中級レベルのプログラミング経験 (テーブルの作成、完全更新と増分更新の実行、ファイルの圧縮、以前のバージョンの復元など)

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

DevOps Essentials for Data Engineering - Japanese

このコースでは、Databricks を使用するデータエンジニア向けに特別に設計された、ソフトウェアエンジニアリングのベストプラクティスと DevOps の原則について説明します。 参加者は、コード品質、バージョン管理、ドキュメンテーション、テストなどの主要なトピックで強力な基盤を構築します。 このコースではDevOpsに重点を置き、コアコンポーネント、利点、およびデータエンジニアリングワークフローの最適化における継続的インテグレーションと継続的デリバリー(CI/CD)の役割について説明します

PySpark でモジュール性の原則を適用して、再利用可能なコンポーネントを作成し、コードを効率的に構造化する方法を学習します。 実践的な経験には、pytest フレームワークを使用した PySpark 関数の単体テストの設計と実装、その後の DLT と Workflows を使用した Databricks データパイプラインの統合テストが含まれ、信頼性を確保します

このコースでは、Databricks Git フォルダーを使用した継続的インテグレーションのプラクティスの統合など、Databricks 内の基本的な Git 操作についても説明します。 最後に、REST API、CLI、SDK、Databricks アセットバンドル (DAB) など、Databricks アセットのさまざまなデプロイ方法の概要を説明し、パイプラインをデプロイして管理する手法に関する知識を身に付けます

このコースを修了すると、ソフトウェアエンジニアリングとDevOpsのベストプラクティスに習熟し、スケーラブルで保守可能、かつ効率的なデータエンジニアリングソリューションを構築できるようになります。

Languages Available: English | 日本語 | Português BR | 한국어

Free
2h
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.