メインコンテンツへジャンプ
<
ページ 7
>

Providence Health:Databricks Mosaic AIを使用したML/AIプロジェクトのスケーリング

Providence Healthの広範なネットワーク は50以上の病院と複数の州にまたがるその他の施設を包含しており、特定の部門内での患者数と日々の患者数を予測することは多くの課題を伴います。この情報は、短期および長期のスタッフニーズ、患者の転送、一般的な運用認識についての情報提供を行うために重要です。Databricksの採用初期段階では、Providenceは新しいリクエストを迅速に進め、探索を支援し、多くの場合初期の予測を提供するシンプルな基準患者数モデルを作成することを目指しました。また、この患者数をほぼリアルタイムで数千の部門をサポートするようにスケーリングするには一部の作業が必要だと認識しました。 私たちは、 Databricks Mosaic AI ツールの実装を開始しました Databricks AutoML を使用しています。スケジュールされたワークフローが実行されるたびに、数行のコードから自動的に予測を実行する能力を高く評価しました。AutoMLは詳細なモデル設定を必要とせず、データを初めて

エンタープライズAIの現状:先行導入企業が成功をけん引しています

November 14, 2024 ジョシュ・ハワードミン・ヤン による投稿 in
生成型AIブームが最初に火をつけたとき、すべての企業がこの技術を急いで展開しました。多くの人々にとって、その興奮は依然として残っています。しかし、企業はまた、AIを生活に取り入れる際の課題を熱心に認識しています。そして、彼らは戦略を見直し、一般的な知識のLLMから、真のビジネス利益をもたらすことができる専門的なシステムに焦点を移しています。 私たちはエコノミストと協力して、AIが現実の世界でどのように機能しているかを理解しました。 エンタープライズAIの解放:機会と戦略 , これは1,100人のエグゼクティブとテクノロジスト、および28人のCスイートエグゼクティブを対象にした調査に基づいて、エンタープライズAIの現状について深く掘り下げた新しいレポートです。 その結果は、企業が組織内でAIをどのように戦略化しているかについて、私たちに多くを教えてくれます。一つは明らかです:各業界の「勝者」は、データ管理、セキュリティ、ガバナンス、文化、ドメイン固有の専門知識を包括するAIへの全体的なアプローチを取る者であり、最終

バッチおよびエージェントワークフローのための構造化出力の紹介

多くのAIのユースケースは、非構造化入力を構造化データに変換することに依存しています。開発者はますます、LLMを利用して生のドキュメントから構造化データを抽出し、APIソースからデータを取得するアシスタントを構築し、行動を起こすエージェントを作成しています。これらの各ユースケースでは、モデルが構造化された形式に従った出力を生成する必要があります。 今日、私たちは Structured Outputs をMosaic AI Model Servingに導入することを発表します。これは、提供されたJSONスキーマにオプションで準拠できるJSONオブジェクトを生成するための統一されたAPIです。この新機能は、LlamaのようなオープンなLLM、ファインチューニングされたモデル、OpenAIのGPT-4oのような外部LLMを含むすべてのタイプのモデルをサポートし、特定のユースケースに最適なモデルを選択する柔軟性を提供します。 Structured Outputs は、新たに導入された response_format とと

未来を守る:生成型AIの時代におけるAIエージェントシステムを保護するAIゲートウェイの役割

未来:ルールエンジンから指示に従うAIエージェントシステムへ 銀行や保険などのセクターでは、ルールエンジンは長い間、意思決定において重要な役割を果たしてきました。銀行口座の開設資格を決定したり、保険請求を承認したりするかどうか、これらのエンジンは事前に定義されたルールを適用してデータを処理し、自動的な決定を下します。これらのシステムが失敗すると、人間の主題専門家(SMEs)が例外処理を行います。 しかし、指示に従うGenAIモデルの出現は、ゲームを変えることになるでしょう。静的なルールエンジンに頼るのではなく、これらのモデルは特定のルールデータセットで訓練され、複雑な決定を動的に行うことができます。例えば、指示に従うモデルは、リアルタイムで顧客の金融履歴を評価し、ローン申請を承認または拒否することができます。ハードコーディングされたルールは必要ありません。データに基づいて決定を下す訓練されたモデルだけです。 この変化は、より大きな柔軟性と効率性をもたらしますが、重要な問いを提起します: 伝統的なルールエンジンを置

DatabricksとMathworksを使用したMATLABおよびSimulinkモデルのスケーリング

あなたがヘルスケア、航空宇宙、製造業、政府などのどの業界から来ていても、ビッグデータという言葉は見知らぬものではないでしょう。しかし、そのデータが現在のMATLABまたはSimulinkモデルにどのように統合されるかは、今日あなたが直面している課題かもしれません。これが DatabricksとMathworkのパートナーシップ が2020年に構築され、顧客が大規模なデータからより迅速に有意義な洞察を得るための支援を続けている理由です。これにより、エンジニアは新しいコードを学ぶことなくMathworksでアルゴリズム/モデルの開発を続けることができ、Databricks Data Intelligence Platformを利用して、それらのモデルをスケールしてデータ分析を行い、モデルを反復的に訓練しテストすることができます。 例えば、製造業では、予測保守が重要なアプリケーションです。エンジニアは、MATLABの高度なアルゴリズムを利用して機械データを分析し、潜在的な設備の故障を驚くほど正確に予測することができます

AIエージェントシステム:信頼性の高い企業向けAIを実現するモジュール型エンジニアリング

モノリシックからモジュラーへ 新技術の概念実証(POC)は、多くの場合、特性を明確にするのが難しい大規模でモノリシックな単位から始まります。POCはその性質上、拡張性、保守性、品質といった課題を考慮せずに「技術が動作する」ことを示すために設計されます。しかし、技術が成熟し広く展開されると、これらの課題に対応するために、製品開発はより小さく管理しやすい単位に分解されていきます。これがシステム思考の基本的な概念であり、AIの導入が単一のモデルからAIエージェントシステムへと進化している理由なのです。 モジュール設計の概念が適用されてきた分野: modular design 自動車 : 座席、タイヤ、ライト、エンジンなどを異なるベンダーから調達可能 コンピュータチップ : メモリ、I/Oインターフェイス、FLASHメモリなどの事前構築されたモジュールを統合 建築物 : 窓、ドア、床、家電など ソフトウェア : オブジェクト指向プログラミングやAPIにより、小規模で管理可能なコンポーネントに分割 ほぼすべてのエンジニアリ

AIが企業の構造とダイナミクスを変える役割

最新の人工知能(AI)の波、特に大規模言語モデル(LLM)の登場と大量採用によって推進されたものは、組織が運営し価値を創出する方法を根本的に変える可能性を示しました。チームや企業の運営モデルにAIが及ぼす影響を考えるとき、3つの主要な焦点領域が浮かび上がります: 労働力:効率と品質を向上させ、よりリーンで、より合理化された、またはこのリストの他の2つの焦点領域と組み合わせた代替的なスタッフ配置を可能にする人間とAIの増強とインターフェース。 プロセス:AIはロボティックプロセスオートメーション(RPA)とビジネスプロセスモデリング(BPM)の進化を強化し、サイクル時間の短縮、精度の向上、監査可能性の確保、そして官僚制度の削減を支援します。 運用:AIベースの意思決定支援システムを活用して、働き方を豊かにし、強化する。ITに伝統的に適用されていたAIOpsのような概念は、PeopleOps、Embedded Financeなどに拡大することができます。 私たちが現在直面しているAI革命の最も激しく議論されている側面

「Microsoft Ignite 2024」における Azure Databricksの発表

November 11, 2024 ケイティ・カミンスキー による投稿 in
Azure Databricks は、2024 年 11 月 18 日から 22 日にかけてシカゴの McCormick Place West で開催される Microsoft Ignite 2024 に参加できることを非常に楽しみにしています。Gamechanger レベルのスポンサーとして、Azure Databricks の強力なデータおよび AI 機能を一連のセッション、パートナーとの連携、ネットワーキングイベントを通じて披露し、Microsoft...

Databricksマーケットプレイス Top10の質問と回答

Databricks Marketplace は、オープンソースのDelta Sharing標準によって支えられたデータ、分析、AIのためのオープンマーケットプレイスです。Databricks Marketplaceのリリース以来、リストとプロバイダーの数は300%増加しました。この急速な成長期を通じて、データパートナーとデータ消費者がDatabricks Marketplaceを最大限に活用するのを支援しました。 今日、最も頻繁に尋ねられる質問のトップ10を共有したいと思います。消費者とプロバイダーの両方に合わせてカスタマイズされ、私たちが何を異なるものにしているのか、リストをどのように目立たせるか、そして特定のデータニーズに最適な製品を見つける方法について詳しく読んでください。 消費者としてDatabricks Marketplaceを使用する理由は? Databricks Marketplaceには、データセット、MLモデル、ノートブック、ソリューションアクセラレータ、そして近々アプリケーションなど、様々な

データサイロの解説:問題点と解決策

データサイロとは? データは企業にとって最も価値のある資産の1つですが、その価値は企業がいかにデータを活用して、インパクトと収益を生み出すビジネス上の意思決定を行えるかにかかっています。データサイロは、企業がデータの全体像を把握することを妨げ、そのギャップはリーダーのデータ駆動型意思決定能力に影響を与える可能性があります。 「サイロ」という名前は、農場で異なる穀物を別々の容器に保管するサイロのイメージを想起させるかもしれません。データサイロも企業内でのデータの同様の分離を指します。異なるチームが独自にデータを収集、管理、保存し、アクセスは特定のグループ内に限定されることが多いのです。時には製品部門や職務機能に基づいて分離が設計されることもありますが、企業買収によってデータサイロが生まれることもあります。 多くの組織では、データはタイプ別にサイロ化されています。この場合、構造化データは複数のデータウェアハウスに、オンプレミスとクラウドの両方に保存されます。一方、非構造化データやストリーミングデータは、データレイクに