メインコンテンツへジャンプ
<
ページ 2
>

IoT向けの分散ML

June 4, 2024 ジョシュ・メルトン による投稿 in 業界
イントロダクション 今日、メーカーの現場でのメンテナンスは、事前対応型よりも事後対応型であることが多く、コストのかかるダウンタイムや修理につながる可能性があります。 これまで、データウェアハウスは、履歴レポートに対して高性能で高度に構造化されたレンズを提供してきましたが、ユーザーには効果的な予測ソリューションが求められていました。 ただし、Databricks データ インテリジェンス プラットフォームを使用すると、企業はデータの同じコピーに対して履歴分析と予測分析の両方を実装できます。 製造業者は、予測メンテナンス ソリューションを活用して、潜在的な問題がビジネス上重要な顧客対応の問題になる前に特定し、対処することができます。 Databricks は、データ準備、モデル トレーニング、根本原因分析レポート用のツールを含む、エンドツーエンドの機械学習ソリューションを提供します。 このブログの目的は、統一されたスケーラブルなアプローチで IoT 異常検出の予測ソリューションを実装する方法を明らかにすることです。

大規模なプレイヤーフィードバックを管理し、理解しよう

ライブタイトル、本番運用前/運用後、進行中のメンテナンス、将来のリリース、ゲームの別バージョン、または市場向けのまったく新しいタイトルのいずれに取り組んでいる場合でも、常にコミュニティからのフィードバックを求めています。 世の中には不足はありませんが、圧倒され、ふるいにかけるのが難しい場合があります。 PC で出荷され、Valve の Steam ストアを通じて販売されるゲームの場合、タイトルに対するプレイヤーからのフィードバックの優れたソースは、Steam のゲームレビューで見つけることができます。 私たちは 、自然言語と機械学習技術 を組み合わせた、プレイヤーレビュー分析用の新しいソリューションアクセラレータを構築しました。これにより、ゲーム開発者はプレイヤーをより深く理解し、ゲームデザイン、バックエンドオペレーション、ライブオペレーション、マーケティング、そして実際にはすべての事業ラインを通じて対応できるようになります。 Steamのゲームレビューでは、次のことを見ることができます。 生のフィードバック:

実例で見る!企業が生成AIを駆使する方法

生成AI(GenAI)は信じられないほど速く動いています。 その結果、わずか 2 年足らずで GenAI は最もエキサイティングで変革的なテクノロジーの 1 つとして登場し、さまざまな業界の企業がイノベーションを推進し、生産性を高め、優れた顧客体験を提供できるようにしています。 Databricks では、通信、エネルギー、金融サービス、ヘルスケアおよびライフサイエンス、製造、公共部門、メディアおよびエンターテイメント、小売および消費財など、あらゆる業界のプラットフォーム全体で GenAI アプリケーションの需要と開発が急激に増加しています。 Data + AI Summit が近づくにつれ、私たちはグローバルコミュニティを結集し、すべての人にデータインテリジェンスを提供するという約束を果たしていきます。 GenAI はイベントの中心的なテーマとなり、GenAI アプリケーションの開発と展開をサポートする 130 社以上のパートナー が参加します。...

データインテリジェンスプラットフォーム上の半導体

半導体業界では、研究開発タスク、製造プロセス、企業計画システムによって、さまざまなデータ成果物が生成され、それらを融合してインテリジェントな半導体企業を構築できます。 インテリジェントなデータの使用により、インテリジェントな半導体企業は市場投入までの時間を短縮し、製造歩留まりを高め、製品の信頼性を強化します。

通信、メディア、エンターテインメントにおけるデータガバナンスの重要な役割

May 6, 2024 ブライアン・サフトラー による投稿 in 業界
データ分析とAIガバナンスは、データとAIの民主化の取り組みにおいて、おそらく最も重要でありながら最も難しい側面です。 データ分析とAIのニーズに合わせて、ビジネスインテリジェンス用のデータウェアハウスとAI用のデータレイクという 2 つの異なるシステムを導入している可能性があります。 そして今、それぞれが異なるガバナンスモデルを持つ2つのシステム間でデータを移動するデータサイロを作成しました。 ただし、データはファイルやテーブルに限定されません。 また、ダッシュボード、ML モデル、ノートブックなどの資産にはそれぞれ独自の権限モデルがあり、これらすべての資産に対するアクセス権限を一貫して管理することが困難になっています。 データ資産が、アクセス管理ソリューションが異なる複数のクラウドに存在する場合、問題はさらに大きくなります。 良いニュースです。データガバナンスを統合する方法があります。 しかし、なぜ気にする必要があるのでしょうか? 堅牢なデータガバナンスがなければ、チームや企業はオーディエンスを完全に理解でき

スポーツにおけるデータ革命:Databricks Marketplace と Delta Sharing の画期的な影響

May 2, 2024 ライアン・スタンフォード による投稿 in 業界
一瞬一瞬、あらゆるプレーが結果を左右する、変化の速いスポーツの世界では、高度な分析とリアルタイムデータ知見の必要性がかつてないほど重要になっています。 スポーツ業界は、パフォーマンスを向上させ、ファンを惹きつけ、競争力を確保するための革新的な戦略を常に模索しています。 Databricks MarketplaceとDelta Sharing は、前例のないデータの取得、共有、コラボレーションを促進することで、スポーツ アナリティクスの状況を一変させています。 スポーツにおける Databricks Marketplace の力 Databricks Marketplace は、オープンソースの Delta Sharing 標準を利用した、データ、分析、AI のオープン マーケットプレイスです。これは、独自のプラットフォームや複雑な ETL プロセス、または高価なレプリケーションの制約なしに、組織が機械学習モデル、ノートブック、アプリケーション、ダッシュボードなどの膨大な資産にアクセスできる中央ハブとして機能します

Databricks でコストの最適化と信頼性のバランスを賢く実現

May 1, 2024 ヴオン・グエンワシム・アフマド による投稿 in 業界
Databricks データ インテリジェンス プラットフォームは比類のない柔軟性を提供し、ユーザーはほぼ瞬時に水平方向にスケーラブルなコンピュート リソースにアクセスできます。 この作成の容易さは、適切に管理されない場合、制御不能なクラウド コストにつながる可能性があります。 オブザーバビリティを実装してコストを追跡し、チャージバック Databricks でコストを追跡およびチャージバックするために可観測性を効果的に使用する方法 複雑な技術エコシステムを扱う場合、未知の要素を積極的に理解することが、プラットフォームの安定性を維持し、コストを管理するための鍵となります。 オブザーバビリティ(可観測性)は、システムが生成するデータに基づいてシステムを分析および最適化する方法を提供します。 これは、既知の問題を追跡するのではなく、新しいパターンを特定することに重点を置くモニタリングとは異なります。 Databricks のコスト追跡の主な機能 タグ:タグを使用して、リソースと料金を分類します。 これにより、よりきめ

Databricks が AWS GovCloud 上で FedRAMP High agency ATO を取得、現在パブリックプレビュー中

私たちは、Databricks on AWS GovCloudが現在 パブリックプレビュー 中であること、そして最近、最初の FedRAMP® High Agency ATO を獲得したことを発表できることを嬉しく思います! 国際武器取引規制(ITAR)およびHIPAAのユースケースをサポートする準備が整いました。間もなく国防総省影響レベル 5 (IL5) の暫定認可が得られる予定です。 本日の発表は、Databricks にとってエキサイティングな コンプライアンスマイルストーン の最新版です。 これは、FedRAMP Highのスポンサー機関とプレビューのお客様の功績を称えるものであり、 米国市民権移民サービス 、メディケアおよびメディケイドサービスセンター、米国食品医薬品局のような公共部門のお客様が、市民サービスの向上とミッションの成功を達成するためのデータインテリジェンスの約束を実現するための支援に重点を置いていることを反映しています。...

クラウド分析のパワーを解き放つ:Intelのデータ革命を垣間見る

世界有数のハイテク企業が、データ分析をどのように変革し、時代の最先端を走り続けているのかを知る準備はできていますか? Intel ITの最新ホワイトペーパーでは、Intel最大の事業部門である企業データ分析のクラウドへの移行を成功させた内部事情を明らかにしています。 Intelがファウンドリサービスとソフトウェア開発の領域にさらに踏み込んでいる今、堅牢で高性能なデータプラットフォームに対する需要はかつてないほど高まっています。 このデータ主導型の変革のベースは、さまざまな事業活動から収集されたインテリジェントな知見にあり、Intelは迅速かつ十分な情報に基づいた意思決定を行うことができます。 この変革の中核となるのが、Databricks上に構築されたクラウドベースのデータ分析プラットフォームです。 この革命的なプラットフォームは、単なるデータストレージではなく、以下を含むダイナミックなエコシステムです: 統合データ分析のためのサンドボックス機能 何度でも使えるデータ取り込みと変換のテンプレート AIと機械学習の

生成AIを用いてブランドイメージに沿った画像を作成する

画像生成技術は、小売業や消費財メーカーに大きなメリットをもたらします。 生成モデルを使用することで、ユーザーのプロンプトから様式的な画像とフォトリアリスティックな画像の両方を生成することができ、マーケティング担当者やデザイナー、製品開発チームは、新しいアイデアやデザインを迅速かつ効果的に検討することができます。 このAI技術を使用するための主な要件は、ユーザーがコンセプトを明確に表現する能力です。 共通の目標に集中する個人からなる小さなチームは、AIにプロンプトを渡すことで、アイデアを評価したり、新しいアイデアを閃いたりするのに役立つビジュアライゼーションを生成できます。 このような技術によって促進されるプロセスでは、チームは先行投資コストを削減し、フィードバックまでの時間を短縮し、最終的には、新しい、革新的で差別化されたコンテンツやデザインコンセプトにつながる、より創造的なプロセスに従事することができます。 しかし、大量の一般的な画像で事前に訓練されたモデルを使用することは、あるまとまった画像を作成するのに適し