メインコンテンツへジャンプ

Machine Learning Operations - Japanese

本コースでは、MLOpsとモデルライフサイクル管理に焦点を当て、機械学習モデルの運用に関する包括的な探求を参加者に提供します。最初のセグメントでは、必須のMLOpsコンポーネントとベストプラクティスをカバーし、機械学習モデルを効果的に運用するための強固な基盤を参加者に提供します。コースの後半では、モデルライフサイクルの基礎に深く掘り下げ、効率的なモデル管理のためにモデルレジストリとUnity Catalogを連携させてシームレスにナビゲートする方法を実演します。コース終了時には、参加者は実践的な知見とMLOps原則の包括的な理解を獲得し、複雑な機械学習モデル運用環境をナビゲートするために必要なスキルを身につけているでしょう。


Languages Available: English | 日本語 | Português BR | 한국어

Skill Level
Associate
Duration
4h
Prerequisites

このコンテンツを受講する前に、少なくとも次のことに関する知識が必要です。

  • 機械学習の基本概念に関する知識
    • MLflowトラッキングの知識
    • Databricks workspaceおよびノートブックの操作に精通していること
    • Pythonの中級レベルの知識

Upcoming Public Classes

Date
Time
Language
Price
Apr 08
02 PM - 06 PM (Asia/Tokyo)
Japanese
$750.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

今すぐ登録

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

今すぐ登録

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles - Japanese

このコースでは、DevOpsの原則とDatabricks projectへの応用について包括的に解説します。まず、DevOps、DataOps、継続的インテグレーション(CI)、継続的デプロイメント(CD)、テストといった中核概念の概要から始め、これらの原則をデータエンジニアリングパイプラインに適用する方法を探求します。

コースでは次に、CI/CDプロセス内での継続的デプロイに焦点を当て、プロジェクトデプロイのためのDatabricks REST API、SDK、CLIなどのツールを検証します。Databricks Asset Bundles(DAB)について学び、それらがCI/CDプロセスにどのように組み込まれるかを理解します。DABの主要コンポーネント、フォルダ構造、Databricks内の様々なターゲット環境へのデプロイを効率化する仕組みについて深く掘り下げます。さらに、Databricks CLIを使用して、異なる構成を持つ複数環境向けにDatabricks Asset Bundlesの変数追加、修正、検証、デプロイ、実行を行う方法も学びます。

最後に、本コースではVisual Studio Codeをインタラクティブ開発環境(IDE)として紹介し、Databricks Asset Bundlesのローカル環境でのビルド、テスト、デプロイを可能にすることで開発プロセスを最適化します。コースの締めくくりとして、GitHub Actionsを用いたデプロイパイプラインの自動化を紹介し、Databricks Asset Bundlesを用いたCI/CDワークフローの強化を図ります。

本コース修了時には、Databricks Asset Bundles を使用して Databricks projectのデプロイを自動化し、DevOps プラクティスを通じて効率性を向上させるスキルを身につけることができます。

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
instructor-led
Professional

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.