メインコンテンツへジャンプ
<
ページ 6
>

Databricks Feature Serving(特徴量サービング)の一般提供開始のお知らせ

本日、Databricks Feature Serving(特徴量サービング)の一般提供を開始いたします。 特徴量はAIアプリケーションにおいて極めて重要な役割を果たし、通常、正確に計算し、低レイテンシーでアクセスできるようにするためにはかなりの労力を必要とします。 この複雑さによって、本番のアプリケーションの品質を向上させるための新機能の導入が難しくなります。 特徴量サービングを利用すれば、AIアプリケーションに対して、単一のREST APIを使用してリアルタイムで、事前に計算された特徴量やオンデマンドの特徴量を簡単に提供することができます! 特徴量サービングは、高速で安全、かつ簡単に使用できるように設計されており、次のような利点があります: 高速かつ低TCO - 特徴量サービングは、低TCOで高いパフォーマンスを提供するように設計されており、ミリ秒単位の待ち時間で特徴量を提供できます。 フィーチャーチェーン - 事前に計算された特徴量とオンデマンド計算のチェーンを指定することで、複雑なリアルタイム特徴量の計算

Databricks、Brickbuilderプログラムを拡張してUnity Catalog Acceleratorsを追加

本日、Brickbuilder Unity Catalog Acceleratorsを発表いたします。 この プログラム は、システムインテグレーターやコンサルティングパートナーの専門知識と、実績のあるフレームワークや構築済みのコードを組み合わせて、企業が特定の方法論や Databricksデータインテリジェンスプラットフォーム の機能を迅速に実装できるように支援するものです。 パートナーソリューションとアクセラレータで構成されるBrickbuilderプログラムは、 業界と 移行ソリューションに 焦点を当てて始まり、あらゆる規模の顧客が数ヶ月ではなく数週間でDatabricksデータインテリジェンスプラットフォームを使用してレイクハウスアーキテクチャーをセットアップし、充実させることを支援するアクセラレーターを含むように急速に拡大しました。 今日、Databricksは、生産性を向上させ、価値を最適化するために、顧客のあらゆる段階に適合するアクセラレーターを開発するために、トップパートナーとの協力と投資を続けて

DataFrameの等式関数を使ったPySparkテストのシンプル化

DataFrameの等式テスト関数 は、PySparkのユニットテストを簡素化するためにApache Spark™ 3.5とDatabricks Runtime 14.2で導入されました。 このブログ記事で説明した機能一式は、次期Apache Spark 4.0とDatabricks Runtime 14.3から利用可能になります。 DataFrameの等式テスト関数を使用して、より信頼性の高いDataFrame変換を記述 PySparkでデータを扱うには、DataFrameに変換、集約、操作を適用します。 変換が蓄積されるにつれて、コードが期待通りに動作することをどうやって確信できるでしょうか? PySparkの等式テストユーティリティ関数は、データを期待される結果と照らし合わせてチェックする効率的で効果的な方法を提供し、予期しない差異を特定して分析プロセスの初期段階でエラーを検出するのに役立ちます。 さらに、デバッグに多くの時間を費やすことなく、即座に対策を講じることができるように、違いを正確に特定する直感的

Apache Spark 構造化ストリーミングにおけるステートフルパイプラインの最新パフォーマンス改善へのディープダイブ

この投稿は、ステートフル・パイプラインの最新のパフォーマンス改善に関する2部構成のシリーズの第2部です。 このシリーズの最初の部分は、 Apache Spark 構造化ストリーミングにおけるステートフルパイプラインのパフォーマンス改善 でカバーされています。 Project Lightspeedの更新ブログ では、ステートフルパイプラインに追加したさまざまなパフォーマンス改善の概要を紹介しました。 このセクションでは、パフォーマンス分析中に観察されたさまざまな問題を掘り下げ、それらの問題に対処するために実施した具体的な機能強化の概要を説明します。 RocksDBステートストア・プロバイダの改善 メモリ管理 RocksDBは主に メモリ を memtables 、ブロックキャッシュ、その他のピン留めブロックに使用します。以前は、マイクロバッチ内のすべての更新は、 WriteBatchWithIndex を 使用してメモリにバッファリングされていました。 さらに、ユーザーは書き込みバッファとブロックキャッシュの使用に

Apache Spark 構造化ストリーミングにおけるステートフルパイプラインのパフォーマンス改善

イントロダクション Apache Spark™ の 構造化ストリーミング は、Spark SQLエンジン上に構築された、スケーラビリティと耐障害性を提供する人気のオープンソースストリーム処理プラットフォームです。 Databricksレイクハウスプラットフォーム上のほとんどの増分的および ストリーミングワークロード は、 Delta Live Tables および Auto Loader を含む構造化ストリーミングを利用しています。 ここ数年、あらゆる業界における多様なユースケースにおいて、構造化ストリーミングの使用と採用が 飛躍的に伸びて います。 Databricksでは、1週間に1,400万以上の構造化ストリーミングジョブが実行されており、その数は年間2倍以上のペースで増加しています。 ほとんどの構造化ストリーミングのワークロードは、 分析ワークロードと運用ワークロード...