メインコンテンツへジャンプ

Generative AI Application Development - Japanese

このコースは、マルチステージ推論、LLMチェーン、エージェントを使用して高度なLLMアプリケーションを構築する実践的な経験を提供するように設計されています。まず、問題をコンポーネントに分解し、各ステップに最適なモデルを選択してビジネスユースケースを強化する方法を学習します。続いて、LangChainとHuggingFaceトランスフォーマーを利用して多段階推論チェーンを構築する方法を紹介します。最後に、エージェントについて紹介し、Databricksの生成モデルを使用して自律エージェントを設計します。


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

このコンテンツは、以下のスキル/知識/能力を持つ参加者向けに開発されています。 

  • 自然言語処理の概念に関する知識
  • プロンプトエンジニアリング/プロンプトエンジニアリングのベストプラクティスに関する知識 
  • Databricksデータインテリジェンスプラットフォームに関する知識
  • RAGに関する知識(データの準備、RAGアーキテクチャの構築、エンベディング、ベクター、ベクターデータベースなどの概念)

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

今すぐ登録

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

今すぐ登録

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Apache Spark Developer

Apache Spark™ Programming with Databricks - Japanese

このコースは、Databricksを使ったApache Sparkプログラミングを学ぶための適切な入口となります。

以下では、このコースに含まれる4つのモジュール(4時間)について説明します。

Introduction to Apache Spark

この初心者向けのコースでは、大規模なデータ処理のための Apache Spark の基礎について説明します。 Spark の分散アーキテクチャを探索し、DataFrame API をマスターし、Python を使用してデータの読み取り、書き込み、処理する方法を学習します。 実践的な演習を通じて、Sparkの変換とアクションを効率的に実行するために必要なスキルを身に付けます。 

Developing Applications with Apache Spark

このハンズオンコースでは、Apache Spark を使用したスケーラブルなデータ処理を習得します。 Spark の DataFrame API を使用して、効率的な ETL パイプラインを構築し、高度な分析を実行し、分散データ変換を最適化する方法を学びます。 グループ化、集計、結合、集合演算、ウィンドウ関数について調べます。 配列、マップ、構造体などの複雑なデータ型を操作しながら、パフォーマンス最適化のベストプラクティスを適用します。

Stream Processing and Analysis with Apache Spark

このコースでは、Apache Spark を使用したストリーム処理と解析の基本について学習します。 ストリーム処理の基礎をしっかりと理解し、Spark 構造化ストリーミング API を使用してアプリケーションを開発します。 ストリーム集約やウィンドウ分析などの高度な手法を探索して、リアルタイム データを効率的に処理します。 このコースでは、動的データ環境向けにスケーラブルでフォールトトレラントなストリーミングアプリケーションを作成するスキルを身に付けます。

Monitoring and Optimizing Apache Spark Workloads on Databricks

このコースでは、セキュアなデータガバナンス、アクセスコントロール、リネージトラッキングのためのUnity Catalogを中心に、スケーラブルなデータワークフローのためのレイクハウスアーキテクチャとメダリオン設計を探求します。カリキュラムには、Delta Lakeを使用した信頼性の高いACID準拠のパイプラインの構築も含まれます。パーティショニング、キャッシング、クエリチューニングなどのSpark最適化テクニックを検証し、パフォーマンスモニタリング、トラブルシューティング、効率的なデータエンジニアリングとアナリティクスのベストプラクティスを学び、現実世界の課題に取り組みます。

Languages Available: English | 日本語 | 한국어

Paid
16h
Lab
instructor-led
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.