メインコンテンツへジャンプ
<
ページ 2
>

大規模言語モデルを用いて常識に沿った商品レコメンデーションを行う

詳細とノートブックのダウンロードについては、 LLM Solution Accelerators for Retail をご覧ください。 商品の推薦(レコメンデーション)は、現代の顧客体験の中核をなす機能です。 ユーザーは以前利用したことのあるサイトに戻ったとき、以前の利用内容に関連するレコメンデーションが表示されることを期待します。 ユーザーが特定のアイテムに興味を持ったとき、類似した関連性のある代替品が提案され、自分のニーズに合ったアイテムを見つけられることを期待します。 また、商品がカートに入れられると、ユーザーは、全体的な購買体験を完成かつ向上させる追加の商品がレコメンドされることを期待します。 このような商品のレコメンデーションが適切に行われれば、買い物がスムーズになるだけでなく、ユーザーは小売店によって認識され、理解されていると感じることができます。 商品のレコメンデーションを生成するための様々なアプローチがありますが、現在使用されているレコメンデーションエンジンのほとんどは、小売業者固有の大規模なデ

Databricksで成功を加速:antuit.aiの意思決定と顧客インパクトの深堀り

February 15, 2024 ニコラス・ウェグマン による投稿 in 業界
AIを活用した予測というダイナミックな領域において、企業は戦略的な選択がその軌道を形成することになります。 AIを活用した予測ソリューションのリーダーである antuit.ai (現在はZebra Technologiesの一部) は 、そのような極めて重要な決断を下しました。 Antuit.aiは、社内のインフラストラクチャの道を歩むのではなく、Databricks Data Intelligence Platformのレイクハウス・アーキテクチャに軸足を置くことを選択しました。 レイクハウスとは? 簡単に言えば、レイクハウスはDatabricksが開拓したコンセプトで、ユニークなタイプのデータ管理システムです。 データレイクの良い部分(柔軟性やコスト効率など)とデータウェアハウスの良い部分(慎重なデータ管理など)を組み合わせたものです。 これにより、より優れたビジネスインテリジェンスと機械学習が可能になります。 その設計により、データチームがより簡単かつ迅速に使用できるようになりました。 すべてのクラウドで標

レイクハウス上で「コンポーザブルCDP」を構築するには

October 18, 2023 ブライアン・サフトラーSteve Sobel による投稿 in 業界
翻訳:Saki Kitaoka. - Original Blog Link 顧客データは、あらゆる業界の最新組織にとって生命線です。組織がデータレイクハウスでデータチームとプラクティスをレベルアップするにつれて、レイクハウスをアナリティクスのソース・オブ・トゥルースとしてだけでなく、マーケティング、オペレーション、パーソナライゼーションなどの原動力となるエンジンとして使用するケースが増えています。 Databricks Ventures は、Data Lakehouse ネイティブのカスタマーデータプラットフォーム ( CDP ) を強化するため、Hightouch に投資しました( invested )。Hightouchは、DatabricksユーザーがLakehouseから直接顧客データを収集、保存、モデル化、活性化するために必要なすべての機能を提供します。このLakehouse中心のアーキテクチャは、独自のデータインフラストラクチャを中心とした完全な コンポーザブルCDP を作成します。このブログでは、L

画像とメタデータの活用して商品の名寄せを実現するには

翻訳:Saki Kitaoka. - Original Blog Link 商品マッチングは、多くの小売企業や消費財メーカーにとって不可欠な機能です。サプライヤーがオンライン・マーケットプレイスで新商品を販売する際、入荷する商品は既存の商品カタログの商品と比較されます。サプライヤーは、小売業者のウェブサイトに掲載されている商品リストを比較し、表示されている内容が契約条件と一致していることを確認します。小売業者はお互いのウェブサイトをスクレイピングし、価格比較のために商品を一致させることがあります。また、サプライヤーは、小売業者やサードパーティのデータから、より上位の商品アグリゲートと、販売する個々のSKUを照合する必要があります。多くの組織にとって、この作業は時間がかかり、正確ではありません。 この作業を行う上での主な課題は、同じ商品でも組織によってラベル表示が異なることです。表示される商品名、説明文、または顧客と商品との結びつきをよくするための箇条書きの特徴リストの小さな差異が、正確な一致を不可能にすることがあ