因果機械学習による販促オファーの最適化
翻訳:Junichi Maruyama. - Original Blog Link 多くの企業は、取引を成立させたり、契約を更新させたり、サービスを購入させたりするために、顧客にプロモーションのオファーを提供している。このようなインセンティブは、販売者にとっては、購入と引き換えに顧客に提供される収益やサービスの面でコストがかかる。しかし、適切に適用されれば、取引を確実に成立させ、購入規模を拡大させることもできる。しかし、インセンティブオファーを受け取ったすべてのアカウントが同じように反応するわけではありません。不適切に適用された販促オファーは、取引の規模や速度に何の影響も与えないかもしれないし、不必要にマージンを損なうかもしれない。顧客にインセンティブを提案する組織は、オファーが取引完了の確率に与える影響を予測し、それが取引の純収益に与える影響を理解することが重要である。 プロモーション・オファーを最適化することで、より良い結果を導くことができる あるソフトウェア会社が、営業チームが異なる提案に対してどのようにオ
AIデータの簡素化
翻訳:Junichi Maruyama. - Original Blog Link どのデータサイエンス組織と話しても、高品質なAIモデルを構築するための最大の課題はデータへのアクセスと管理であると、ほぼ全員が口を揃えて言うだろう。長年にわたり、実務家は実験と開発を加速させるために様々なテクノロジーと抽象化を利用してきた。ここ数年、フィーチャーストアは、機械学習のためにデータを整理し準備する方法として、実務家の間でますます普及している。2022年初頭、Databricksはフィーチャーストアの一般提供を開始しました。この夏、Databricks Unity Catalogのネイティブ機能としてフィーチャーエンジニアリングと管理を導入できることを嬉しく思います。これは、AIデータをよりシンプルに管理する方法の大きな進化を意味します。この進化は、フィーチャー管理とクラス最高のデータカタログを一体化させ、フィーチャーを作成し、それらを使用してモデルをトレーニングし、サービスを提供するプロセスを簡素化し、安全にします。
MapInPandasとDelta Live Tablesで一般的でないファイル形式を大規模に処理する
翻訳:Junichi Maruyama. - Original Blog Link 様々なファイル形式 最新のデータエンジニアリングの世界では、 Databricks Lakehouse Platform は信頼性の高いストリーミングおよびバッチ data pipelines の構築プロセスを簡素化します。しかし、曖昧なファイル形式や一般的でないファイル形式を扱うことは、Lakehouseへのデータ取り込みにおいて依然として課題となっています。データを提供する上流のチームは、データの保存と送信方法を決定するため、組織によって標準が異なります。例えば、データエンジニアは、スキーマの解釈が自由なCSVや、ファイル名に拡張子がないファイル、独自のフォーマットでカスタムリーダーが必要なファイルなどを扱わなければならないことがあります。このデータをParquetで取得できないかとリクエストするだけで問題が解決することもあれば、パフォーマンスの高いパイプラインを構築するために、よりクリエイティブなアプローチが必要になることも