メインコンテンツへジャンプ

Generative AI Application Development - Japanese

このコースは、マルチステージ推論、LLMチェーン、エージェントを使用して高度なLLMアプリケーションを構築する実践的な経験を提供するように設計されています。まず、問題をコンポーネントに分解し、各ステップに最適なモデルを選択してビジネスユースケースを強化する方法を学習します。続いて、LangChainとHuggingFaceトランスフォーマーを利用して多段階推論チェーンを構築する方法を紹介します。最後に、エージェントについて紹介し、Databricksの生成モデルを使用して自律エージェントを設計します。


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

このコンテンツは、以下のスキル/知識/能力を持つ参加者向けに開発されています。 

  • 自然言語処理の概念に関する知識
  • プロンプトエンジニアリング/プロンプトエンジニアリングのベストプラクティスに関する知識 
  • Databricksデータインテリジェンスプラットフォームに関する知識
  • RAGに関する知識(データの準備、RAGアーキテクチャの構築、エンベディング、ベクター、ベクターデータベースなどの概念)

Upcoming Public Classes

Date
Time
Language
Price
Jan 09
09 AM - 01 PM (Asia/Tokyo)
Japanese
$750.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Build Data Pipelines with Lakeflow Spark Declarative Pipelines - Japanese

このコースでは、複数のストリーミングテーブルとマテリアライズドビューを介した増分バッチまたはストリーミング取り込みと処理のために、DatabricksのLakeflow Spark Declarative Pipelinesを使用してデータパイプラインを構築するために必要な基本的な概念とスキルをユーザーに紹介します。 このコースは、Lakeflow Spark Declarative Pipelinesを初めて使用するデータエンジニア向けに設計されており、増分データ処理、ストリーミングテーブル、マテリアライズドビュー、一時ビューなどのコアコンポーネントの概要を包括的に説明し、それらの特定の目的と違いを強調します

取り上げるトピックは次のとおりです:

- SQLを使用したSpark Declarative PipelinesにおけるマルチファイルエディタによるETLパイプラインの開発とデバッグ(Pythonコード例付き)

- Spark Declarative Pipelinesがパイプライングラフを通じてパイプライン内のデータ依存関係を追跡する方法

- パイプライン コンピュート リソース、データ アセット、トリガー モード、およびその他の詳細オプションの構成

次に、本コースではSpark Declarative Pipelinesにおけるデータ品質の期待値について紹介し、データ整合性を検証・強制するために期待値をパイプラインに統合するプロセスをユーザーにガイドします。学習者はその後、スケジューリングオプションを含むパイプラインの本番環境への導入方法、およびパイプラインのパフォーマンスと健全性を監視するためのイベントログ記録の有効化方法について探求します。

最後に、本コースではSpark Declarative Pipelines内でAUTO CDC INTO構文を用いてチェンジデータキャプチャ(CDC)を実装し、slowly changing dimensions(SCDタイプ1およびタイプ2)を管理する方法を解説します。これにより、ユーザーはCDCを自身のパイプラインに統合する準備が整います。

Paid
4h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.